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Abstract. Let Bk be the nonbinary Boolean semiring and A be a m× n Boolean matrix over Bk. The Boolean

rank of a Boolean matrix A is the smallest k such that A can be factored as an m × k Boolean matrix times a

k × n Boolean matrix. The isolation number of A is the maximum number of nonzero entries in A such that no

two are in any row or any column, and no two are in a 2× 2 submatrix of all nonzero entries. We have that the

isolation number of A is a lower bound on the Boolean rank of A. We also compare the isolation number with

the binary Boolean rank of the support of A, and determine the equal cases of them.

1. Introduction

There are many papers on the study of rank of matrices over several semirings containing binary Boolean

algebra, fuzzy semiring, semiring of nonegative integers, and so on ([2], [3], [6], and [7]). But there are few papers

on isolation numbers of matrices. Gregory et al ([7]) introduced set of isolated entries and compared binary

Boolean rank with biclique covering number. Recently Beasley ([2]) introduced isolation number of Boolean

matrix and compare it with binary Boolean rank.

In this paper, we investigate the possible isolation number of Boolean matrix and compare it with Boolean

rank of Boolean matrix and the binary Boolean rank of the support of the Boolean matrix.

2. Preliminaries

Definition 2.1. A semiring S consists of a set S with two binary operations, addition and multiplication, such

that:

· S is an Abelian monoid under addition (the identity is denoted by 0);

· S is a monoid under multiplication (the identity is denoted by 1, 1 6= 0);

· multiplication is distributive over addition on both sides;

· s0 = 0s = 0 for all s ∈ S.

Definition 2.2. A semiring S is called antinegative if the zero element is the only element with an additive

inverse.
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Definition 2.3. A semiring S is called a Boolean semiring if S is equivalent to a set of subsets of a given set X,

the sum of two subsets is their union, and the product is their intersection. The zero element 0 is the empty set

and the identity element 1 is the whole set X.

Let Sk = {a1, a2, · · · , ak} be a set of k-elements, P(Sk) be the set of all subsets of Sk. Then P(Sk) is the

Boolean semiring of all subsets of Sk with operations in above definition. Let Bk be a Boolean semiring of subsets

of Sk = {a1, a2, · · · , ak}, that is a subset of P(Sk). It is straightforward to see that a Boolean semiring Bk is

a commutative and antinegative semiring. Moreover, all of its elements, except 0 and 1, are zero-divisors. If Bk

consists of only 0 (the empty subset) and 1 (the whole set Sk) then it is called a binary Boolean semiring, which

is denoted as B1. If Bk is not a binary Boolean semiring then it is called a nonbinary Boolean semiring.

Throughout the paper, we assume that m ≤ n and Bk denotes a nonbinary Boolean semiring, which contains

at least 3 elements. Let Mm,n(Bk) denote the set of m× n matrices with entries from a Boolean semiring Bk.

Let Mn(Bk) =Mm,n(Bk) if m = n, let Im denote the m×m identity matrix, Om,n denote the zero matrix in

Mm,n(Bk), Jm,n denote the matrix of all ones in Mm,n(Bk). The subscripts are usually omitted if the order is

obvious, and we write I,O, J .

Definition 2.4. The matrix A ∈Mm,n(Bk) is said to be of Boolean rank r if there exist matrices B ∈Mm,r(Bk)

and C ∈Mr,n(Bk) such that A = BC and r is the smallest positive integer such that such a factorization exists.

We denote b(A) = r.

By definition, the unique matrix with Boolean rank equal to 0 is the zero matrix O.

Now letMm,n(B1) denote the set of all m×n binary Boolean matrices with entries in B1. The binary Boolean

rank of A ∈Mm,n(B1) is the Boolean rank over B1 and denoted b1(A).

Definition 2.5. For two (binary) Boolean matrices A and B, A dominates B if ai,j = 0 implies bi,j = 0.

Given a matrix X ∈ Mm,n(Bk), we let x(j) denote the jth column of X and x(i) denote the ith row. Now if

b(A) = r and A = BC is a factorization of A ∈ Mm,n(Bk), then A = b(1)c(1) + b(2)c(2) + · · · + b(r)c(r). Since

each of the terms b(i)c(i) is a Boolean rank one matrix, the Boolean rank of A is also the minimum number of

Boolean rank one matrices whose sum is A.

