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Abstract

We study a new class of boundary value problems of mixed fractional differ-
ential equations and inclusions involving both left Caputo and right Riemann-
Liouville fractional derivatives, and nonlocal four-point fractional boundary con-
ditions. We apply the standard tools of the fixed-point theory to obtain the
sufficient criteria for the existence and uniqueness of solutions for the problems
at hand. Illustrative examples for the obtained results are also presented.
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1 Introduction

Fractional calculus deals with the study of fractional order integrals and derivatives
and their diverse applications [1, 2, 3]. Riemann-Liouville and Caputo are kinds of
fractional derivatives. They all generalize the ordinary integral and differential opera-
tors. However, the fractional derivatives have fewer properties than the corresponding
classical ones. As a result, it makes these derivatives very useful at describing the
anomalous phenomena, see [4, 5, 6] and references cited therein.

Some solutions of equations containing left and right fractional derivatives were
investigated [7, 8, 9]. The left and the right derivatives found interesting applications
in fractional variational principles, fractional control theory as well as in fractional
Lagrangian and Hamiltonian dynamics. In [10], the existence of an extremal solution
to a nonlinear system with the right-handed Riemann-Liouville fractional derivative
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was discussed. In [11, 12], the authors studied the existence of solutions for fractional
boundary value problems involving both the left Riemann-Liouville and the right Ca-
puto fractional derivatives.

In this paper, we investigate the existence and uniqueness of solutions for a mixed
fractional differential equation involving both left Caputo and right Riemann-Liouville
types fractional derivatives associated with nonlocal four-point fractional boundary
conditions. Precisely, we study the following problems:{ cDα

1−D
β
0+y(t) = f(t, y(t)), t ∈ J := [0, 1],

y(0) = 0, Dβ
0+y(ξ) = 0, y(1) = δy(η), 0 < η < 1,

(1.1)

and { cDα
1−D

β
0+y(t) ∈ F (t, y(t)), t ∈ J := [0, 1],

y(0) = 0, Dβ
0+y(ξ) = 0, y(1) = δy(η), 0 < ξ, η < 1,

(1.2)

where cDα
1− and Dβ

0+ denote the left Caputo fractional derivative of order α ∈ (1, 2]
and the right Riemann-Liouville fractional derivative of order β ∈ (0, 1] respectively,
f : J × R→ R is a given function, F : [0, 1]× R→ P(R) is a multivalued map, P(R)
is the family of all nonempty subsets of R and δ ∈ R is an appropriate constant. Here
we remark that the problem (1.1) with y′(0) = 0 in palce of Dβ

0+y(ξ) = 0, was studied
recently in [13].

The rest of the paper is organized as follows. In Section 2, we recall some basic
definitions of fractional calculus and prove a basic result that plays a key role in the
forthcoming analysis. Section 3 contains the existence and uniqueness results for the
problem (1.1), which rely on fixed point theorems due to Banach, Krasnoselskii and
Leray-Schauder nonlinear alternative. In Section 4, we discuss existence results for the
problem (1.2), which rely on nonlineqar alternative for Kakutani maps and Covitz and
Nadler fixed point theorem. Finally in Section 5 we study illustrative examples for the
obtained results.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts [14] that we
need in the sequel.

Definition 2.1 We define the left and right Riemann-Liouville fractional integrals of
order α > 0 of a function g : (0,∞)→ R as

Iα0+g(t) =

∫ t

0

(t− s)α−1

Γ(α)
g(s)ds, (2.1)

Iα1−g(t) =

∫ 1

t

(s− t)α−1

Γ(α)
g(s)ds, (2.2)
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BVP for mixed fractional derivatives 3

provided the right-hand sides are point-wise defined on (0,∞), where Γ is the Gamma
function.

Definition 2.2 The left Riemann-Liouville fractional derivative and the right Caputo
fractional derivative of order α > 0 of a continuous function g : (0,∞)→ R such that
g ∈ Cn((0,∞),R) are respectively given by

Dα
0+g(t) =

dn

dtn
(In−α0+ g)(t),

cDα
1−g(t) = (−1)nIn−α1− g(n)(t),

where n− 1 < α < n.

The following lemma, dealing with a linear variant of the problem (1.1), plays an
important role in the forthcoming analysis.

Lemma 2.3 Let h ∈ C(J,R) and P = [(1 − δηβ+1) − (β + 1)ξ(1 − δηβ)] 6= 0. The
function y is a solution of the problem{ cDα

1−D
β
0+y(t) = h(t), t ∈ J := [0, 1],

y(0) = 0, Dβ
0+y(ξ) = 0, y(1) = δy(η), 0 < ξ, η < 1,

(2.3)

if and only if

y(t) = Iβ0+I
α
1−h(t) +

[tβ+1(1− δηβ)− tβ(1− δηβ+1)]

PΓ(β + 1)
Iα1−h(t)|t=ξ

+
[tβ+1 − ξ(β + 1)tβ]

P

(
δIβ0+I

α
1−h(t)|t=η − Iβ0+Iα1−h(t)|t=1

)
, (2.4)

where Iα1−y(s) is defined by (2.2).

