
An analysis of annular fin’s thermal conductivity and

heat production using the DTM-Pade approximation

Deepak Umarao Sarwe1, Vishnu Sharma2, Pradip Kumar Gaur∗2 and Stephan Antony Raj3

1Department of Mathematics, University of Mumbai, Maharastra, 40098, India

2 Department of Mathematics, JECRC University, Jaipur, 303905, India

3Department of Mathematics, Rathinam Group of Institutions, Tamil nadu, 641107, India

1deepaksarve@mathematica.mu.ac.in

2vishnu83.sharma@gmail.com

∗2pradeep.gaur@jecrcu.edu.in

3stephanraj138@gmail.com

Abstract

The DTM-Pade approximation is used in the current work to analyze the thermal behavior

and thermal stresses of an annular fin while accounting for temperature-dependent thermal

conductivity and internal heat generation. The energy problem is converted into a

nonlinear ordinary differential equation (ODE) using non-dimensional parameters, and the

DTM-Pade approximation is then utilized to provide an approximate analytical solution.

The impacts of various settings on the temperature field are also graphically analyzed.

It has been found that increasing the heat generation parameter causes the temperature

distribution to improve. The growing thermo-geometric parameter values lead to an

improvement in fin efficiency.

Keywords: Annular fin; DTM-Pade approximant method; Heat generation.

Nomenclature:

r0 Outer radius t Thicknesses of the fin

Q Actual heat transfer T⋆ Temperature

h Heat transfer coefficient λ Thermo-geometric parameter

α Nondimensional heat generation α Heat generation parameter

κ0 Thermal conductivity at R Dimensionless outer radius

ambient temperature
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θ Dimensionless temperature ν Internal heat generation variation

q0 Internal heat generation at µ Nondimensional heat generation

ambient temperature variation

T∞ Ambient temperature k Thermal conductivity of the fin

ζ Dimensionless radius Tb Base temperature

Qmax Maximum possible heat transfer ri Inner radius

η Fin efficiency κ Thermal conductivity variation

σr, σϕ Radial and tangential stress χ Dimensionless coefficient of thermal

expansion

α∗ linear coefficient of thermal ν Poisson’s ratio

expansion

εr, εϕ Radial and tangential strain σr, σϕ Dimensionless radial and

tangential stress

E Young’s modulus

1 Introduction

Annular fins are typical heat transfer components that are employed in a variety of

engineering applications to improve surface heat dissipation. The circular shape of these

fins promotes effective heat transfer while using the least amount of material. In real-world

situations, materials’ thermal conductivities frequently change with temperature, and heat

generation may take place within the fin structure for a variety of reasons. Optimizing the

design and performance of annular fins with these complexities requires accurate analysis.

Finned surfaces are widely used in electrical components, computer CPU heat sinks,

heat exchangers, superheaters, electrical equipment, automobile radiators, compressor

cylinders, and refrigeration because they can improve the convection heat transference

between a solid surface and its surroundings. There are several ways to increase heat

transfer, but one of the best is to mount a fin to the primary surface to offer more surface

area. Numerous studies examine the behavior of thermal distribution through annular

fins with standard profile shapes as triangular, rectangular, concave and hyperbolic, and

convex parabolic fins. Recently, a number of researchers used numerical and analytical

methods to examine the heat transfer properties of various fins. By taking into account

the varied thermal conductivity, Darvishi et al. [1] investigated the thermal dispersion

of an annular fin. Using a graphical illustration, Gaba et al. [2] addressed the heat

transmission and effectiveness of annular fins with parabolic and exponential profiles. The

differential evolution method was utilized by Ranjan et al. [3] to examine the radiative
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phenomenon through an annular fin. By using the Durbin inverses Laplace transform

approach, Bas and Keles [4] explained the thermal stress characteristics of one-dimensional

annular extended surfaces. The property of temperature distribution across an annular

fin was studied by Lee et al. in [5], and they also looked into the thermal stress of the

fin. The heat distribution of a permeable fin submerged in a nanoliquid was examined by

Sowmya et al. [6]. Baslem et al. [7] investigated the heat transfer of a straight porous fin

positioned in a nanofluid while taking radiation and natural convection into account. The

Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), Homotopy

Analysis Method (HAM), and Adomian Decomposition Method (ADM) are some of the

analytical techniques that can be used to address nonlinear differential problems. But the

computations used in these methods are complicated. A technique that may effortlessly

and without restrictions solve nonlinear terms is essential. This benefit is provided by

the Differential Transformation Method (DTM), which may be used to expand a power

series to find the analytical solution to differential equations that are both linear and

nonlinear. By converting differential equations into algebraic equations, the numerical

method known as DTM can solve differential equations. It offers an effective and precise

approach to approximate the solutions of differential equations, particularly when closed-

form solutions are not easily accessible. It is often used in conjunction with the Pade

approximation. DTM with the Pade approximation can be used to get approximations

of solutions for the temperature distribution T(r) in the context of the annular fin with

temperature-dependent features. The Pade approximation is used to shorten the infinite

series produced by DTM once the differential equation and boundary conditions are

translated into algebraic equations. This approach expands the solution into Taylor’s

series form. DTM was initially used by Zhou [8] to examine an electrical circuit by solving

both linear and nonlinear initial value issues. By taking varying thermal conductivity

into account, Ghasemi et al. [9] were able to get at the analytical solution for the heat

distribution through a fin using the DTM’s attributes. In their study of the effects of

radiation on a permeable extended surface (Moradi et al., [10], they used DTM to arrive

at an analytical solution for the temperature field. Kundu and Lee [11] elaborated on heat

transmission via an annular permeable extended surface, and DTM was used to solve

the governing equation. For the temperature equation of the straight fin with varying

thermal conductivity, Mosayebidorcheh et al. [12] used DTM. By using the DTM-Pade

approximation, Christopher et al. [13] examined the hybrid nanoliquid stream across

a cylindrical geometry. The creation of internal heat through a fin has been studied

by several researchers. The significance of internal heat generation by an annular fin

with temperature-dependent thermal conductivity was discussed by Ranjan and Mallick

in [14]. The thermal behavior of a one-dimensional permeable rectangular fin with heat
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generation was discussed by Hoseinzadeh et al. [15]. An analytical method was used by

Ranjan et al. [16] to examine the thermal stresses and heat generation of an annular

extended surface. By accounting for thermal conductivity, Kezzar et al. [17] investigated

the features of heat generation over a longitudinal extended surface. Sowmya et al. [18]

scrutinized the aspect of internal heat generation through a permeable fin immersed in

a nanoliquid. The literature described above demonstrates that using the DTM-Pade

approximant, no attempt has been made to examine the thermal distribution and thermal

stresses of annular fins with internal heat generation and temperature-dependent thermal

conductivity. A challenging issue in heat transfer and thermal engineering is analyzing the

thermal behavior of an annular fin with temperature-dependent thermal conductivity and

heat generation. Using a numerical method called the Differential Transformation Method

(DTM) and Pade approximation, one can approximate the answers to such issues. Let’s

dissect the elements of this issue and talk about how DTM-Pade approximation might

be used. Also, we refer [27–31] for more information. Therefore, the main goal of this

inquiry is to use the DTM-Pade approximant, a sophisticated mathematical technique,

to solve the annular fin’s energy equation. Additionally, internal heat generation and

thermal analysis of fins with temperature-dependent thermal conductivity are examined.

The main advantage of this method is that it may be used directly on the issue without

any linearization, perturbation, or discretization being necessary. Additionally, it offers

more precise or exact solutions.

2 Formulation in mathematics

The following assumptions form the basis of the mathematical model:

1. This study takes into account an axisymmetric thin annular fin with uniform

thickness, uniform inner and outer radii, and homogenous isotropic material, as

shown in Figure 1.

2. The temperature of the surrounding liquid doesn’t change while the heat is rejected.

3. At the tip of the fin, very little heat is lost.

4. Heat conduction only happens in the radial direction since there are no thermal

gradients in the circumferential or axial orientations.

5. The base of the fin is maintained at a consistent temperature.

6. Convective heat transfer’s coefficient is a fixed quantity.

7. By convection, the fin loses heat to its surroundings.
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8. The fin functions in a steady condition.

Figure 1: Schematic of an annular fin.

Under these assumptions, the energy equation derived from the law of conservation of

energy for one-dimensional heat transfer is specified as [19]:

t
d

dr

[
k(T⋆)r

dT⋆

dr

]
− 2hr(T⋆ − T∞) + q∗(T⋆)tr = 0 (1)

The following values for the thermal conductivity and internal heat generation are assumed

to change linearly with temperature:

k(T⋆) = k0{1 + κ(T⋆ − T∞)},

q∗(T⋆) = q0{1 + ν(T⋆ − T∞)}. (2)

Therefore, the following boundary conditions for the energy balance equation can be

obtained by implementing zero conductive heat resistance at the fin wall.

r = ri : T⋆ = Tb,

r = r0 :
dT⋆

dr
= 0. (3)

The following non-dimensional parameters are utilized.

