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DRYGAS FUNCTIONAL EQUATIONS WITH EXTRA TERMS
AND ITS STABILITY

YOUNG JU JEON AND CHANG IL KIM*

ABSTRACT. In this paper, we consider the generalized Hyers-Ulam stability
for the following functional equation with an extra term G

flx+y)+ flz—y) +Gy(z,y) =2f(z) + f(y) + f(~y),

where Gy is a functional operator of f.

1. INTRODUCTION AND PRELIMINARIES

In 1940, Ulam [12] proposed the following stability problem :

“Let GG1 be a group and G5 a metric group with the metric d. Given a constant
0 > 0, does there exist a constant ¢ > 0 such that if a mapping f : Gi —
G4 satisfies d(f(zy), f(z)f(y)) < c for all x,y € G, then there exists an unique
homomorphism h : Gy — G2 with d(f(z), h(x)) < § for all x € G17”

In 1941, Hyers [6] answered this problem under the assumption that the groups are
Banach spaces. Aoki [1] and Rassias [11] generalized the result of Hyers. Rassias
[11] solved the generalized Hyers-Ulam stability of the functional inequality

1f (@ +y) = flz) = FI < ez + llyl”)

for some € > 0 and p with p < 1 and for all z,y € X, where f: X — Y is a
function between Banach spaces. The paper of Rassias [11] has provided a lot of
influence in the development of what we call the generalized Hyers-Ulam stability
or Hyers-Ulam-Rassias stability of functional equations. A generalization of the
Rassias theorem was obtained by Gavruta [5] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassis approach.

The functional equation

(1.1) flx+y)+ flz—y) =2f(x) +2f(y)

is called @ quadratic functional equation and a solution of a quadratic functional
equation is called quadratic. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [10] for mappings f : X — Y,
where X is a normed space and Y is a Banach space. Cholewa [2] noticed that
the theorem of Skof is still true if the relevant domain X is replaced by an Abelian
group. Czerwik [3] proved the generalized Hyers-Ulam stability for the quadratic
functional equation and Park [9] proved the generalized Hyers-Ulam stability of the
quadratic functional eqution in Banach modules over a C*-algebra.
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In this paper, we are interested in what kind of terms can be added to the Drygas
functional equation [4]

fle+y)+fl@—y) =2f(z)+ fy) + f(=y)

while the generalized Hyers-Ulam stability still holds for the new functional equa-
tion. We denote the added term by G (z,y) which can be regarded as a functional
operator depending on the variables x, y, and functions f. Then the new functional
equation can be written as

(1.2) fe+y)+ f(x—y)+ Gz, y) =2f(x) + f(y) + f(~y).

In fact, the functional operator G ¢(x,y) was introduced and considered in the cases
of additive, quadratic functional equations with somewhat different point of view
by the authors([7], [8]).

2. SOLUTIONS OF 1.2 AS ADDITIVE-QUADRATIC MAPPINGS

Let X and Y be normed spacese. For given [ € N and any i € {1,2,---,1}, let
g; : X Xx X — X be a binary operation such that
0 (T.’E, Ty) =T0; (.’E, y)
for all z,y € X and all r € R. It is clear that 0;(0,0) = 0. Also let F: Y! — Y
be a linear, continuous function. For a map f : X — Y, define
Gy(x,y) = F(f(o1(z,y)), flo2(2,y)), - - -, fo(2,9))).
From now on, for any mapping f : X — Y, we deonte
fl@) — f(=x f(@) + f(=x
iy = LI ) S+ S
First, we consider the following functional equation

af(z+y) +bf(x —y)—cfly— =)
=(a+b)f(z) —cf(—z) + (a =) f(y) + bf(~y)

for fixed real numbers a,b,c with a = b — ¢ and a # 0. We can easily show the
following lemma.

(2.1)

Lemma 2.1. Let f: X — Y be a mapping. Then f satisfies (2.1) if and only if
f is an additive-quadratic mapping.

Definition 2.2. The functional operator G is called additive-quadratic if whenever
Gp(z,y) =0 for all z,y € X, h is an additive-quadratic mapping.