Proof. Applying the right fractional integral Iα1− to both sides of the equation in the
problem (2.3), we get

Dβ
0+y(t) = Iα1−h(t) + c0 + c1t. (2.5)

Using the condition Dβ
0+y(ξ) = 0 in (2.5), we obtain

c0 + c1ξ = −Iα1−h(t)|t=ξ. (2.6)

Next we apply the left fractional integral Iβ0+ to the equation (2.5) to get

y(t) = Iβ0+I
α
1−h(t) + c0

tβ

Γ(β + 1)
+ c1

tβ+1

Γ(β + 2)
+ c2t

β−1. (2.7)
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Making use of the conditions y(0) = 0 and y(1) = δy(η) in (2.7) yields c2 = 0 and

(1− δηβ)

Γ(β + 1)
c0 +

(1− δηβ+1)

Γ(β + 2)
c1 = δIβ0+I

α
1−h(t)|t=η − Iβ0+Iα1−h(t)|t=1. (2.8)

Solving (2.7) and (2.8) for c0 and c1, we find that

c0 = −Γ(β + 2)

P

[(1− δηβ+1)

Γ(β + 2)
Iα1−h(t)|t=ξ + ξ

(
δIβ0+I

α
1−h(t)|t=η − Iβ0+Iα1−h(t)|t=1

) ]
,

c1 =
Γ(β + 2)

P

[
δIβ0+I

α
1−h(t)|t=η − Iβ0+Iα1−h(t)|t=1 +

(1− δηβ)

Γ(β + 1)
Iα1−h(t)|t=ξ

]
.

Substituting the values of c0 and c1 in (2.6), we get the solution (2.4). By direct
computation, we can obtain the converse of this lemma. This completes the proof. 2

Remark 2.4 Let ‖h‖ = supt∈[0,1] |h(t). Then we have the following estimate:

‖y‖ ≤ ‖h‖ max
t∈[0,1]

{
(1− ξ)α

Γ(α + 1)
|µ1(t)|+

[tβ + (1 + δηβ)|µ2(t)|]
Γ(α + 1)Γ(β + 1)

}
, (2.9)

where

µ1(t) =
tβ+1(1− δηβ)− tβ(1− δηβ+1)

PΓ(β + 1)
, µ2(t) =

tβ+1 − ξ(β + 1)tβ

P
. (2.10)

Indeed, we have

|y(t)| ≤ ‖h‖
∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|‖h‖

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|‖h‖

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]

= ‖h‖
∫ t

0

(t− s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds+ |µ1(t)|‖h‖

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|‖h‖

[
δ

∫ η

0

(η − s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds+

∫ 1

0

(1− s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds

]

≤ ‖h‖ max
t∈[0,1]

{
(1− ξ)α

Γ(α + 1)
|µ1(t)|+

[tβ + (1 + δηβ)|µ2(t)|]
Γ(α + 1)Γ(β + 1)

}
,

where we taken (1− s)α ≤ 1.

For computation convenience, we introduce the notation:

Λ = max
t∈[0,1]

{ (1− ξ)α

Γ(α + 1)
|µ1(t)|+

[tβ + (1 + δηβ)|µ2(t)|]
Γ(α + 1)Γ(β + 1)

}
. (2.11)
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3 Existence and uniqueness results for the problem

(1.1)

Let X = C([0, 1],R) denotes the Banach space of all continuous functions from [0, 1]→
R equipped with the norm ‖y‖ = sup {|y(t)| : t ∈ [0, 1]}.

In view of Lemma 2.3, we transform the problem (1.1) into a fixed point problem
as

y = Gy, (3.1)

where the operator G : X → X is defined by

Gy(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−f(s, y(s))ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
f(s, y(s))ds (3.2)

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−f(s, y(s))ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−f(s, y(s))ds

]
,

where µ1, µ2 are defined by (2.10).

Our first result deals with the existence and uniqueness of solutions for the problem
(1.1).

Theorem 3.1 Let f : [0, 1]× R→ R be a continuous function such that:

(H1) |f(t, y)− f(t, z)| ≤ L|y − z|, for all t ∈ [0, 1], y, z ∈ R, L > 0.

Then the problem (1.1) has a unique solution on [0, 1] if

LΛ < 1, (3.3)

where Λ is defined by (2.11).

