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Abstract : The main of this paper is to obtain some interesting symmetric identities for twisted
(p, q¢)-L-function in complex field. We define the twisted (p, ¢)-L-function by generalizing the Car-
litz’s type twisted (p, ¢)-Euler numbers and polynomials. We give some new symmetric identities for
twisted (p, q)-L-function. We also obtain symmetric identities for Carlitz’s type twisted (p, ¢)-Euler
numbers and polynomials by using symmetric property for twisted (p, ¢)-L-function.

Key words : Euler numbers and polynomials, g-Euler numbers and polynomials, twisted g-Fuler
numbers and polynomials, twisted (p, ¢)-Euler numbers and polynomials, ¢- L-function, twisted (p, q)-

L-function, symmetric identities.

AMS Mathematics Subject Classification : 11B68, 11540, 11S80.
1. Introduction

Many (p, q)-extensions of some special numbers, polynomials, and functions have been stud-
ied(see [1, 2, 3, 4, 7]). Luo and Zhou [5] introduced the I-function and g¢-L-function. Ryoo [6]
investigated some identities on the higher-order twisted g-Euler numbers and polynomials. In [§],
Ryoo presented the multiple twisted (h, ¢)-I-function. In this paper, we construct twisted (p,q)-
L-function in complex field and Carlitz’s type twisted (p, ¢)-Euler numbers and polynomials. We
obtain some new symmetric identities for twisted (p, g)-L-function. We also give symmetric identi-
ties for Carlitz’s type twisted (p, ¢)-Euler numbers and polynomials of by using symmetric property
for twisted (p, ¢)-L-function.

Throughout this paper, we always make use of the following notations: N denotes the set of
natural numbers, Z; = NU {0} denotes the set of nonnegative integers, Z, = {0,—1,—-2,-3,...}
denotes the set of nonpositive integers, Z denotes the set of integers, R denotes the set of real

numbers, and C denotes the set of complex numbers. The (p, ¢)-number is defined as
p - q n—2
pP—q

[n]pq = =p" T " g4+ D2 T g T M

Note that this number is g-number when p = 1. By substituting ¢ by % in the g-number, we can not
obtain (p,¢)-number. Therefore, much research has been developed in the area of special numbers
and polynomials, and functions by using (p, ¢)-number(see [1, 2, 3, 4, 7]).

By using ¢g-number, Luo and Zhou defined the ¢-L-function L,(s,a) and g-I-function I,(s) (see
[5])

o n n+a

Z n+a . (Re(s) > L;a ¢ Zy), and I4( z:: , (Re(s)>1).

Inspired by their work, the (p, ¢)-extension of the twisted g-L-function can be defined as follow: Let
¢ be rth root of 1 and ¢ # 1. For s,x € C with Re(z) > 0, the twisted (p, ¢)-L-function Ly 4 ¢(s,x)
is define by

LP»‘]»C(S"CC) = [Q]q Z [( _2 ]

p,q
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2. Twisted (p, ¢)-Euler numbers and polynomials

In this section, we define twisted (p, ¢)-Euler numbers and polynomials and provide some of

their relevant properties. Let r be a positive integer, and let ¢ be rth root of 1.

Definition 1. For 0 < ¢ < p <1, the Carlitz’s type twisted (p, ¢)-Euler numbers E,, , ;¢ and

polynomials E,, ,, 4 ¢(z) are defined by means of the generating functions

Gpac(t) = Z Enpac 2]q Z 1)™¢™e et (2.1)
n=0 ! m=0
and - -
Gpaclt,z) = Z Enpacl@ 2]q Z nymgmelm vt (2.2)
n=0 m=0
respectively.

Setting p = 1 in (2.1) and (2.2), we can obtain the corresponding definitions for the Carlitz’s
type twisted g-Euler number E, ;. and g-Euler polynomials E,, 4 ¢(x), respectively.
By (2.1), we get

o0 n o0 m - pq - o0 1 n n n l 1 tn
Z::Ec o 3o (17 t;(m () ;(Z)m 1+ngpn—z>m-

By comparing the coefficients % in the above equation, we have the following theorem.

Theorem 2. For n € Z, we have

n n 1
E, _—
0,4, — [ ( ) ;( > 1+ ¢pn— l

By (2.2), we obtain
Enpac(®) =[2] (1)" i <n> (—1)getpn e (2.3)
Py \p—q 2 I L+ Cpnigl
Next, we introduce Carlitz’s type twisted (h, p, ¢)-Euler polynomials Efb ; " C( x).

Definition 3. The Carlitz’s type twisted (h, p, ¢)-Euler polynomials Jou ; C( x) are defined by

Mg

EY)  (2)=[2,

n,p,q,¢ (—=1)mphmem [m + ] - (2.4)

0

3
Il

When z =0, EM =W

n,0,4,¢ 7,0,4,¢
By using (2.4) and (p, ¢)-number, we have the following theorem.