Lemma 2.3. Let f : X — Y be a mapping satisfying (1.2) and G additve-
quadratic. Then the following are equivalent :

(1) f is additive-quadratic,

(2) the following equality

holds for all x, y € X, and

(3) there exist real numbers b, ¢ such that b # ¢ and

(2.3) bG¢(x,y) = cGyf(y, )
holds for all x, y € X.
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Proof. (1) (=) (2) (=) (3) are trivial.

(3) (=) (1) By (2.2), we have f(0) = 0 and by (1.2), we have

Gy(z,y) =2f(z) + f(y) + f(=y) = f(z +y) = f(x —y), and

Grly, ) =2f(y) + f(x) + f(-2) = fle+y) - fly— =)
for all z, y € X. Hence by (2.3), we have
(b+c)f(z+y)+bf(z—y) —cf(y—z) = (2b+c) f(z) +cf (—x)+ (b+20) f(y) +bf (—y)
for all z, y € X and by Lemma 2.1, we have that f is additive-quadratic. O

3. THE GENERALIZED HYERS-ULAM STABILITY OF (1.2)

In this section, we deal with the generalized Hyers-Ulam stability of (1.2).
Throughout this paper, assume that G is additive-quadratic and the following in-
equalities hold

t
|G (@, 2)]| < [GR(0, )] + ) il [Gr (85, 0)|| if h: odd,
(3.1) i =1 .
Gz, 2)| <D IpilllGR(0, csz) || + ) lasll|Gr(Aiz, 0)[| if B even

i=1 i=1
for some r,s,t € NU {0}, some real numbers p;, a;, b;, a;, A;, and ¢; and for all
rzeX.

Theorem 3.1. Let ¢ : X? — [0,00) be a function such that
(3.2) > 272", 2My) < o0
n=0

forallz,ye X. Let f : X — Y be an odd mapping such that

(3-3) [z +y) + [z —y) + Gy, y) = 2f(2)]| < o(2,y).

for all x;y € X. Then there exists an odd mapping A : X — X such that A
satisfies (1.2) and

(34) A@) — f@)] < 3277 (2", 2"2) + 9(0,2"2) + Y [bil6(2"8iz,0)] -
n=0 i=1

forallz € X. Further, if Gy satisfies (2.2), then A : X — X is an unique additive
mapping with (3.4).

Proof. By (3.3), we have

1G¢(z,0)]| < ¢(,0), [[G£(0,2)]| < (0, )
for all z,y € X. Setting y = x in (3.3), we have
(3.5) 1f(22) + Gz, x) = 2f(2)]| < p(x, x)

for all x € X. Hence by (3.1) and (3.5), we have
¢

(36)  17(@) ~ 27 0l < 27 6w 2) + 6(0,2) + 3 bilo(5ie, 0)

i=1
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for all z € X. By (3.6), we have

[f(z) —27"f(2")|
n—1 t

<Y okt [¢(2’€x, 2%2) + ¢(0,252) + > [bil$(2* 8, 0)
k=0

i=1

for all z € X and all n € N. For m,n € NU {0} with 0 <m < n,

277 f2" ) — 27" f(2")|
—9—m oM 27(n7m) gn—m om
37) > (2" ) fFer( JL‘))|t|
<Y okt [(b(Qkx, 24) + §(0,252) + 3 |bil6(246:2,0)
k=m

i=1
for all z € X. By (3.2) and (3.7), {27"f(2"z)} is a Cauchy sequence in Y and
since Y is a Banach space, there exists a mapping A : X — Y such that A(xz) =
lim,, 00 27" f(2™x) for all z € X. By (3.7), we have (3.4).
Replacing = and y by 2"z and 2™y in (3.3), respectively and deviding (3.3) by
2™ we have
127"[f "z +y) + f2"(x —y)) + G5 (2"2,2"y) — 2f(2"2)]|| < 27"p(2"x, 2"y)

for all z,y € X and letting n — oo, we can show that A satisfies (1.2). Since f is
odd, A is odd.

Suppose that G satisfies (2.2). Then clearly, we can show that G 4 satisfies (2.2)
and hence by Lemma 2.3, A is an additive-quadratic mapping. Since A is odd, A
is an additive mapping.