θ =
T⋆ − T∞

Tb − Ta
, Bi =

hri
k0

, β = κ(Tb − T∞), µ = ν(Tb − T∞), ζ =
r − ri
ri

, R =
r0
ri
,

λ2 =
2hr2i
k0t

, α =
q0r

2
i

k0(Tb − T∞)
. (4)
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The governing equation (1) and boundary condition (3) are reduced into non-dimensional

energy equation with the help of equation (2) and (4) and are given as:

θ′′ + βθθ′′ +
β

1 + ζ
θθ′ +

1

1 + ζ
θ′ + β(θ′)2 − λ2θ + α(1 + µθ) = 0, (5)

Here, ζ = 0 ; θ = 1

and, ζ = R− 1 ; θ′ = 0 (6)

3 Discussion on Differential Transformation Method

(DTM)

The attributes of DTM were covered in this section. Using the Taylor’s series expression,

this method can be used to find solutions for a system of linear and nonlinear differential

equations as well as adequate beginning and boundary conditions. Taylor’s series has the

following general form:

w(l) =
∞∑
q=0

(l − l0)
q

q!

[
dqy(l)

dxq

]
l=l0

(7)

The differential transformation W (q) of a function w(l) is expressed as follows:

W (q) =
1

q!

[
dqw(l)

dxq

]
l=l0

(8)

In equation (7), W (q) is the transformed function of the original function w(l).

Differential inverse transforms for W (q) is defined as:

w(l) =
∞∑
q=0

W (q)(l − l0)
q (9)

The fundamental properties of DTM are specified in Table. 2 (see Zhou [20], Hassan [21],

Jawad and Hamody [22])

Table 2: Properties of DTM

Original function Transformed function

W (l) = g(l)± h(l) W (q) = G(q)±H(q)

w(l) = αg(l) W (q) = CG(q), where C is the constant.
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W (l) = dh(l)
dl

W (q) = (q + 1)H(q + 1)

w(l) = dnh(l)
dl

W (q) = (q + 1)(q + 1) · · · (q + n)H(q + n)

w(l) = lm W (q) = δ(q −m) =

{
1, q = m

0, q ̸= m

}
w(l) = g(l)h(l) W (q) =

∑q
r=0G(r)H(q − r)

w(l) = f1(l)f2(l) · · · W (q) =
∑q

qs−1=0

∑qs−1=0
qs−2=0 · · ·

∑q3
q2=0

∑q2
q1=0W1(q1)

· · · fs−1(l)fs(l) W2(q2 − q1) · · ·Ws−1(qs−1 − qs−2)Ws(q − qs−1)

4 Pade Approximant Method

The Pade approximant is a powerful approach that is frequently used in numerical analysis

and scientific computing to approximate a polynomial function into rational functions of

polynomials of a particular degree (see Boyd [23] and Rashidi et al. [24]). Compared to a

straightforward polynomial fit, this method enables us to describe a given function with

higher precision and adaptability. Assume that a power series represents the function

h(zeta). Using powers of a variable, in this case zeta, power series are a fundamental

mathematics tool for expressing functions as an infinite sum of terms. When working

with functions that may be roughly represented as a sum of polynomial terms, they are

especially helpful.

h(ζ) =
∞∑
i=0

γiζ
i (10)

Equation (4) is a vital initial step in any analysis using Pade approximants. The Pade

approximant, a mathematical idea, is crucial to the discipline of numerical analysis. It

is a rational fraction with a Maclaurin expansion that is intended to as closely match

equation (3) as possible. In other words, Pade approximants use rational approximations,

which are more computationally effective than attempting to directly compute or alter

the actual equation, to provide an accurate representation of complicated functions.

α0 + α1ζ + α2ζ
2 + · · ·+ αSζ

S

β0 + β1ζ + β2ζ2 + · · ·+ βT ζT
(11)

It is believed that the numerator and denominator coefficients of equation (1) are of order

S + 1 and T + 1, respectively. As a result, there is an independent T denominator,

and independent S + 1 numerator coefficients result in an overall S + T + 1 unknown

coefficient. This order suggests using the orders 1, ζ, ζ2, · · · , ζS+T to usually fit the power

series equation (3).
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The representation of power series is given as:

∞∑
i=0

γiζ
i =

α0 + α1ζ + α2ζ
2 + · · ·+ αSζ

S

β0 + β1ζ + β2ζ2 + · · ·+ βT ζT
+ o(ζS+T+1) (12)

(β0 + β1ζ + β2ζ
2 + · · ·+ βSζ

T )(γ0 + γ1ζ + γ2ζ
2 + · · · ) = α0 + α1ζ + α2ζ

2 + · · ·

+αSζ
S + o(ζS+T+1) (13)

Comparing the coefficients of ζS+1, ζS+2, · · · , ζS+T

βTγS−T+1 + βT−1γS−T+2 + · · ·+ β0γS+1 = 0,

βTγS−T+2 + βT−1γS−T+3 + · · ·+ β0γS+2 = 0,

· · · · · ·

· · · · · ·

· · · · · ·

βTγT + βT−1γT+1 + · · ·+ β0γS+T = 0,

(14)

To obtain the desired consistency in our mathematical framework, we define the parameter