The binary Boolean rank has many applications in combinatorics, especially graph theory, for example, if

A ∈Mm,n(B1) is the adjacency matrix of the bipartite graph G with bipartition (X,Y ), the binary Boolean rank

of A is the minimum number of bicliques that cover the edges of G, called the biclique covering number.

Definition 2.6. Given a matrix A ∈ Mm,n(Bk), a set of isolated entries ([7]) is a set of entries, usually written

as E = {ai,j} such that ai,j 6= 0, no two entries in E are in the same row, no two entries in E are in the same

column, and, if ai,j , ak,l ∈ E then, ai,l = 0 or ak,j = 0. That is, isolated entries are independent entries and any

two isolated entries ai,j and ak,l do not lie in a submatrix of A of the form

[
ai,j ai,l
ak,j ak,l

]
with all entries nonzero.

The isolation number of A, ι(A), is the maximum size of a set of isolated entries.

Note that ι(A) = 0 if and only if A = O.
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Example 2.7. Let σ ∈ Bk be neither 0 nor 1 and

A =


1 1 σ 0 0

σ 1 0 1 0

1 0 0 0 σ

0 σ 0 1 1

0 0 1 σ 1


be a Boolean matrix over Bk and E1 is the set of σ′s which are located at the positions {a1,3, a2,1, a3,5, a4,2, a5,4}
of A. The entries σ′s of A are isolated entries and hence ι(A) = 5. But the entries of A in the position in

E2 = {a1,1, a2,2, a3,5, a4,4, a5,3} are not isolated.

Suppose that A ∈Mm,n(Bk) and b(A) = r. Then there are r Boolean rank one matrices Ai such that

A = A1 +A2 + · · ·+Ar. (2.1)

Because each Boolean rank one matrix can be permuted to a matrix of the form

[
N O

O O

]
with all nonzero

entries in N , it is easily seen that the matrix consisting of two isolated entries of A cannot be dominated by any

one Ai among the Boolean rank one summand of A in (2.1). Thus

i(A) ≤ b(A). (2.2)

Many functions, sets and relations concerning matrices do not depend upon the magnitude or nature of the

individual entries of a matrix, but rather only on whether the entry is zero or nonzero. These combinatorially

significant matrices have become increasingly important in recent years. Of primary interest is the binary Boolean

rank. Finding the binary Boolean rank of a (0, 1)-matrix is an NP-Complete problem ([8]), and consequently

finding bounds on the binary Boolean rank of a matrix is of interest to those researchers that would use binary

Boolean rank in their work. If the (0, 1)-matrix is the reduced adjacency matrix of a bipartite graph, the isolation

number of the matrix is the maximum size of a non-competitive matching in the bipartite graph. This is related

to the study of such combinatorial problems as the patient hospital problem, the stable marriage problem, etc. An

additional reason for studying the isolation number is that it is a lower bound on the Boolean rank of a Boolean

matrix over Bk. While finding the isolation number as well as finding the Boolean rank of a Boolean matrix is an

NP-Complete problem ([1]), for some matrices finding the isolation number can be easier than finding the Boolean

rank especially if the matrix is sparse:

Example 2.8. Let σ ∈ Bk and

F =



1 1 1 σ 0 1 1 1 1

1 1 1 1 σ 1 1 1 1

1 1 1 0 0 σ 1 1 1

1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

σ 1 0 0 0 0 0 0 0

0 σ 1 0 0 0 0 0 0

1 0 σ 0 0 0 0 0 0


be a Boolean matrix in M9(Bk).
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Then we can easily see b(F ) 5 6 from first 3 rows and columns, however to find that Boolean rank is not 5,

requires much calculation if the isolation number is not considered. However, the isolation number is easily seen

to be 6, both computationally and visually, the σ’s in this matrix represent a set of isolated entries. Thus we have

b(F ) = 6 by (2.2).

Note that if any of the 1’s in F are replaced by zeros, the resulting matrix still has Boolean rank 6 as well as

isolation number 6.

Terms not specifically defined here can be found in Brualdi and Ryser [5] for matrix terms, or Bondy and Murty

[4] for graph theoretic terms.

For our use in the next section, we define the support matrix of a Boolean matrix. If A ∈Mm,n(Bk), then the

support of A is the binary Boolean matrix A = (ai,j) ∈ Mm,n(B1) such that ai,j = 1 if ai,j 6= 0 and ai,j = 0 if

ai,j = 0.