Now, we show the uniqueness of A. Let £ : X — Y be an additive mapping
with (3.4). Since A and E are additive,

[A(z) - E(2)]| = |A(2"z) - E(2"2)|
<ok i 27 6270, 2") + 6(0,2") + S (bl 6(275:, 0)
n=0 i=1

for all z € X and all k € N. Hence, letting k — oo, by (3.2), we have A=FE. O

Similar to Theorem 3.1, we have the following theorem.

Theorem 3.2. Let ¢ : X? — [0,00) be a function such that
(3.8) D22 ", 27 y) < oo

forallx,y € X. Let f : X — Y be an odd mapping satisfying (3.3). Then there
exists an odd mapping A : X — X such that A satisfies (1.2) and

(3.9) 1A« |<Z2"1[ "w)+ (0,27 +Z\b\¢ 6,0)

for allz € X. Further, if Gy satisfies (2.2), then A : X — X is an unique additive
mapping with (3.9)
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Proof. By (3.3), we have

1G¢(2,0)[| < &(2,0), [|G£(0,2)| < ¢(0,z)
for all 2,y € X. Setting y = 2 =  in (3.5), we have

(3.10) Hf(x)+Gf<§>g) _Qf@)H S(‘S(gg)

for all z € X. Hence by (3.1), (3.3), and (3.10), we have

(3.11) Hf —2f( )H<¢xﬂc + (0, ) +Z|b|¢5fc0)

for all z € X. By (3.11), we have

() = 2" f(2” ||<Zz’f[ (272, 27%2) + 90,27 +Z\b|¢> “5;2,0)]

forall z € X and all n € N. For m,n € NU{0} with 0 <m < n,

27 f(27 ") — 2" f (27 ") |

— 9m —ma) (n—m) —(n—m) —mg
(3.12) 27|27 ) = 2T S (2 @ ")l

n—1 t
<Y 2 [¢(2—kx, 27k ) + ¢(0,27%2) + 3 [bil¢(2F 8, 0)]
k=m

i=1

for all x € X. By (3.12), {2" f(27™x)} is a Cauchy sequence in Y. The rest of proof
is similar to Theorem 3.1. g

Theorem 3.3. Let ¢ : X? — [0,00) be a function such that

(oo}
(3.13) > 27g(2me, 2My) < oo
n=0

forallz,ye X. Let f : X — Y be an even mapping such that

(3.14) [f(z+y)+ fl@—y)+ Gz, y) = 2f(x) = 2f ()| < d(=,y).

for all x,y € X. Then there exists an even mapping Q : X — X such that
(3.15)

[Q(x )| < 22_% 2{ (2"z,2"z)+ Y |pilo(0, 2" aix) + |ai\¢(2n)\i$,0)]

=1 i=1

for all x € X. Further, if Gy satisfies (2.2), then Q : X — Y is an unique
quadratic mapping with (3.15)

Proof. Setting y = z in (3.14), we have
122 () = f(22) + Gy (z,2)|| < é(z,2)
for all x € X and by (3.14), we have
1G¢(z,0)]] < ¢(x,0), [[G£(0,2) < ¢(0,)
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for all z € X. Since f is even, letting y = x in (3.14), by (3.1), we have

() =272 (20)
<2726, x) + Gy (o,2)]

<272 (@, @) + > [pil |G (0, i) || + D laa |Gy (N, O)H]
) i=1 i=1

<272 [o(2,2) + Y il (0. a5) + D lailo (N, 0)]
) i=1 i=1
for all x € X. Hence we have
1 f(x) — 272" f(2")]|
n—1 r S
< 322 [p(25, 250) + 3 Iilo (0,25 ai) + 3 lailo (2" e, 0)]
k=0

=1 i=1

(3.16)

for all z € X and all n € N. For m,n € NU {0} with 0 <m < n, by (3.16)
22 f(2ma) — 272 f(2a) |
= 27 () — 272 ()|

n—1
<Y 2 [¢ z,2%z) —|—Z|pl|¢ (0, 2%a;z +Z|az\¢ (2% Nz 0)}
k=m

i=1 =

(3.17)

for all z € X. By (3.17), {2727 f(2"x)} is a Cauchy sequence in Y. The rest of
proof is similar to Theorem 3.1. O