Proof. Let us define supt∈[0,1] |f(t, 0)| = M and select r ≥ MΛ

1− LΛ
to establish that

GBr ⊂ Br, where Br = {y ∈ X : ‖y‖ ≤ r} and G is defined by (3.2). Using the
condition (H1), we have

|f(t, y)| = |f(t, y)− f(t, 0) + f(t, 0)| ≤ |f(t, y)− f(t, 0)|+ |f(t, 0)|
≤ L‖y‖+M ≤ Lr +M. (3.4)

Then, for y ∈ Br, by using Remark 2.4, we obtain

‖Gy‖ ≤ (Lr +M)

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds
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+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]}

= (Lr +M)

{∫ t

0

(t− s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds+

∫ 1

0

(1− s)β−1

Γ(β)

(1− s)α

Γ(α + 1)
ds

]}
≤ (Lr +M)Λ < r.

This show that Gy ∈ Br, y ∈ Br. Thus GBr ⊂ Br. Next we show that G is a contraction.
For that, let y, z ∈ X . Then, for each t ∈ [0, 1], we have

‖(Gy)− (Gz)‖

≤
∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|f(u, y(u))− f(u, z(u))|duds

+|µ1(t)|
∫ 1

ξ

(s− ξ)α−1

Γ(α)
|f(s, y(s))− f(s, z(s))|ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|f(u, y(u))− f(u, z(u))|duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|f(u, y(u))− f(u, z(u))|duds

]
≤ LΛ‖y − z‖,

which, in view of the given condition LΛ < 1, implies that G is a contraction. In
consequence, it follow by the contraction mapping principle that there exists a unique
solution for the problem (1.1) on [0, 1]. This completes the proof. 2

Our next existence result for the problem (1.1) relies on Krasnoselskii’s fixed point
theorem.

Lemma 3.2 (Krasnoselskii’s fixed point theorem) [15]. Let S be a closed, bounded,
convex and nonempty subset of a Banach space X. Let Y1,Y2 be the operators mapping
S into X such that (a) Y1s1 + Y2s2 ∈ S whenever s1, s2 ∈ S; (b) Y1 is compact and
continuous; (c) Y2 is a contraction mapping. Then there exists s3 ∈ S such that
s3 = Y1s3 + Y2s3.

Theorem 3.3 Let f : [0, 1]×R→ R be a continuous function satisfying the condition
(H1). In addition we assume that:

(H2) |f(t, y)| ≤ m(t), for all (t, y) ∈ [0, 1]× R and m ∈ C([0, 1],R+).
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Then there exists at least one solution for the problem (1.1) on [0, 1] provided that

L sup
t∈[0,1]

{
tβ

Γ(α + 1)Γ(β + 1)
+ |µ1(t)|

(1− ξ)α

Γ(α + 1)

}
< 1. (3.5)

Proof. Setting supt∈[0,1] |m(t)| = ‖m‖, we fix

% ≥ ‖m‖Λ, (3.6)

where Λ is defined by (2.11), and consider B% = {y ∈ X : ‖y‖ ≤ %}. Introduce the
operators G1 and G2 on B% as follows:

G1y(t) =

∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
f(u, y(u))duds

+µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
f(s, y(s))ds,

and

G2y(t) = µ2(t)

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
f(u, y(u))duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
f(u, y(u))duds

]
.

Observe that G = G1 +G2. Now we verify the hypotheses of Krasnoselskii’s fixed point
theorem in the following steps.

(i) For y, z ∈ B%, we have

‖G1y + G2z‖ = sup
t∈[0,1]

|(G1y)(t) + (G2z)(t)|

≤ ‖m‖ sup
t∈[0,1]

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]}
≤ ‖m‖Λ ≤ %,

where we used (3.6). Thus G1y + G2z ∈ B%.
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(ii) We show that G1 is a contraction. Indeed, by using the assumption (H1) together
with (3.5) and the fact that (1− s)α < 1, (1 < α ≤ 2) we have

|G1y(t)− G1z(t)| ≤ L‖y − z‖

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+|µ1(t)|
∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

}

≤ L‖y − z‖

{∫ t

0

(t− s)β−1

Γ(β)Γ(α + 1)
ds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

}

≤ L sup
t∈[0,1]

{
tβ

Γ(α + 1)Γ(β + 1)
+ |µ1(t)|

(1− ξ)α

Γ(α + 1)

}
‖y − z‖,

which implies that

‖G1y − G1z‖ ≤ L sup
t∈[0,1]

{
tβ

Γ(α + 1)Γ(β + 1)
+ |µ1(t)|

(1− ξ)α

Γ(α + 1)

}
‖y − z‖.

Hence G1 is a contraction by (3.5).

