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1. Introduction

Throughout this paper we use the following notations. By Z, we denote the ring of p-adic
rational integers, @, denotes the field of rational numbers, N denotes the set of natural numbers, C
denotes the complex number field, C, denotes the completion of algebraic closure of Q,, N denotes the
set of natural numbers and Z, = NU{0}, and C denotes the set of complex numbers. Let p be a fixed
odd prime number. Let v, be the normalized exponential valuation of C, with |p|, = prP) = p=1,
When one talks of g-extension, ¢ is considered in many ways such as an indeterminate, a complex
number ¢ € C, or p-adic number ¢ € C,. If ¢ € C one normally assumes that |¢| < 1. If ¢ € C,, we
normally assume that |¢ — 1|, < p_fil so that ¢® = exp(zlogq) for |z|, < 1.

We say that f is uniformly differentiable function at a point a € Z, and denote this property
by g € UD(Z,), if the difference quotients

g(x) — g(y)

Fg(x7y): T —y

have a limit [ = ¢'(a) as (z,y) — (a,a). For g € UD(Z,), the fermionic p-adic invariant integral on
Zy, is defined by

L) = [ gle)duos@) = Jim 30 a()(=1)7, (see [3). 1)
P 0<z<pN

If we take ¢g1(z) = g(x 4+ 1) in (1), then we easily see that

I_1(g1) +1-1(g9) = 29(0). (2)

We recall that the classical Stirling numbers of the first kind S1(n, k) and the second kind S3(n, k)
are defined by the relations(see [6])

(@) = S1(n,k)a* and 2™ = 3~ Sa(n, k)(@)s,
k=0

k=0
respectively. The generalized falling factorial (z|\), with increment A is defined by

n—1

(@ N = [ (&= Ak) (3)

k=0
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for positive integer n, with the convention (x|\)o = 1. Note that (x|\) is a homogeneous polynomials
in A and z of degree n, so if A # 0 then (z|\),, = A"(A~'z|1),. Clearly (z|0),, = 2. We also need
the binomial theorem: for a variable x,

oo n

(14207 = 3 (V. (5)

n=0

For ¢ € C, with [1 — ¢, < 1, if we take g(x) = ¢"e®>*+1? in (2), then we easily see that

I_l(qme(2m+1)t) _ / qx€(2m+1)td’u_1(x) —
Z

i3

2et
ge?t +1°

Let us define the second kind ¢-Euler numbers E,, , and polynomials E,, ,(x) as follows(see [5]):

/ g/ e®vtidy_y ZEn 0 (6)

P n=0
1 xr 1 - tn
/Z grel2E g, oy ZEM(””)H (7)
P n=0 '

Recently, many mathematicians have studied in the area of the degenerate Bernoulli umbers and
polynomials, degenerate Euler numbers and polynomials, degenerate tangent numbers and polyno-
mials(see [1, 2, 3, 4, 6]). Our aim in this paper is to define the second kind degenerate ¢-Euler
polynomials &, 4(z, X). We investigate some properties which are related to the second kind degen-

erate g-Euler numbers &, 4()\) and polynomials &, q(z, ).

2. Some properties of the second kind degenerate ¢g-Euler numbers &, ,(\) and

polynomials &, ,(z,\)

In this section, we introduce the second kind degenerate g-Euler numbers and polynomials,
and we obtain explicit formulas for them. For t,A € Z, such that |At|, < piﬁ, if we take
g(x) = ¢*(1 + Xt)(2*+1D/X in (2), then we easily see that
2(1 4 Ap)t/A

z(q M (2I+1)/)\d B = 7

P

(8)

Let us define the second kind degenerate g-Euler numbers &, ,(A\) and polynomials &, ,(x, A) as

follows: -
tn
[ a0 ) = 3 £l )
Zp n=0 :
/ gV (1 + M) P A dy o (y) = En g, A)%- (10)
Zyp n=0 ’

Note that (14 At)'/* tends to ef as A — 0. From (7) and (10), we note that

thg x/\ (—‘_—/\t)lAl—F)\tI/A ZE
ol n. = Jim, q(l—l—)\t)?//\—i—l "

Thus, we have
lim &, 4(x,A) = E, 4(x), (n > 0).
A—0

From (5) and (9), we get

> o 2(1+ AV /A

0 m 0 1 e3¢} n n n
(Z &n,q(A)fn,> (Z(m) ¢ ) -3 < (1>5l7q(x)(xx)n_l) %
m=0 ' 1=0 =0 \I=0 !

n

(1)
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Therefore, we obtain the following theorem.
Theorem 1. For n > 0, we have
" /n
Enae) =3 (7 ) s el
1=0
By (8), (9), and (10), we obtain the following Witt’s formula.