γi to be equal to zero. This choice plays a pivotal role in simplifying the system. When

we set β0 to be equal to 1, as stipulated in equation (5), this transforms the equation into

a set of T linear equations. These linear equations represent the relationship between the

various coefficients in our system, specifically, the T unknown denominator coefficients.
γS−T+1 γS−T+2 · · · γS+1

γS−T+2 γS−T+3 · · · γS+2

· · · · · · · · · · · ·
γS γS+1 · · · γS+T




βT

βT+1

· · ·
βS

 =


γS+1

γS+2

· · ·
γS+T

 (15)

βi is obtained from these equations. The numerator coefficients α0, α1, · · · , αS from

equation (10) are found by equating the coefficients of 1, ζ, ζ2, · · · , ζS+T such as,
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α0 = γ0,

α1 = γ1 + β1γ0,

α2 = γ2 + β1γ1 + β2γ0,

· · · · · · · · ·

αS = γS +

min[S/T ]∑
i=1

βiγS−i. (16)

The equations (15) and (16), also referred to as Pade equations, thereby yield the Pade

numerator and denominator. These equations are crucial to numerical analysis, especially

when it comes to approximating rational functions. They are effective tools for estimating

complex functions using straightforward rational functions. In engineering and scientific

computations, a particular kind of rational function approximation known as the [S/T ]

Pade approximant is crucial. The trade-off between the degree of the numerator (S) and

the degree of the denominator (T ) is balanced in its development. A reference to another

crucial equation that establishes the order of the Pade approximant is made in the phrase

by the equation (10) . An approximation’s accuracy and complexity are determined by

its order. To ensure that the Pade approximant finds a compromise between accuracy and

computational economy, the equation (10) offers a way for calculating its ideal order.

5 Applications of DTM-Pade method

The DTM-Pade method have several applications in a variety of scientific and technical

fields. This potent mix of mathematical methods is essential for resolving difficult issues

and simulating a wide range of phenomena. Applying DTM to the non-linear differential

equation (2), we obtain the following expression

(q + 1)(q + 2)Θ[q + 2] + β

q∑
r=0

Θ[q − r](r + 1)(r + 2)Θ[r + 2] +

β

q∑
r+0

r∑
m=0

1

1 + δ[m− 1]
Θ[r −m](q − r + 1)Θ[q − r + 1] +

q∑
r=0

1

1 + δ[m− 1]
(q − r + 1)Θ[q − r + 1] +

β

q∑
r=0

(q − r + 1)Θ[q − r + 1](r + 1)Θ[r + 1]− λ2Θ[k] + αδ[k] + αµΘ[k] = 0. (17)
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For the solution of difficult differential equations, the Differential Transformation Method

(DTM) is applied to the boundary conditions of equations (6). With the aid of this ground-

breaking mathematical method, we may better understand how the system behaves and

create a precise expression that captures the complex interrelationships underlying the

mathematical or physical events that are the subject of the inquiry. Applying DTM to

the boundary conditions in equations (6) we obtain the following expression:

Θ[0] = 1, Θ[1] = a (18)

Substituting q = 0, 1, 2, · · · so on and equation (18) in equation (17), we obtain the

successive approximation as:

Θ[2] = −1

2

a2β + µα− λ2 + aβ + α + a

β + 1
(19)

Θ[3] =
1

12(β + 1)2


6a3β2 + 4µαaβ − 4λ2aβ + 6a2β2 − 2µαa+ 2µαβ

+6αaβ + 2λ2a− 2λ2β + 6a2β + aβ2 + 2µα + 2αβ

−2λ2 + 2aβ + 2α + a

 (20)

Θ[4] = − 1

48(β + 1)3



30a4β3 + 26µαa2β2 − 26λ2a2β2 + 36a3β3 + 4µ2α2β

−8µαλ2β − 10µαa2 + 16µαaβ2 + 36αa2β2 + 4λ4β

+10λ2a2β − 16λ2aβ2 + 36a3β2 + 10a2β3 − 2µ2α2

+10µα2β + 4µαλ2 + 12µαaβ − 10αλ2β + 20αaβ2 − 2λ2

−12λ2aβ + 20a2β2 + 3aβ3 − 2µα2 − 4µαa+ 6α2β

+2αλ2 + 20αaβ + 4λ2a+ 10a2β + 9aβ2 + 9aβ + 3a


(21)

and so on.

Where Θ[q] is the differential transform of θ(ζ) and is the constant to be calculated by

using boundary conditions.