(iii) Using the continuity of f, it is easy to show that the operator G2 is continuous.
Further, G2 is uniformly bounded on B% as

‖G2x‖ = sup
t∈[0,1]

|(G2y)(t)| ≤ ‖m‖M2(δη
β + 1)

Γ(α + 1)Γ(β + 1)
, M2 = sup

t∈[0,1]
|µ2(t)|.

In order to establish that G2 is compact, we define sup(t,y)∈[0,1]×B%
|f(t, y)| = f.

Thus, for 0 < t1 < t2 < 1, we have

|(G2y)(t2)− (G2y)(t1)| ≤ |µ2(t2)− µ2(t1)|f

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]

≤ |µ2(t2)− µ2(t1)|f
δηβ + 1

Γ(α + 1)Γ(β + 1)
→ 0 as t1 → t2,

independent of y. This shows that G2 is relatively compact on B%. As all the conditions
of the Arzelá-Ascoli theorem are satisfied, so G2 is compact on B%. In view of steps
(i)-(iii), the conclusion of Krasnoselskii’s fixed point theorem applies and hence there
exists at least one solution for the problem (1.1) on [0, 1]. The proof is completed. 2
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Remark 3.4 Interchanging the roles of the operators G1 and G2 in the foregoing result,
we can obtain a second result by requiring the condition:

LM1
δηβ + 1

Γ(α + 1)Γ(β + 1)
< 1, M1 = sup

t∈[0,1]
|µ1(t)|,

instead of (3.5).

The following existence result is based on Leray-Schauder nonlinear alternative.

Lemma 3.5 (Nonlinear alternative for single valued maps)[16]. Let E be a Banach
space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U. Suppose that
F : U → C is a continuous, compact (that is, F (U) is a relatively compact subset of
C) map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).

Theorem 3.6 Let f : [0, 1]× R→ R be a continuous function. Assume that

(H3) There exist a function g ∈ C([0, 1],R+), and a nondecreasing function ψ : R+ →
R+ such that |f(t, y)| ≤ g(t)ψ(‖y‖), ∀(t, y) ∈ [0, 1]× R.

(H4) There exists a constant K > 0 such that

K

‖g‖ψ(K)Λ
> 1.

Then the problem (1.1) has at least one solution on [0, 1].

Proof. Consider the operator G : X → X defined by (3.2). We show that G
maps bounded sets into bounded sets in X = C([0, 1],R). For a positive number r, let
Br = {y ∈ C([0, 1],R) : ‖y‖ ≤ r} be a bounded set in C([0, 1],R). Then, by using the
fact that (1− s)α−1 ≤ 1 (1 < α ≤ 2) we have

|Gy(t)| ≤ ‖g‖ψ(r)

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]}
≤ ‖g‖ψ(r)Λ,
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which, on taking the norm for t ∈ [0, 1], yields

‖Gy‖ ≤ ‖g‖ψ(r)Λ.

Next we show that G maps bounded sets into equicontinuous sets of C([0, 1], R). Let
t1, t2 ∈ [0, 1] with t1 < t2 and y ∈ Br, where Br is a bounded set of C([0, 1],R). Then,
using the fact that (1−s)α−1 ≤ 1 (1 < α ≤ 2) and the computations for G2 in previous
theorem, we obtain

|Gy(t2)− Gy(t1)|

≤ ‖g‖ψ(r)

{∣∣∣∣∣
∫ t1

0

[(t2 − s)β−1 − (t1 − s)β−1]
Γ(β)

ds+

∫ t2

t1

(t2 − s)β−1

Γ(β)
ds

∣∣∣∣∣
+|µ1(t2)− µ1(t1)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds+ |µ2(t2)− µ2(t1)|

δηβ + 1

Γ(α + 1)Γ(β + 1)

}

≤ ‖g‖ψ(r)

{
2(t2 − t1)β + tβ2 − t

β
1

Γ(β + 1)
+ |µ1(t2)− µ1(t1)|

(1− ξ)α

Γ(α + 1)

+|µ2(t2)− µ2(t1)|
δηβ + 1

Γ(α + 1)Γ(β + 1)

}
,

which tends to zero independently of y ∈ Br as t2 − t1 → 0. As G satisfies the above
assumptions, therefore it follows by the Arzelá-Ascoli theorem that G : C([0, 1],R) →
C([0, 1],R) is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative once it is shown
that the set of all solutions to the equation y = λGy is bounded for λ ∈ [0, 1]. For that,
let y be a solution of y = λGy for λ ∈ [0, 1]. Then, for t ∈ [0, 1], we have

|y(t)| = |λGy(t)| ≤

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]}
|g(t)|ψ(‖y‖)

≤ ‖g‖ψ(‖y‖)Λ,

which implies that
‖y‖

‖g‖ψ(‖y‖)Λ
≤ 1.