Theorem 3.4. Let ¢ : X? — [0,00) be a function such that
oo
(3.18) D 2mg(27 e, 27 y) < oo

forallz,y € X. Let f : X — Y be an even mapping satisfying (3.14). Then there
exists an even mapping Q : X — X such that
(3.19)

Q@) —f (@)l < Z 221 6(27"2, 27" 2)+ Y Ipil(0,2 ")+ D lail6(2 " Az, 0)]
=1

=1

for all x € X. Further, if Gy satisfies (2.2), then Q : X — Y is an unique
quadratic mapping with (3.19)

Proof. Setting y = = £ in (3.14), we have

H22f(§) s@)+65(5.3)| < 0(5:3)
for all z € X. By (3.14), we have

|G (2, 0)] < ¢(,0), [|G(0,z)] < (0,)
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for all z € X and so, we have

() - o] <o(52) o5 7)
<o3:3) S mllosad)] - S50

<o(5, )+Z|pz|¢(o o) + Z|az|¢( i5:0)

for all z € X. Similar to Theorem 3.1, we have the result. (Il

Theorem 3.5. Let ¢ : X2 — [0,00) be a function with (3.2). Let f : X — Y
be a mapping with (3.8). Then there exists a mapping F : X — X such that F
satisfies (1.2) and

[1E(x) = f(2)]]

<3022 g (20, 2%) + Y Ipiln(0.272) + 3 farlér (02", 0)]
(3.20) n—=0 i=1 i=1

oo t
+y 2! [¢1(2"w, 272) + $1(0,272) + Y |bil 1 (8:2"x, 0)}
n=0 i=1
for all x € X, where ¢1(x,y) = [(;S(z y) + o(—x y)} Further, if Gy satisfies
(2.2), then F : X — X is an unique addztwe—quadmtzc mapping with (3.20)
Proof. By (3.3), we have

(3.21) [fe(z +y) + fe(z —y) + Gr. (2, y) = 2fc(x) = 2fe(y)]| < d1(2,y)

for all x,y € X. By Theorem 3.3, there exists an even mapping @ : X — Y such
that Q(z) = lim,, ;o 272" f,(2"x) for all 2 € X,

(3.22) Qlz +y)+ Qz —y) + Golz,y) = 2Q(x) +2Q(y)
for all z,y € X, and
1Q(z) = fe(x)]]
323 < 22—2n 2[ 2n$ on +Z|pl|¢1 2"601‘96)+Z\ai|¢1(2n)\i$,0)}
i=1

for all z € X. Similarly, there exists an odd mapping A : X — Y such that
Az) = lim, 00 27" f,(2"x) for all z € X,

(3.24) Alz+y)+ Az —y) + Galz,y) —2A(x) =
for all z,y € X, and
t
(3.25) ||A(z)—fo ()] < Z g—n-1 [¢1 ", 27) +61(0,2"2)+ Y [bil e (28, 0)
i=1
for all x € X.

Let FF = Q+A. Since Q is even and A is odd, 2Q(y) = F(y)+F(—y) and by (3.22)
and (3.24), F satisfies (1.2). Since ||F(z)— f(z)| < |Q(z) — fe(z) ||+ ||A(z) — fo(2)],
by (3.23) and (3.25), we have (3.20).
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Suppose that Gy satisfies (2.2). Then clearly, we can show that Gp satisfies
(2.2) and hence by Lemma 2.3, F' is an additive-quadratic mapping. The proof of
the uniqueness of F' is similar to Theorem 3.1. (]

Theorem 3.6. Let ¢ : X? — [0,00) be a function such that
> 2mg(27"x,27My) < oo
=0

forall xz,y € X. Let f : X — Y be a mapping with (3.3). Then there exist a
mapping F : X — X such that

(3.26)
£ () = f(2)]l
< Z 92n—2 [¢1 (2_nl‘7 2_”30) + Z |pi\¢1 (0, 2_":5) + Z \ai|¢1 ()\i2_n$, O):|
n=0 =1 =1

o t
302 012727 ) + 60(0,270) + Y [bilen (627", 0)|
n=0 =1

for all x € X, where ¢1(z,y) = [¢($ y) + ¢(—=x y)} Further, if Gy satisfies
(2.2), then F : X — X is an unique addztwe—quadmtzc mapping with (3.26).