Substituting the equations (18)-(21) in equation (9) comprising DTM, we obtain the
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following equations:

θ(ζ) = 1 + aζ − 1

2

a2β + µα− λ2
aβ + α + a

β + 1
ζ2 +

1

12(β + 1)2



6a3β2 + 4µαaβ − 4λ2aβ

+6a2β2 − 2µαa+ 2µαβ

+6αaβ + 2λ2a− 2λ2β

+6a2β + aβ2 + aβ2 + 2µα

+2αβ − 2λ+ 2aβ

+2α + a


ζ3 − 1

48(β + 1)2



30a4β3 + 26µαa2β2 − 26λ2a2β2 + 36a3β3 + 4µ2α2β

−8µαλ2β − 10µαa2 + 16µαaβ2 + 16µαaβ2 + 36αa2β2

+4λ4β + 10λ2a2β − 16λ2aβ2 + 36a3β2 + 10a2β3 − 2µ2α2

+10µα2β + 4µαλ2 + 12µαaβ − 10αλ2β + 20αaβ2 − 2λ4

−12λ2aβ + 20a2β2 + 3aβ3 − 2µα2 − 4µαa+ 6α2β + 2αλ2

+20αaβ + 4λ2a+ 10a2β + 9aβ2 + 9aβ + 3a


ζ4 + · · · (22)

To evaluate the value, we apply the Pade approximant to equation (22) along with

boundary condition (6). We get the value of a and by substituting the constant value

a = −.9097156826, α = 0.4, µ = 0.4, λ = 1, β = 0.3 in the equation (22) equation we

get,

θ(ζ) = 1− 0.9097256826ζ + 0.5286012084ζ2 − 0.1192183969ζ3 + 0.05254461407ζ4 + · · ·

Table 3: Comparison of θ′(0) for the numerical method

and DTM-Pade approximation

Parameters Numerical solution DTM-Pade solution

β = 0.3 -0.39096 -0.40052

α = 0.5 -0.26968 -0.25435

µ = 0.8 -0.26007 -0.26120

λ = 1.5 -1.13261 -1.12958

Table 4: Comparison of θ′(0) when µ = 0, α = 0, λ =

1, β = 0.3 for the numerical method and DTM-Pade

approximation
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Non dimensional Arslanturk Mallick et. al Present DTM

radius ζ FDM [25] HPM [26]

0 1.0 1.0 1.0

.1 .9477 .9455 .9489

.2 .9036 .9013 .9025

.3 .8668 .8659 .8608

.4 .8365 .8380 .8239

6 Fin Efficiency

The fin efficiency, a critical parameter for assessing a fin’s thermal performance. Because

it enables us to assess and improve the performance of heat exchangers, radiators, and

other systems that depend on fins for heat transmission, the fin efficiency concept is

useful in engineering and thermal design. Engineers can choose materials, fin geometry,

and other design characteristics to increase heat transfer while minimizing energy use and

material usage by having a thorough understanding of a fin’s efficiency. In essence, it aids

in the effective design of systems where heat absorption or dissipation is crucial for overall

performance. Considerations for an annular fin’s non-dimensional fin efficiency include its

thickness, thermal conductivity, and outer and inner radii. We can use this equation to

calculate the annular fin’s efficiency at transferring heat from its base to the environment

around it while taking into account its geometric and material characteristics. The non-

dimensional form of fin efficiency is provided as follows for an annular fin:

η =
Q

Qmax

=
4πh

∫ r0
ri
(T⋆ − T∞)rdr

2πh(r20 − r2i )(Tb − T∞)
=

2
∫ R−1

0
(1 + ζ)θdζ

(R2 − 1)
(23)

7 Thermal stress formulation

A temperature gradient is applied to the annulus in the material under inquiry along its

radial direction. The primary cause of stresses is an incompatible eigen-strain brought on

by phase transformation, precipitation hardening, and temperature change brought on by

the presence of a conduction-convection field. Furthermore, it is assumed that the only

factor responsible for the evolution of the eigen-strain is the variation in temperature in the

radial direction. Since the thickness of fin is significantly thinner than the radius of the fin,

the difference in stress and displacement over the thickness is ignored. Additionally, due

to the symmetric behavior of the issue, the radial and tangential stresses are independent

of ϕ and cannot be influenced by it. As a result, the issue at hand is axisymmetrically
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planar tension. The stress equilibrium equation in a cylindrical coordinate system derived

from the classical theory of elasticity is as follows since the body force and inertia force

are disregarded:

dσr

dr
+

σr − σϕ

r
= 0 (24)

Where σr and σϕ are radial and tangential components of stress field.

The fin is subjected to thermal stresses, which causes the overall strain to evolve by two

strains. While the second is a result of free thermal expansion, the first is caused by

induced stresses. Using the traditional theory of elasticity, the stress-strain-temperature

relationship is defined by the following expression:

ϵr =
1

E
[σr − vσϕ] + α∗T⋆

ϵϕ =
1

E
[σϕ − vσr] + α∗T⋆ (25)

where ϵr and ϵϕ represents the radial and tangential strain components, α∗ is the coefficient

of thermal expansion, v is the Poisson’s ratio, and E is the modulus of elasticity of fin

material. These parameters mentioned in the sentence play vital roles in characterizing

the behavior of a material or a structural element.