In view of (H4), there is no solution y such that ‖y‖ 6= K. Let us set

U = {y ∈ X : ‖y‖ < K}.
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The operator G : U → X is continuous and completely continuous. From the choice of
U , there is no u ∈ ∂U such that u = λG(u) for some λ ∈ (0, 1). Consequently, by the
nonlinear alternative of Leray-Schauder type [16, Theorem 5.2], we deduce that G has
a fixed point u ∈ U which is a solution of the problem (1.1). This completes the proof.

2

4 Existence results for the problem (1.2)

Before presenting the existence results for the problem (1.2), we outline the necessary
concepts on multi-valued maps [17], [18].

For a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) =
{Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) =
{Y ∈ P(X) : Y is compact and convex }. A multi-valued map G : X → P(X)
is convex (closed) valued if G(x) is convex (closed) for all x ∈ X. The map G is
bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X)
(i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.)
on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and if
for each open set N of X containing G(x0), there exists an open neighborhood N0 of
x0 such that G(N0) ⊆ N. G is said to be completely continuous if G(B) is relatively
compact for every B ∈ Pb(X). If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there is
x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be
denoted by FixG. A multivalued map G : [0, 1] → Pcl(R) is said to be measurable if
for every y ∈ R, the function t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)} is measurable.

For each y ∈ X , define the set of selections of F by

SF,y := {v ∈ L1([0, 1],R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [0, 1]}.

Definition 4.1 A function y ∈ C([0, 1],R) is said to be a solution of the boundary
value problem (1.2) if y(0) = 0, Dβ

0+y(ξ) = 0, y(1) = δy(η), 0 < ξ, η < 1, and there
exists a function v ∈ SF,y such that v(t) ∈ F (t, y(t)) and

y(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v(s)ds

]
, t ∈ [0, 1].

4.1 The upper semicontinuous case

In the case when F has convex values we prove an existence result based on nonlinear
alternative of Leray-Schauder type.
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Definition 4.2 A multivalued map F : [0, 1] × R → P(R) is said to be Carathéodory
if

(i) t 7−→ F (t, y) is measurable for each y ∈ R;

(ii) y 7−→ F (t, y) is upper semicontinuous for almost all t ∈ [0, 1].

Further a Carathéodory function F is called L1−Carathéodory if

(iii) for each ρ > 0, there exists ϕρ ∈ L1([0, 1],R+) such that

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ ϕρ(t)

for all y ∈ R with ‖y‖ ≤ ρ and for a.e. t ∈ [0, 1].

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y : y ∈ G(x)} and
recall two results for closed graphs and upper-semicontinuity.

Lemma 4.3 ([17, Proposition 1.2]) If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a
closed subset of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if
when n → ∞, xn → x∗, yn → y∗ and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely, if G
is completely continuous and has a closed graph, then it is upper semi-continuous.

Lemma 4.4 ([19]) Let X be a separable Banach space. Let F : [0, 1]×X → Pcp,c(X)
be an L1− Carathéodory multivalued map and let Θ be a linear continuous mapping
from L1([0, 1], X) to C([0, 1], X). Then the operator

Θ ◦ SF,x : C([0, 1], X)→ Pcp,c(C([0, 1], X)), y 7→ (Θ ◦ SF,y)(y) = Θ(SF,y)

is a closed graph operator in C([0, 1], X)× C([0, 1], X).

For the forthcoming analysis, we need the following lemma.

Lemma 4.5 (Nonlinear alternative for Kakutani maps)[16]. Let E be a Banach space,
C a closed convex subset of E, U an open subset of C and 0 ∈ U. Suppose that F :
U → Pcp,c(C) is a upper semicontinuous compact map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

Theorem 4.6 Assume that:

(B1) F : [0, 1]×R→ P(R) is L1-Carathéodory and has nonempty compact and convex
values;
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(B2) there exist a function φ ∈ C([0, 1],R+), and a nondecreasing function Ω : R+ →
R+ such that

‖F (t, y)‖P := sup{|w| : w ∈ F (t, y)} ≤ φ(t)Ω(‖y‖)

for each (t, y) ∈ [0, 1]× R;

(B3) there exists a constant M > 0 such that

M

‖φ‖ΛΩ(M)
> 1,

where Λ is defined by (2.11).

Then the boundary value problem (1.2) has at least one solution on [0, 1].

Proof. Define an operator ΩF : X → P(X ) by

ΩF (y) = {h ∈ X : h(t) = N(y)(t)}

where

N(y)(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v(s)ds

]
.

We will show that ΩF satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof consists of several steps. As a first step, we show that ΩF is
convex for each y ∈ X . This step is obvious since SF,y is convex (F has convex values),
and therefore we omit the proof.