: (h)
(0) are called the twisted (h, p, ¢)-Euler numbers E, e

Theorem 4. For n € Z, we have

(h) _ 1 " n l xl (n—1l)x 1
En,p,q,((x) - [2](1 ( ) Z (l)(_l) q p( ) 1 +<pn_l+hql'

p—q

By (2.4) and Theorem 2, we have

- n n—1)z (1) l
Enpgc(@) = <Z)q( ) En—l,p,qﬁ[x]p,q
1=

n
n T n— l
Bupacla 1) =3 ()5 a"VED o

(=)

(2.5)
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By (2.1) and (2.2), we get

M8

—[2]q Z(_l)l+ngl+ne[l+n]p’qt + [2]q
=0 l

Il
o
Il
=)

Hence we have

0 e n—1
(_1) +1< : : Em»qu,C (n) m) =+ § E’HL,p,q,( m' = § ( q E p q> ﬁ

m=0 ’ m=0 : m=0

By comparing the coefficients %ﬂ, on both sides of (2.6), we have the following theorem.

Theorem 5. For m € Z., we have

n—1 n+1,n
et = (=1)" (" Empgc(n) + Emamq,c_
;( )"l 2],

3. Twisted (p, ¢)-I-function and twisted (p, ¢)-L-function

(_1)l§le[l]p,qt _ [2](1 (_1)l<le[l]pyqt'

(2.6)

By using twisted (p,q)-Euler numbers and polynomials, twisted (p,q)-L-function is defined.

These functions interpolate the twisted (p, q)-Euler numbers E, , , ¢, and polynomials E, , , ¢(z),

respectively. From (2.1), we note that

dk

oo
ﬁ q Z p,q Ek ,0>q,C (k € N)

t=0 m=0

Gp,q,((t)

By using the above equation, we are now ready to define twisted (p, ¢)-I-function.

Definition 6. Let s € C with Re(s) > 0.

lpq( Z

Relation between I, 4 ¢(s) and Ej p 4.¢ is given by the following theorem.

’I’L

qu

Theorem 7. For k € N, we have

lp,q,C(_k) = Ek,p,q,C'

By using (2.2), we note that

dk
dtk

2y D ()" m +aly,

t=0 m=0
= Eipq.c(x), for ke N.

d k 9] - m
i Z n»p,q,C(x)a
n=0 t=0

By (3.2) and (3.3), we are now ready to define the twisted (p, ¢)-L-function.

Gp’qﬁ (t, .’IJ)

and

Definition 8. Let s € C with Re(s) > 0 and = ¢ Z; .

Lpaclos) = 2l Y (=i

(3.1)

(3.4)

Note that L, 4.¢(s, ) is a meromorphic function on C. Relation between Ly, , ¢(s,z) and Ej p 4 ¢(x)

is given by the following theorem.

Theorem 9. For k € N, we have L, 4 c(—k,2) = Ej pq,c(2).

Observe that L, 4 ¢(—k, x) function interpolates Ej ;, 4 ¢(z) numbers at non-negative integers.
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3. Some symmetric identities for twisted (p, ¢)-L-function

Let wy,we € N with wy 1 (mod 2), wy = 1 (mod 2). For n € Z,, we obtain certain

symmetric identities for twisted (p, ¢)-L-function.

Theorem 10. Let wy,ws € N with w; =1 (mod 2), wy =1 (mod 2). Then we obtain

71)171
nlg2gs 3 (<1)IC Ler s g ( wnz + %)

7=0 b
wa—1 w
— ol alZlm 3 (1P C T Ly g g (5,12 + 225 )
- 2
7=0

Proof. Note that [zy], = [z],,[y]q for any z,y € C. In (3.4), by substitute woz + %j for x in
wq
and replace q, p, and ¢ by ¢%, p** and ("1, respectively, we derive next result

oo

1 w —1)m¢um
prl7qw1,<w1 <S7u}2x—|— uj‘]) e Z ( ) C -

2 w
[2] g P [m+w2x+ ng}

Wi | pwr g

= (g
- Z |:w1m—|—w1w293—|-1U2j]8
R

m=0
w
! (4.2)
oo wp—1 (_1)w2m+i<w1(w2m+i)
[’LUl]p#I mz::o — [wl(u)Qm + z) + wiwox + wzj}f,’q
oo wz—1 ) Cwlwzmcwlz
= [wilpg Z Z [wywa (x +m)+w1z+w2j]
m=0 =0 p,q
Thus, from (4.2), we can derive the following equation.
5 w1 — 1 w
p 4 wQJL pwL, w1 (W1 (87 wo + 2.7)
g w1
oo wg—1lw;—1 ]+ + C C C j (43)
1+m fwiwam w17, w2
~ lpaltzleg mz::o Zz:: Jz:;) [wiwz(x +m) + wii + wajl; ,
By using the same method as (4.3), we have
[wl];q et i rwqd wy .
4N (1) C Ly qua gon (8, wia + L
[2}q“’2 =0 w2 ( )
4.4

wz—1lwi—1 j+z+mcw1w2m<w21<w1]

(e ]
e, 3 3 S LI

m=0 j=0 =0

Therefore, by (4.3) and (4.4), we have the following theorem. [J

Taking wy = 1 in Theorem 10, we obtain the following corollary.