Equation (25) can be written in the form[
σr

σϕ

]
=

E

1− v2

[
1 v

v 1

][
ϵr

ϵϕ

]
− Eα∗T⋆

1− v

[
1

1

]
(26)

Kinematics relations for the polar strain components, in a plane strain state, are

ϵr =
∂ur

∂r
and ϵϕ =

ur

r
(27)

Substituting Eqs. (27) and (26) into Eq. (24) and integrating twice, the following closed-

form solution for the radial displacement is achieved as

ur =
(1 + v)α∗

r

∫ r

a

(T⋆ − T∞)ηdη + A1r +
A2

r
(28)

The traction-free boundary condition at outer and inner surfaces of the fin can be taken

as

r = a, b : σr = 0 (29)
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Using Eqs. (28), (27), and (26), the constants of integration and can be appraised by

applying the boundary conditions (Eq. 29)

A1 =
(1− v)a∗

b2 − a2

∫ b

a

(T⋆ − T∞)ηdη + αT∞ and A2 =
(1 + v)a∗a2

b2 − a2

∫ b

a

(T⋆ − T∞)ηdη (30)

Using the values of A1 and A2 from Eq. (30) in Eq. (28). We get,

σr = −α∗E

r2

∫ r

a

(T⋆ − T∞)ηdη +
α∗E

b2 − a2

(
1− a2

r2

)∫ b

a

(T⋆ − T∞)ηdη and (31)

σϕ = 1α∗E(T⋆ − T∞)

∫ r

a

(T⋆ − T∞)ηdη +
α∗E

b2 − a2

(
1 +

a2

r2

)∫ b

a

(T⋆ − T∞)ηdη. (32)

Let us utilize the non-dimensional parameters:

σr =
σr

E
, σϕ =

σϕ

E
, ζ1 =

r

a
, R =

b

a
, θ =

T⋆ − T∞

Tb − T∞
, and χ = α(Tb − T∞) (33)

Using Eq. (33) in Eqs. (31) and (32) results as follows:

σr = − α∗

ζ21a
2
(Tb − T∞)

∫ ζ1

1

θ · aζ1 · adζ1

+
α∗

b2 − a2
(Tb − T∞)

(
1− 1

ζ21

)∫ R

1

θ · aζ1 · adζ1 (34)

σϕ = −α∗(Tb − T∞) +
α∗

ζ21a
2
(Tb − T∞)

∫ ζ1

1

θ · aζ1 · adζ1 +

α∗

b2 − a2
(Tb − T∞)

(
1− 1

ζ21

)∫ R

1

θ · aζ1 · adζ1 (35)

Introduction of χ and R reduces Eqs. 34 and 35 to

σr =
χ

ζ21

∫ ζ1

1

θζ1dζ1 +
χ(ζ21 − 1)

(R2 − 1)ζ21

∫ R

1

θζ1dζ1 (36)

σϕ = −χθ +
χ

ζ21

∫ ζ1

1

θζ1dζ1 +
χ(ζ21 + 1)

(R2 − 1)ζ21

∫ R

1

θζ1dζ1 (37)

The relation between ζ and ζ1

ζ = ζ + 1 (38)
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Thus, the stress equations in terms of non-dimensional radius, ζ becomes

σr = − χ

(ζ + 1)2

∫ ζ

0

θ(ζ+1)dζ +
χ(ζ2 + 2ζ)

(R2 − 1)(ζ + 1)2

∫ R−1

0

θ(ζ + 1)dζ (39)

σϕ = −χθ +
χ

(ζ + 1)2

∫ ζ

0

θ(ζ+1)dζ +
χ(ζ2 + 2ζ + 2)

(R2 − 1)(ζ + 1)2

∫ R−1

0

θ(ζ + 1)dζ (40)

8 Results and discussions

The impact of various non-dimensional parameters such as β, µ, α, and λ on dimensionless

temperature field θ are elaborated graphically here. Additionally, the graphs are set up

to talk about the effectiveness of an annular fin. Additionally, for the solutions found

using both the DTM-Pade approximation method and the numerical method, graphs

depicting variations in heat distribution are generated. The results of the numerical

method will match the graphics produced by the DTM-Pade approximation method. The

values of θ′(0) for various non-dimensional parameters are tabulated in Table 2 and the

values obtained by DTM-Pade approximation method are closer to the values of numerical

method. Table 3 epitomizes the numerical values of thermal field of an annular fin. The

values obtained by DTM-Pade approximation method are tabulated and compared with

existing work.