In the second step, we show that ΩF maps bounded sets (balls) into bounded sets
in X . For a positive number ρ, let Bρ = {y ∈ X : ‖y‖ ≤ ρ} be a bounded ball in X .
Then, for each h ∈ ΩF (y), y ∈ Bρ, there exists v ∈ SF,y such that

h(t) =

∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
v(u)duds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v(s)ds

+µ2(t)

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
v(u)duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
v(u)duds

]
.

Then, by using the fact that (1− s)α−1 ≤ 1 (1 < α ≤ 2) we have

|h(t)| ≤ ‖g‖Ω(r)

{∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds
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+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
duds

]}
≤ ‖φ‖Ω(r)Λ,

which, on taking the norm for t ∈ [0, 1]. yields

‖h‖ ≤ ‖φ‖Ω(r)Λ.

Now we show that ΩF maps bounded sets into equicontinuous sets of X . Let t1, t2 ∈ [0, 1]
with t1 < t2 and y ∈ Bρ. For each h ∈ ΩF (y), using the fact that (1− s)α−1 ≤ 1 (1 <
α ≤ 2), we obtain

|h(t2)− h(t1)|

≤ ‖φ‖Ω(r)

{∣∣∣∣∣
∫ t1

0

[(t2 − s)β−1 − (t1 − s)β−1]
Γ(β)Γ(α + 1)

ds+

∫ t2

t1

(t2 − s)β−1

Γ(β)Γ(α + 1)
ds

∣∣∣∣∣
+|µ1(t2)− µ1(t1)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
ds+ |µ2(t2)− µ2(t1)|

δηβ + 1

Γ(α + 1)Γ(β + 1)

}

≤ ‖φ‖Ω(r)

{
2(t2 − t1)β + tβ2 − t

β
1

Γ(β + 1)Γ(α + 1)
+ |µ1(t2)− µ1(t1)|

(1− ξ)α

Γ(α + 1)

+|µ2(t2)− µ2(t1)|
δηβ + 1

Γ(α + 1)Γ(β + 1)

}
,

which tends to zero independently of y ∈ Br as t2 − t1 → 0. As ΩF satisfies the above
assumptions, therefore it follows by the Arzelá-Ascoli theorem that ΩF : C([0, 1],R)→
C([0, 1],R) is completely continuous.

In our next step, we show that ΩF is upper semicontinuous. To this end it is
sufficient to show that ΩF has a closed graph, by Lemma 4.3. Let yn → y∗, hn ∈ ΩF (yn)
and hn → h∗. Then we need to show that h∗ ∈ ΩF (y∗). Associated with hn ∈ ΩF (yn),
there exists vn ∈ SF,yn such that for each t ∈ [0, 1],

hn(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−vn(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
vn(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−vn(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−vn(s)ds

]
.

Thus it suffices to show that there exists v∗ ∈ SF,y∗ such that for each t ∈ [0, 1],

h∗(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v∗(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v∗(s)ds
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+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v∗(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v∗(s)ds

]
.

Let us consider the linear operator Θ : L1([0, 1],R)→ X given by

v 7→ Θ(v)(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v(s)ds

]
.

Observe that

‖hn(t)− h∗(t)‖

=
∥∥∥∫ t

0

(t− s)β−1

Γ(β)
Iα1−(vn − v∗)(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
(vn − v∗)(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−(vn − v∗)(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−(vn − v∗)(s)ds

]∥∥∥→ 0,

as n → ∞. Thus, it follows by Lemma 4.4 that Θ ◦ SF is a closed graph operator.
Further, we have hn(t) ∈ Θ(SF,yn). Since yn → y∗, therefore, we have

h∗(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v∗(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v∗(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v∗(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v∗(s)ds

]
.

Finally, we show there exists an open set U ⊆ X with y /∈ θΩF (y) for any θ ∈ (0, 1)
and all y ∈ ∂U. Let θ ∈ (0, 1) and y ∈ θΩF (y). Then there exists v ∈ L1([0, 1],R) with
v ∈ SF,y such that, for t ∈ [0, 1], we can obtain

|y(t)| = |θΩF (y)(t)|

≤
∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|v(u)|duds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
|v(s)|ds

+|µ2(t)|

[
δ

∫ η

0

(η − s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|v(u)|duds

+

∫ 1

0

(1− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
|v(u)|duds

]
≤ ‖φ‖Ω(‖y‖)Λ,

which implies that
‖y‖

‖φ‖Ω(‖y‖)Λ
≤ 1.
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In view of (B3), there exists M such that ‖y‖ 6= M . Let us set

U = {y ∈ X : ‖y‖ < M}.