4. APPLICAIONS

In this section, we illustrate how the theorems in section 3 work well for the
generalized Hyers-Ulam stability of various additive-quadratic functional equations.

As examples of ¢(z,y) in Theorem 3.5 and Theorem 3.6, we can take ¢(z,y) =
e(||lz||Plly|IP + |z||** + ||ly||?P). Then we can formulate the following theorem :

Theorem 4.1. Assume that all of the conditions in Theorem 3.1 hold and Gy
satisfies (2.2). Let p be a real number with 0 < p < %,1 <p. Let f: X —Y bea
mapping such that
(4.1)
1f (@+y)+ f(x—y)=2f (@)= f ()~ F (=) +Cs(a, )| < e(llelPlyllP+[l]* +[l]*)
forallz,y € X. Then there exists an unique additive-quadratic mapping F : X —
Y such that

1(z), f0<p<3

|F () - (){ o 1

for all x € X, where

Ui(@) = 34+ D Ipil + D lasllnil | = 2l + [4+Z|b|\6|2p] el
=1 1=1
and
p—1,
[3+Z|pz|+2|al||x|2p}4f ol + [4+Z|b||6|2p}4p Nl
i=1

Lemma 4.2. Let G be the operator defined by

Gilz,y) =fQRx+y) — fle+2y) + fla —y) — fly —x) = 3f(x) +3f(y)
for all mapping f: X — Y. Then G is additive-quadratic.
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Proof. Suppose that Gy(z,y) =0 for all z,y € X. Then we have
(4.2) fQRz+y)— flz+2y)+ f(z—y) — fly—2) = 3f(z) +3f(y) = 0.

and so we have

(4.3) fe(2z +y) — fe(x +2y) = 3fe(x) +3fe(y) =0
for all z,y € X and letting y = y — z in (4.3), we have

(44) fe(x"I'y)_fe(m_zy)_3fe(m)+3fe(x_y>:0
for all z,y € X. Letting y = —y in (4.4), we have

(45) fe(x—y)—fe(a?+2y)—3fe(a:)+3fe(x+y)=0

for all z,y € X. By (4.4) and (4.5), we have

fe(x+2y)+fe(x_2y)_2fe($) _gfe(y)_4[fe(x+y)+fe(x_y) _2fe(x)_2fe(y)] =0
for all z,y € X and so f. is quadratic.
Since f, is an odd mapping, by (4.2), we have

(46) fo(2l’ + y) - fo(‘r + 2y) + 2.100(5[j - y) - 3fo(w) + 3f0(y) =0
for all z,y € X and letting y = —x — y in (4.6), we have

(47) fo(‘r - y) + fo(x + 2y) + 2fo(2$ + y) - 3fo(x) - 3fo(x + y) =0
for all x,y € X. By (4.6) and (4.7), we have

(4.8) foQr +y) + folz —y) = 2fo(z) + foly) — folz +y) =0

for all z,y € X and letting y = —y in (4.10), we have

(49) fo(Qm - y) + fo(x + y) - 2fo(x) - fo(y) - fo(x - y) =0

for all x,y € X. By (4.10) and (4.9), we have

(4.10) fo2x +y) + fo(22 —y) —4fo(x) =0

for all z,y € X and hence f, is additive. Thus f is an additive-quadratic mapping.

O
By Lemma 2.3, Theorem 4.1, and Lemma 4.2, we have the following theorem :

Theorem 4.3. Let f: X — Y be a mapping such that
If(@+2y) = fRz+y) + fl@e+y) + fly—2) + f(2) —4f(y) — F(=y)
< e(llz|Pllyll” + [l + ||

for all z,y € X and some a real number p with 0 < p < %, 1 < p. Then there exists
an unique additive-quadratic mapping F : X — 'Y such that

2+ |elal®, fo<p<)
1F(@) ~ )] <

3t 2 e, i1 <p

forallx € X.

Proof. For a mapping h: X — Y | let Gp(z,y) = h(2z +y) — h(z + 2y) + h(z —
y) — h(y — ) — 3h(x) + 3h(y). By Lemma 4.2, G is additive-quadratic and f,G
satisfly (4.1). Since G satisfies (2.2) in Lemma 2.3, by Theorem 4.1, we have the
result. ]
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