Corollary 11. Let wy € N with w; =1 (mod 2). For n € Z, we obtain

2 w1—1 ) ) .
Lp,q,C (S;wlx) = % Z (—I)JC]prl g1 ,Cw1 <s7$ _|_ j) A

[Q]qwl [wl]pq ) w1
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Let us take s = —n in Theorem 10. For n € Z, we obtain certain symmetry identities for twisted

(p, ¢)-Euler polynomials.
Theorem 12. Let wy, ws € N with wy =1 (mod 2), we =1 (mod 2). For n € Z,, we obtain

wip—1
n j ~waj wsa .
[w1]p,q[2] g Z (=1)7¢"* Ep 1 g ¢ (wa + 11)1])

7=0
wo 1 w
= [wa]} ,[2]gm Z (—1)ICIE,, jus qus cws (wlgg + w1j> ,
- 2
7=0

Taking wy = 1 in Theorem 12, we obtain the following distribution relation.

Corollary 13. Let w; € N with w; =1 (mod 2). For n € Z, we obtain

wi—1

J
EnvPvaC(wlx) wl pq Z jC En Pl g1 ¢ <8,£L’ + ) .
qwl w,
By (2.5), we have
w1—1 w
Z (71)‘7<w2‘7En7pw1’q“’1,<“’1 <w2x + 2])
7=0 w1
2 .
S cwz( gl i [27]
J=0 p¥l,q
byl wsly '
2lp. »
Cw2j Z ( ) waj(n—1) wlwszS)zpwl gw1 Cwl (ng) ([’LU1]ZZ> []];11127(11”2

Jj=

Hence we have the following theorem.
Theorem 14. Let wy,ws € N with wy; =1 (mod 2), wy =1 (mod 2). For n € Z,, we obtain

wy—1
: : (_1)]Cw23En,pw1 g1 ,CWl (w2:1/‘ + ILU2.7>
1

7=0
w1 1

= Z( ) wally [wn ] i T T Y L o (W) Y (—1)IUR g I,
j=0

For each integer n > 0, let A, ; . 4.c(w) = E}Uz_ol( 1)7¢7q7(n=9[j]¢ . The sum Ay ; p g c(w) is called
the alternating twisted (p, ¢)-power sums.

By Theorem 14, we have

wi—1

w w2 .
g2 U)l pq Z C 2]Enp“’1 g1l (ng + wlj)
§ (4.5)
n i n—i, wiwaTi
= [2]qu Z <z> [wal},  lwilp g P> E’ELZ)zp“’l qwn,cwr (W2T) An i pea gua cwa (W1)
i=0
By using the same method as in (4.5), we have
’wzfl w
s el 3 (1P B g o (w1 + 225 )
=0 (4.6)

n
n 4
= [2]gw Z <2> [wl]p q[wg]zquw1w2mE7(zzli,p“’2,q“’2,§“’2 (W12) Ap i per ger o (W2)
i=0
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Therefore, by (4.5) and (4.6) and Theorem 12, we have the following theorem.

Theorem 15. Let wy,ws € N with w; =1 (mod 2), wy =1 (mod 2). For n € Z, we obtain

n

n ) . L s
[2]ge Z (Z) [wl];,q[wﬂ;,qprlmeszi,pwz,qwz,g‘w2 (W12) An i prr gur cor (w2)
i=0

n
n . w L
= [2lgs Z <Z> [wQ];,q[wl]quprlwszr(Llli,p“’l711’”1,(’“1 (w2m) A i pwz qua cwa (W)

By Theorem 15, we obtain the interesting symmetric identity for the twisted (h, p, ¢)-Euler numbers

E’r(L},L])L q.¢ In complex field.

Corollary 16. Let wi,ws € N with w; =1 (mod 2), wy =1 (mod 2). For n € Z,, we obtain
- n % n—i, Wiw2Tt i
2 3 (1)l g g (0B g g
i=0

n

n , . , ,

= [2]gu- Z (l> [waly g [wi]p g P A i oz gz oz (wl)Ev(zZli,pwl,qthwl'
i=0
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