Note that the operator ΩF : U → P(X ) is upper semicontinuous and completely
continuous. From the choice of U , there is no y ∈ ∂U such that y ∈ θΩF (y) for some
θ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma
4.5), we deduce that ΩF has a fixed point y ∈ U which is a solution of the problem
(1.2). This completes the proof. 2

4.2 The Lipschitz case

We prove in this subsection the existence of solutions for the problem (1.2) with a
nonconvex valued right-hand side by applying a fixed point theorem for multivalued
maps due to Covitz and Nadler [21].

Let (X, d) be a metric space induced from the normed space (X; ‖·‖). Consider Hd :
P(X)×P(X)→ R∪{∞} defined by Hd(A,B) = max{supa∈A d(a,B), supb∈B d(A, b)},
where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is a
metric space and (Pcl(X), Hd) is a generalized metric space (see [20]).

Definition 4.7 A multivalued operator N : X → Pcl(X) is called (a) γ−Lipschitz if
and only if there exists γ > 0 such that Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X
and (b) a contraction if and only if it is γ−Lipschitz with γ < 1.

Lemma 4.8 ([21]) Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

Theorem 4.9 Assume that:

(A1) F : [0, 1]× R→ Pcp(R) is such that F (·, y(t)) : [0, 1]→ Pcp(R) is measurable for
each y ∈ R;

(A2) Hd(F (t, y), F (t, ȳ) ≤ q(t)|y − ȳ| for almost all t ∈ [0, 1] and y, ȳ ∈ R with q ∈
C([0, 1],R+) and d(0, F (t, 0)) ≤ q(t) for almost all t ∈ [0, 1].

Then the problem (1.2) has at least one solution on [0, 1] if

‖q‖Λ < 1, (4.1)

where Λ is defined by (2.11).

Proof. Consider the operator ΩF : X → P(X ) defined in the beginning of the proof of
Theorem 4.6. Observe that the set SF,y is nonempty for each y ∈ X by the assumption
(A1), so F has a measurable selection (see Theorem III.6 [22]). Now we show that the
operator ΩF satisfies the assumptions of Lemma 4.8. To show that ΩF (y) ∈ Pcl(X )
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for each y ∈ X , let {un}n≥0 ∈ ΩF (y) be such that un → u (n → ∞) in X . Then
u ∈ C([0, 1],R) and there exists vn ∈ SF,y such that, for each t ∈ [0, 1],

un(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−vn(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
vn(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−vn(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−vn(s)ds

]
.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that
vn converges to v in L1([0, 1],R). Thus, v ∈ SF,y and for each t ∈ [0, 1], we have

un(t)→ u(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v(s)ds

]
.

Hence, u ∈ ΩF (y).
Next we show that there exists θ̂ := ‖q‖Λ < 1 such that

Hd(ΩF (y),ΩF (ȳ)) ≤ θ̂‖y − ȳ‖ for each y, ȳ ∈ X .

Let y, ȳ ∈ X and h1 ∈ ΩF (y). Then there exists v1(t) ∈ F (t, y(t)) such that, for each
t ∈ [0, 1],

h1(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v1(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v1(s)ds

+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v1(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v1(s)ds

]
.

By (A2), we have
Hd(F (t, y), F (t, ȳ) ≤ q(t)|y − ȳ|.

So, there exists w ∈ F (t, ȳ) such that

|v1(t)− w| ≤ q(t)|y(t)− ȳ(t)|, t ∈ [0, 1].

Define U : [0, 1]→ P(R) by

U(t) = {w ∈ R : |v1(t)− w| ≤ q(t)|y(t)− ȳ(t)|}.

Since the multivalued operator U(t) ∩ F (t, ȳ) is measurable (Proposition III.4 [22]),
there exists a function v2(t) which is a measurable selection for U(t) ∩ F (t, ȳ). So
v2(t) ∈ F (t, ȳ) and for each t ∈ [0, 1], we have |v1(t) − v2(t)| ≤ q(t)|y(t) − ȳ(t)|. For
each t ∈ [0, 1], let us define

h2(t) =

∫ t

0

(t− s)β−1

Γ(β)
Iα1−v2(s)ds+ µ1(t)

∫ 1

ξ

(s− ξ)α−1

Γ(α)
v2(s)ds
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+µ2(t)
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−v2(s)ds−

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−v2(s)ds

]
.

Thus

|h1(t)− h2(t)|

≤
∫ t

0

(t− s)β−1

Γ(β)
Iα1−|v1 − v2|(s)ds+ |µ1(t)|

∫ 1

ξ

(s− ξ)α−1

Γ(α)
|v1 − v2|(s)ds

+|µ2(t)|
[
δ

∫ η

0

(η − s)β−1

Γ(β)
Iα1−|v1 − v2|(s)ds+

∫ 1

0

(1− s)β−1

Γ(β)
Iα1−|v1 − v2|(s)ds

]
≤ ‖q‖Λ‖y − ȳ‖,

which yields ‖h1 − h2‖ ≤ ‖q‖Λ‖y − ȳ‖.
Analogously, interchanging the roles of y and y, we can obtain

Hd(ΩF (y),ΩF (ȳ)) ≤ ‖q‖Λ‖y − ȳ‖.

