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1. Introduction

Throughout this paper we use the following notations. By Zp we denote the ring of p-adic

rational integers, Qp denotes the field of rational numbers, N denotes the set of natural numbers, C
denotes the complex number field, Cp denotes the completion of algebraic closure ofQp, N denotes the

set of natural numbers and Z+ = N∪{0}, and C denotes the set of complex numbers. Let p be a fixed

odd prime number. Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1.

When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex

number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally assumes that |q| < 1. If q ∈ Cp, we

normally assume that |q − 1|p < p−
1

p−1 so that qx = exp(x log q) for |x|p ≤ 1.

We say that f is uniformly differentiable function at a point a ∈ Zp and denote this property

by g ∈ UD(Zp), if the difference quotients

Fg(x, y) =
g(x)− g(y)

x− y

have a limit l = g′(a) as (x, y) → (a, a). For g ∈ UD(Zp), the fermionic p-adic invariant integral on

Zp is defined by

I−1(g) =

∫
Zp

g(x)dµ−1(x) = lim
N→∞

∑
0≤x<pN

g(x)(−1)x, (see [3]). (1)

If we take g1(x) = g(x+ 1) in (1), then we easily see that

I−1(g1) + I−1(g) = 2g(0). (2)

We recall that the classical Stirling numbers of the first kind S1(n, k) and the second kind S2(n, k)

are defined by the relations(see [6])

(x)n =

n∑
k=0

S1(n, k)x
k and xn =

n∑
k=0

S2(n, k)(x)k,

respectively. The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1∏
k=0

(x− λk) (3)
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for positive integer n, with the convention (x|λ)0 = 1. Note that (x|λ) is a homogeneous polynomials

in λ and x of degree n, so if λ ̸= 0 then (x|λ)n = λn(λ−1x|1)n. Clearly (x|0)n = xn. We also need

the binomial theorem: for a variable x,

(1 + λt)x/λ =
∞∑

n=0

(x|λ)n
tn

n!
. (5)

For q ∈ Cp with |1− q|p ≤ 1, if we take g(x) = qxe(2x+1)t in (2), then we easily see that

I−1(q
xe(2x+1)t) =

∫
Zp

qxe(2x+1)tdµ−1(x) =
2et

qe2t + 1
.

Let us define the second kind q-Euler numbers En,q and polynomials En,q(x) as follows(see [5]):∫
Zp

qye(2y+1)tdµ−1(y) =
∞∑

n=0

En,q
tn

n!
, (6)

∫
Zp

qye(x+2y+1)tdµ−1(y) =
∞∑

n=0

En,q(x)
tn

n!
. (7)

Recently, many mathematicians have studied in the area of the degenerate Bernoulli umbers and

polynomials, degenerate Euler numbers and polynomials, degenerate tangent numbers and polyno-

mials(see [1, 2, 3, 4, 6]). Our aim in this paper is to define the second kind degenerate q-Euler

polynomials En,q(x, λ). We investigate some properties which are related to the second kind degen-

erate q-Euler numbers En,q(λ) and polynomials En,q(x, λ).

2. Some properties of the second kind degenerate q-Euler numbers En,q(λ) and

polynomials En,q(x, λ)

In this section, we introduce the second kind degenerate q-Euler numbers and polynomials,

and we obtain explicit formulas for them. For t, λ ∈ Zp such that |λt|p < p−
1

p−1 , if we take

g(x) = qx(1 + λt)(2x+1)/λ in (2), then we easily see that∫
Zp

qx(1 + λt)(2x+1)/λdµ−1(x) =
2(1 + λt)1/λ

q(1 + λt)2/λ + 1
. (8)

Let us define the second kind degenerate q-Euler numbers En,q(λ) and polynomials En,q(x, λ) as

follows: ∫
Zp

qy(1 + λt)(2y+1)/λdµ−1(y) =
∞∑

n=0

En,q(λ)
tn

n!
, (9)

∫
Zp

qy(1 + λt)(2y+1+x)/λdµ−1(y) =

∞∑
n=0

En,q(x, λ)
tn

n!
. (10)

Note that (1 + λt)1/λ tends to et as λ → 0. From (7) and (10), we note that

∞∑
n=0

lim
λ→0

En,q(x, λ)
tn

n!
= lim

λ→0

2(1 + λt)1/λ

q(1 + λt)2/λ + 1
(1 + λt)x/λ =

∞∑
n=0

En,q(x)
tn

n!
.