Figure 2 and Figure 3 show the effect of β on θ for both DTM-Pade approximation

method and the numerical method. In Figure 2, the behavior of thermal distribution

for different values of β(= −0.4,−0.2, 0, 0.2, 0.4) is portrayed by plotting the graphs

for both numerical and DTM-Pade approximation. From this figure, one can conclude

that increase in the β value enhances the θ . The nature of θ for diverse values of

β(= 0.1, 0.2, 0.3, 0.4, 0.5) is explained via Figure 3 by using DTM-Pade approximation.

It is found that θ upsurges for the rise in values. The variance in the thermal profile

θ for various values of µ is exposed in Figure 4 and Figure 5. Figure 4 reveals the

consequence of µ(= 0.3, 0.4, 0.5, 0.6) on θ for both numerical method and DTM-Pade

approximation. This figure shows that as the µ values upsurges θ enhance rapidly. The

aspect of θ for different values of µ(= 0.4, 0.5, 0.6, 0.7, 0.8) is explained via Figure 5 by

using the DTM-Pade approximation. It indicates that increment of µ values improves the

thermal distribution rate. Figure 6 and Figure 7 signify the influence of on temperature

field θ by using both numerical and DTM-Pade approximation. The major impact of

α(= 0.3, 0.4, 0.5, 0.6) on θ is elucidated in Figure 6. It denotes that, rise in the α values will

enhance the temperature distribution. Furthermore, the impact of α(= 0.3, 0.4, 0.5, 0.6)

on θ by implementing DTM-Pade approximation is shown in Figure 7. This figure reveals

that, θ improves for enhanced α values.
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The Three-dimensional (3D) and two-dimensional (2D) graphs are plotted (Figures 8 to

Figure 15) for illustrating the variation of thermal profile for various increased values of

non-dimensional parameters. Figure 8 and Figure 9 show the nature of θ for improved

values of µ and β . These figures indicate that, θ enhances remarkably for enhanced values

of µ and β. The major consequence of µ and α on θ is illustrated by utilizing 3D and 2D

plots as shown in Figure 10 and Figure 11. These figures ensure that the improvement

of µ and α values leads to the enhancement of θ . Figure 12 and Figure 13 demonstrate

the behavior of µ for rising in α and values. These figures signify that, θ upsurges with

the improvement of α and β values. The physical parameters influencing the efficiency

of fin are discussed graphically as displayed in Figure 14 and Figure 15. The efficiency

of fin is more for higher values of λ and β . Figures 16,17 and Figure 18,19 portray the

aspects of thermal stresses caused due to heat transfer through the annular fin. Figure

16 and Figure 17 signifies the effect of non-dimensional parameters χ and β on radial

stress distribution. Here, the radial stress magnitude upsurges with the decline of β. This

happens due to the fact that, decrease in β values increases the thermal resistance. As a

result, the fin material’s local free expansion is hindered. Furthermore, the radial stress

fields are unaffected by the heat generation factors α and

mu. Figures 10(a) and 10(b) show the impact of the non-dimensional parameters α

and µ on the distribution of tangential stress. Tangential stress is significantly impacted

by all non-dimensional parameters, including the heat generation parameters α and µ.

For increased values of α and µ, the effect of heat generation on the tangential stresses

remarkably increases.

9 Final remarks

In conclusion, it is a challenging task to analyze the thermal behavior of an annular fin

with temperature-dependent thermal conductivity and heat generation. To achieve precise

solutions, it is necessary to combine mathematical modeling, numerical techniques like

DTM, and approximations like the Pade approximation. In many technical applications

where effective heat transport and temperature control are critical, this analysis is crucial.

The challenge of conducting a complex yet crucial thermal analysis of annular fins with

temperature-dependent thermal conductivity and heat generation is one that engineers

and designers must do. These fins can be optimized for better performance and efficiency

with the use of accurate temperature distribution predictions within them. Engineers

and scientists are able to effectively solve the governing equations and get insightful

knowledge regarding the behavior of annular fins under real-world circumstances by using

mathematical methods like the Differential Transformation Method (DTM) and Pade
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approximation. Making informed judgments on the design and application of such heat

transfer devices across a range of applications is made easier with the help of this analysis,

which improves energy efficiency and system performance.

Utilizing the DTM-Pade approximant method, the current study investigates the heat

transference analysis as well as the thermal stresses aspect of an annular fin with

temperature-dependent thermal conductivity. Additionally, the current approach yields

findings for the thermal field. According to the results of this study, the DTM-Pade

approximant-based method offers fairly precise results and is easier to manage the

nonlinear problem. From the current investigation, it is possible to draw the following

conclusions:

� The thermal distribution is enhanced by the increasing values of β.

� The thermal distribution increases as µ values rise. Additionally, α is increased by

the thermal distribution function.

� The effectiveness of the fin is increased by the rising values of non-dimensional

parameters λ.

� The magnitude of the radial stress increases as β declines.