Theorem 2. For h € Z and n € Z,, we have

/Z (2 + 1N ndp—1 (2) = £y (M),

/ @+ 2+ UNndps(y) = Engla ).
Zp

By (5) and (9), we can derive the following recurrence relation:

i 2(1|>\)n% =21+ M)A = (q(1+ M)2A +1) i 5n7q(A)’;
n=0 ' n=0 '
= q(1 4 At)?/A i 5n,q(A)t§| + i En’q()\)ﬂ
=0 o ' (12)
oo l oo
= ;q(%\)zjl Z:OE ,q ) +Z ,q
- Z:o (; (7) 4(2N)iEn—14(N) + 5n,q(A)> ’;

By comparing of the coefficients % on the both sides of (12), we obtain the following theorem.

Theorem 3. For n € Z, we have

qz( ) 2NEn-10(N) + Eng(N) = 2(1[).

By (5), (9), and (10), we have

> qEnq(z+2, N+ > Engla, N
n=0 n=0

2(1 4 At)1/A
g1+ M)2/A 41

2q(1 4 At)/*
_ 21+ ) (14 A2/ 4

14 xt)*/* 13
g1+ X)2/A 41 (1+A) (13)

xr - tn
=201+ M)A =23 (2 + UA)n—
n=0
By comparing of the coefficients £; on the both sides of (13), we have the following theorem.

n!

Theorem 4. For h € Z and n € Z, we have
GEn (@ +2,X) + & q(z, N) = 2(z + L|A),.

By (1) and (5), we have

o0 N tm
mZ:o (q"Em,q(2n, A) + Emg(N)) )
_ ; qurn(].+)\t)(2aj+2n+1)/>\d/i,1(x) + (_1)n‘/z q"’”(1+)\t)(2$+1)/’\dy,1(x) (14)
n—l 0 n—1 tm
n 1-1 l (214+1)/X n—1-1_1 v
1+ At 2 -1 204+ 1|\ .
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By comparing of the coefficients % on the both sides of (14), we have the following theorem.
Theorem 5. For m € Z, we have

n—1

0" Emq(20,N) + Emg(N) =2 (=1)" g 20+ 1[A)m

1=0
By (10), we get

o tn 2(1 _ At)—l/A /A
(g =\ = L)
Zgn,q (o =N = Fa e 1M
s (15)
2q o
R Y S I WA CER VYR _1yge, Ll
(1= M)A + 1( At) nz:%( )"qEn q(x + 7)\)n'

By comparing of the coefficients % on the both sides of (15), we have the following theorem.

Theorem 6. For n € Z, we have

Eng 1 (=2, =A) = (=1)"g€nq(x + LA),  Eng1(=A) = (=1)"¢€n g (1[N).

For d € N with d = 1(mod 2), we have

oo

t" 2(1 4 At)1/A
ek Sl A z/X
nz:o Ena@ N7 = Ca e A

2(1+ X'/ P 2/
= s LA S (1) (L + a2
=0

oo d—1
A04+x+1—d X t"
= § dn —Digle e h—
n_0< 1:0( e n’qd( d 7d)) n!

. . A . .
By comparing coefficients of — in the above equation, we have the following theorem:
n!

Theorem 7. For d € N with d = 1(mod 2) and n € Z, we have

d—1

204+2+1—-d A
_n )
Englz,N)=d ;(—1) q'Ep g (d’ d) .
In particular,
d—1
20+41—-d A
n [
Ena) = 0" S0 (05,
1=0
From (10), we derive
n 2(1 4 At)1/A

Zs - x—l—y,/\)il (14 A)EH0)/A
n=0 '

2+ )t
(1)1

(5 et (S5 - 55 (5 ()

n=0 =0

(1+ Xt)2/X +1

(14 XA (1 + A)¥/A (16)

Therefore, by (16), we have the following theorem.

Theorem 8. For n € Z,, we have

Engx+y, N Z()&qu(yM)n -

=0
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From Theorem 8, we note that &, 4(z, A) is a Sheffer sequence.
A _

By replacing ¢ by ¢ n (10), we obtain

)\t -1 e . e mtm
Tﬂ = Zen,q z,\) ( ) = ;en,q(x,A)A mz::nSg(m,n)/\ —
tm

- Z (Z Enq(, /\)Amn&(mm)) puk
m=0 \n=0 .

Thus, by (17), we have the following theorem.

(17)

Theorem 9.For n € Z, we have

m

Epg(z) = A"7"Ep g(x,X)S2(m, n).
n=0

By replacing ¢ by log(1 + At)Y/* in

(7
ZE 2) (log(1+ Ap))" 1 20 e o Z En(2, )\ (18)
2l " g1 AR T na

), we have

and
m—n tm
ZEM ) (10g(1+ 2¢) W) ~ = Z (Zé‘nq YA, (m, n)> = (19)
Thus, by (18) and (19), we have the following theorem.

Theorem 10. For n € Z, we have
g (T, A) Z/\m "By q(x)S1(m,n).

Letting ¢ — 1 in Theorem 10 gives the theorem

m

En(z,X) =) X" E, (2)S) (m,n).

n=0

which was proved by Ryoo [4].
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