By the condition (4.1), it follows that ΩF is a contraction and hence it has a fixed point
y by Lemma 4.8, which is a solution of the problem (1.2). This completes the proof.2

5 Examples

(a) We construct examples for the illustration of the results obtained in Section 3. For
that, we consider the following problem: D

7/4
1−D

3/4
0+ y(t) = f(t, y(t)), t ∈ J := [0, 1],

y(0) = 0, D
3/4
0+ y(ξ) = 0, y(1) = (5/2)y(2/3),

(5.1)

Here α = 7/4, β = 3/4, ξ = 1/3, η = 2/3, δ = 5/2, and

f(t, y) =
1

2
√
t2 + 81

(
cos y +

|y|
1 + |y|

)
+

e−2t

t+ 4
. (5.2)

With the given data, it is found that

P = [(1− δηβ+1)− (β + 1)ξ(1− δηβ)] ≈ 0.262961 6= 0,

sup
t∈[0,1]

{ tβ

Γ(α + 1)Γ(β + 1)
+ |µ1(t)|

(1− ξ)α

Γ(α + 1)

}
≈ 1.454491,

and Λ ≈ 4.503584 (Λ is given by (2.11)). Furthermore, |f(t, y1)− f(t, y2)| ≤ L|y1− y2|
with L = 1/9 so that LΛ ≈ 0.0.500398 < 1. Clearly the hypothesis of Theorem 3.1
is satisfied and hence the problem (5.1) has a unique solution by the conclusion of
Theorem 3.1.
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In order to illustrate Theorem 3.3, we notice that (3.5) is satisfied as

L
{ tβ

Γ(α + 1)Γ(β + 1)
+ |µ1(t)|

(1− ξ)α

Γ(α + 1)

}
≈ 0.161610 < 1,

and

|f(t, y)| ≤ m(t) =
1√

t2 + 81
+

e−2t

t+ 4
.

As all the assumptions of Theorem 3.3 hold true, we deduce from the conclusion of
Theorem 3.3 that the problem (5.1) has at least one solution on [0, 1].

Now we demonstrate the application of Theorem 3.6 by considering the nonlinear
function

f(t, y) =
e−t√
t+ 36

(
y +

2

π
tan−1 y +

1

10

)
. (5.3)

Clearly |f(t, y)| ≤ g(t)ψ(‖y‖), where g(t) = e−t
√
t+36

, ψ(‖y‖ = (11
10

+ ‖y‖). By the con-

dition (H4), we find that K > 3.310535. Thus all the conditions of Theorem 3.6 are
satisfied and consequently, the problem (5.1) with f(t, y) given by (5.3) has has at least
one solution on [0, 1].

(b) Here we illustrate the results obtained in Section 4. Let us consider the following
fractional differential inclusion involving both left Caputo and right Riemann-Liouville
types fractional derivatives equipped with fractional boundary conditions: D

7/4
1−D

3/4
0+ y(t) ∈ F (t, y(t)), t ∈ J := [0, 1],

y(0) = 0, D
3/4
0+ y(ξ) = 0, y(1) = (5/2)y(2/3),

(5.4)

In order to illustrate Theorem 4.6, we take

F (t, y(t)) =

[
√
t2 + 49

( |y(t)|
2(1 + |y(t)|)

+ |y(t)|+ 1

2

)
,
e−t

9 + t

(
sin y(t) +

1

80

)]
. (5.5)

Clearly |F (t, y(t))| ≤ φ(t)Ω(‖y‖), where φ(t) = 1√
t2+49

and Ω(‖y‖) = ‖y‖ + 1. Using

the condition (B3), we find that M > 1.804018. As the hypothesis of Theorem 4.6 is
satisfied, the problem (5.4) with F (t, y(t)) given by (5.5) has at least one solution on
[0, 1].

Now we illustrate Theorem 4.9 by considering

F (t, x(t)) =

[
1√

100 + t2
,

sinx(t)

(6 + t)
+

1

50

]
. (5.6)

Obviously q(t) = 1(6+t) with ‖q‖ = 1/6 and d(0, F (t, 0)) ≤ q(t) for almost all t ∈ [0, 1].
Moreover, ‖q‖Λ ≈ 0.750597. Thus all the assumptions of Theorem 4.9 hold true and
consequently its conclusion applies to the problem (5.4) with F (t, y(t)) given by (5.6).
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