� For increased values of α and µ, the effect of heat generation on the tangential

stresses remarkably increases.
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Figure 2: Influence of β on θ.

Figure 3: Influence of β on θ by using DTM-Pade Approximation.
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Figure 4: Influence of µ on θ.

Figure 5: Influence of µ on θ by using DTM-Pade Approximation.
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Figure 6: Influence of α on θ.

Figure 7: Influence of α on θ by using DTM-Pade Approximation.
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Figure 8: Deviance of θ for diverse values of µ against β.

Figure 9: Deviance of θ for diverse values of µ against β.
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Figure 10: Deviance of θ for diverse values of µ against α.

Figure 11: Deviance of θ for diverse values of µ against α.
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Figure 12: Deviance of θ for diverse values of α against β.

Figure 13: Deviance of θ for diverse values of α against β.
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Figure 14: Efficiency of fin ν for diverse values of λ against β.

Figure 15: Efficiency of fin ν for diverse values of λ against β.
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Figure 16: Impact of non-dimensional parameters χ and β on radial stress distribution.

Figure 17: Impact of non-dimensional parameters χ and β on radial stress distribution.
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Figure 18: Impact of non-dimensional parameters α and µ on tangential stress
distribution.

Figure 19: Impact of non-dimensional parameters α and µ on tangential stress
distribution.
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[23] J. P. Boyd, “Padé approximant algorithm for solving nonlinear ordinary differential

equation boundary value problems on an unbounded domain,” Comput. Phys., vol.

11, no. 3, pp. 299–303, May 1997, doi: 10.1063/1.168606.

[24] M. M. Rashidi, N. Freidoonimehr, E. Momoniat, and B. Rostami, “Study of

Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds

Numbers Using DTM,” PLOS ONE, vol. 10, no. 8, p. e0135004, Aug. 2015, doi:

10.1371/journal.pone.0135004

[25] C. Arslanturk, “Correlation equations for optimum design of annular fins with

temperature dependent thermal conductivity,” Heat Mass Transf., vol. 45, no. 4,

pp. 519–525, Feb. 2009, doi: 10.1007/s00231-008-0446-9.

[26] A. Mallick, S. Ghosal, P. K. Sarkar, and R. Ranjan, “Homotopy Perturbation

Method for Thermal Stresses in an Annular Fin with Variable Thermal

Conductivity,” J. Therm. Stress., vol. 38, no. 1, pp. 110–132, Jan. 2015, doi:

10.1080/01495739.2014.981120

[27] Jangid Sanju, Mehta Ruchika, Singh Jagdev, Baleanu Dumitru and Alshomrani

Ali Saleh, ”Heat and mass transport of hydromagnetic williamson nanofluid

passing through a permeable media across an extended sheet of varying thickness”,

Thermal Science, vol. 27, pp. 129-140, 2023, doiserbia.nb.rs/Article.aspx?ID=0354-

983623129J.

[28] Jain Ruchi, Mehta Ruchika, Mehta Tripti, Singh Jagdev and Baleanu Dumitru,

”MHD flow and heat and mass transportinvestigation over a decelerating disk with

ohmic heating and diffusive effect”, Thermal Science, vol. 27 (1), pp. 141-149, 2023,

doiserbia.nb.rs/Article.aspx?ID=0354-983623141J.

[29] Kumar Ravindra, Singh Jagdev, Mehta Ruchika, Kumar Devendra and Baleanu

Dumitru, ”Analysis of the impact of thermal radiation and velocity slip on the melting

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

196 Sarwe et al 168-197



30

of magnetic hydrodynamic micropolar fluid-flow over an exponentially stretching

sheet”, Thermal Science, vol. 27 (1), pp. 311-322, 2023, doi:10.2298/TSCI23S1311K.

[30] Ruchika Mehta, Ravindra Kumar, Himanshu Rathore and Jagdev Singh, ”Joule

heating effect on radiating MHD mixed convection stagnation point flow

along vertical stretching sheet embedded in a permeable medium and heat

generation/absorption”, Heat Transfer (Wiley), vol. 51 (8), pp. 7369-7386, 2022,

doi: 10.1002/htj.22648.

[31] Jagdev Singh, George A. Anastassiou, Dumitru Baleanu, Carlo Cattani, and

Devendra Kumar, ”Analysis of Soret and Dufour Effect on MHD Fluid Flow Over

a Slanted Stretching Sheet with Chemical Reaction, Heat Source and Radiation”,

Advances in Mathematical Modelling, Applied Analysis and Computation. Lecture

Notes in Networks and Systems, Springer, Singapore, vol. 415, Oct. 2022,

doi.org/10.1007/978-981-19-0179-9.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

197 Sarwe et al 168-197


	BLOCK-2-VOL-33---2024
	Binder-VOL-33-2024
	JOCAAA-10