Thus, we have

lim
λ→0

En,q(x, λ) = En,q(x), (n ≥ 0).

From (5) and (9), we get

∞∑
n=0

En,q(x, λ)
tn

n!
=

2(1 + λt)1/λ

q(1 + λt)2/λ + 1
(1 + λt)x/λ

=

( ∞∑
m=0

Em,q(λ)
tm

m!

)( ∞∑
l=0

(x|λ)l
tl

l!

)
=

∞∑
n=0

(
n∑

l=0

(
n

l

)
El,q(λ)(x|λ)n−l

)
tn

n!
.

(11)
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Therefore, we obtain the following theorem.

Theorem 1. For n ≥ 0, we have

En,q(x, λ) =
n∑

l=0

(
n

l

)
El,q(λ)(x|λ)n−l.

By (8), (9), and (10), we obtain the following Witt’s formula.

Theorem 2. For h ∈ Z and n ∈ Z+, we have∫
Zp

qx(2x+ 1|λ)ndµ−1(x) = En,q(λ),∫
Zp

qy(x+ 2y + 1|λ)ndµ−1(y) = En,q(x, λ).

By (5) and (9), we can derive the following recurrence relation:

∞∑
n=0

2(1|λ)n
tn

n!
= 2(1 + λt)1/λ = (q(1 + λt)2/λ + 1)

∞∑
n=0

En,q(λ)
tn

n!

= q(1 + λt)2/λ
∞∑

n=0

En,q(λ)
tn

n!
+

∞∑
n=0

En,q(λ)
tn

n!

=

( ∞∑
l=0

q(2|λ)l
tl

l!

∞∑
m=0

Em,q(λ)
tm

m!

)
+

∞∑
n=0

En,q(λ)
tn

n!

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
q(2|λ)lEn−l,q(λ) + En,q(λ)

)
tn

n!
.

(12)

By comparing of the coefficients tn

n! on the both sides of (12), we obtain the following theorem.

Theorem 3. For n ∈ Z+, we have

q
n∑

l=0

(
n

l

)
(2|λ)lEn−l,q(λ) + En,q(λ) = 2(1|λ)n.

By (5), (9), and (10), we have

∞∑
n=0

qEn,q(x+ 2, λ)
tn

n!
+

∞∑
n=0

En,q(x, λ)
tn

n!

=
2q(1 + λt)1/λ

q(1 + λt)2/λ + 1
(1 + λt)(x+2)/λ +

2(1 + λt)1/λ

q(1 + λt)2/λ + 1
(1 + λt)x/λ

= 2(1 + λt)(x+1)/λ = 2
∞∑

n=0

(x+ 1|λ)n
tn

n!
.

(13)

By comparing of the coefficients tn

n! on the both sides of (13), we have the following theorem.

Theorem 4. For h ∈ Z and n ∈ Z+, we have

qEn,q(x+ 2, λ) + En,q(x, λ) = 2(x+ 1|λ)n.

By (1) and (5), we have

∞∑
m=0

(qnEm,q(2n, λ) + Em,q(λ))
tm

m!

=

∫
Zp

qx+n(1 + λt)(2x+2n+1)/λdµ−1(x) + (−1)n
∫
Zp

qx(1 + λt)(2x+1)/λdµ−1(x)

= 2
n−1∑
l=0

(−1)n−1−lql(1 + λt)(2l+1)/λ =
∞∑

m=0

(
2
n−1∑
l=0

(−1)n−1−lql(2l + 1|λ)m

)
tm

m!
.

(14)
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By comparing of the coefficients tn

n! on the both sides of (14), we have the following theorem.

Theorem 5. For m ∈ Z+, we have

qnEm,q(2n, λ) + Em,q(λ) = 2
n−1∑
l=0

(−1)n−1−lql(2l + 1|λ)m.

By (10), we get

∞∑
n=0

En,q−1(−x,−λ)
tn

n!
=

2(1− λt)−1/λ

q−1(1− λt)−2/λ + 1
(1− λt)x/λ

=
2q

(1− λt)2/λ + 1
(1− λt)(x+1)/λ =

∞∑
n=0

(−1)nqEn,q(x+ 1, λ)
tn

n!
.

(15)

By comparing of the coefficients tn

n! on the both sides of (15), we have the following theorem.

Theorem 6. For n ∈ Z+, we have

En,q−1(−x,−λ) = (−1)nqEn,q(x+ 1, λ), En,q−1(−λ) = (−1)nqEn,q(1|λ).

For d ∈ N with d ≡ 1(mod 2), we have

∞∑
n=0

En,q(x, λ)
tn

n!
=

2(1 + λt)1/λ

q(1 + λt)2/λ + 1
(1 + λt)x/λ

=
2(1 + λt)1/λ

qd(1 + λt)2d/λ + 1
(1 + λt)x/λ

d−1∑
l=0

(−1)lql(1 + λt)2l/λ

=
∞∑

n=0

(
dn

d−1∑
l=0

(−1)lqlEn,qd
(
2l + x+ 1− d

d
,
λ

d

))
tn

n!
.

By comparing coefficients of
tn

n!
in the above equation, we have the following theorem:

Theorem 7. For d ∈ N with d ≡ 1(mod 2) and n ∈ Z+, we have

En,q(x, λ) = dn
d−1∑
l=0

(−1)lqlEn,qd
(
2l + x+ 1− d

d
,
λ

d

)
.

In particular,

En,q(λ) = dn
d−1∑
l=0

(−1)lqlEn,qd
(
2l + 1− d

d
,
λ

d

)
.

From (10), we derive

∞∑
n=0

En,q(x+ y, λ)
tn

n!
=

2(1 + λt)1/λ

(1 + λt)2/λ + 1
(1 + λt)(x+y)/λ

=
2(1 + λt)1/λ

q(1 + λt)2/λ + 1
(1 + λt)x/λ(1 + λt)y/λ

=

( ∞∑
n=0

Em,q(x, λ)
tn

n!

)( ∞∑
n=0

(y|λ)n
tn

n!

)
=

∞∑
n=0

(
n∑

l=0

(
n

l

)
El,q(x, λ)(y|λ)n−l

)
tn

n!
.

(16)

Therefore, by (16), we have the following theorem.

Theorem 8. For n ∈ Z+, we have

En,q(x+ y, λ) =
n∑

l=0

(
n

l

)
El,q(x, λ)(y|λ)n−l.
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From Theorem 8, we note that En,q(x, λ) is a Sheffer sequence.

By replacing t by
eλt − 1

λ
in (10), we obtain

2et

qe2t + 1
ext =

∞∑
n=0

En,q(x, λ)
(
eλt − 1

λ

)n
1

n!
=

∞∑
n=0

En,q(x, λ)λ−n
∞∑

m=n

S2(m,n)λm tm

m!

=

∞∑
m=0

(
m∑

n=0

En,q(x, λ)λm−nS2(m,n)

)
tm

m!
.

(17)

Thus, by (17), we have the following theorem.

Theorem 9.For n ∈ Z+, we have

Em,q(x) =

m∑
n=0

λm−nEn,q(x, λ)S2(m,n).

By replacing t by log(1 + λt)1/λ in (7), we have

∞∑
n=0

En,q(x)
(
log(1 + λt)1/λ

)n 1

n!
=

2(1 + λt)1/λ

q(1 + λt)2/λ + 1
(1 + λt)x/λ =

∞∑
m=0

En,q(x, λ)
tm

m!
, (18)

and
∞∑

n=0

En,q(x)
(
log(1 + λt)1/λ

)n 1

n!
=

∞∑
m=0

(
m∑

n=0

En,q(x)λm−nS1(m,n)

)
tm

m!
. (19)

Thus, by (18) and (19), we have the following theorem.

Theorem 10. For n ∈ Z+, we have

En,q(x, λ) =
m∑

n=0

λm−nEn,q(x)S1(m,n).

Letting q → 1 in Theorem 10 gives the theorem

En(x, λ) =
m∑

n=0

λm−nEn(x)S1(m,n).

which was proved by Ryoo [4].
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