3. Comparisons between isolation numbers and Boolean ranks over Mm,n(Bk)

In this section, we compare the isolation number with Boolean rank of a Boolean matrix, and also we compare

the isolation number with binary Boolean rank of the support of a Boolean matrix.

Lemma 3.1. For A,B ∈ Mm,n(Bk), b(A + B) ≤ b(A) + b(B). And for A,B ∈ Mm,n(B1), b1(A + B) ≤
b1(A) + b1(B).

Proof. It follows from the definition of Boolean rank and equation (2.1).

Lemma 3.2. For A,B ∈Mm,n(Bk), A+B = A+B inMm,n(B1).

Proof. It follows from the facts that Bk is an antinegative semiring and 1 + 1 = 1 in B1.

Lemma 3.3. For A ∈Mm,n(Bk), b1(A) ≤ b(A).

Proof. If b(A) = r, then A has a Boolean rank one factorization such that A = b(1)c(1) + b(2)c(2) + · · ·+ b(r)c(r)

with B = [b(1)b(2) · · ·b(r)] ∈Mm,k(Bk) and C = [c(1)c(2) · · · c(k)]t ∈Mk,n(Bk) from (2.1). Therefore

b1(A) = b1(b(1)c(1) + b(2)c(2) + · · ·+ b(r)c(r)) = b1(b(1)c(1) + b(2)c(2) + · · · + b(r)c(r)) ≤ r, from Lemma 3.2.

Hence b1(A) ≤ b(A).

We may have strict inequality in Lemma 3.3 as we see in the following example.

Example 3.4. Let S3 = {x, y, z} and B3 = {0, {x}, {x, y}, 1} with 1 = {x, y, z}. Consider X =

[
1 {x}

{x, y} {x, y}

]
and Y =

[
1 {x}

{x, y} {x}

]
in M2(B3). Then b(X) = 2 but b1(X) = b1(

[
1 1

1 1

]
) = 1. Hence b1(X) < b(X). But

b(Y ) = b1(Y ) = 1 since Y =

[
1

{x, y}

][
1 {x}

]
over B3.

Lemma 3.5. For A = [ai,j ] ∈Mm,n(Bk), ι(A) = ι(A).
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Proof. If ai,j and ak,l are any isolated entries in A, then i 6= k and j 6= l, and that ai,l = 0 or ak,j = 0. Hence ai,j

and ak,l are isolated entries in A, so we have ι(A) ≤ ι(A).

Conversely, if ai,j and ak,l are any isolated entries in A, then ai,j 6= 0 and ak,l 6= 0 and that ai,l = ai,l = 0 or

ak,j = ak,j = 0. Hence ai,j and ak,l are isolated entries in A, so we have ι(A) ≤ ι(A).

Theorem 3.6. If A ∈Mm,n(Bk), then ι(A) = 1 if and only if b1(A) = 1.

Proof. Let A ∈Mm,n(Bk). If b1(A) = 1 then A 6= O so that ι(A) 6= 0 and since ι(A) = ι(A) ≤ b1(A) by (2.2), we

have ι(A) = 1.

Conversely, suppose on the contrary that there exists a matrix A = [ai,j ] ∈ Mm,n(Bk) such that ι(A) = 1,

b1(A) > 1. Then, there exists two non-equal and nonzero rows of A, say ith and jth. Hence, without loss of

generality, there exists a k such that ai,k = 1 and aj,k = 0. Then, ai,k and any unit entry in jth row of B

constitute a set of two isolated entries. Thus, ι(A) = ι(A) > 1, a contradiction.

It follows that the subset of Mm,n(Bk) of matrices with isolation number 1 is the same as the set of matrices

whose support has Boolean rank 1.

For A = A1 +A2 + · · ·+Ar with b(A) = r, let Ri denote the indices of the nonzero rows of Ai and Cj denote

the indices of the nonzero columns of Aj , i, j = 1. · · · , k. Let ri = |Ri|, the number of nonzero rows of Ai and

cj = |Cj |, the number of nonzero columns of Aj .

Lemma 3.7. Let A ∈Mm,n(Bk). Then if b(A) ≥ b1(A) = 2 then ι(A) = 2, and if ι(A) = 2 then b1(A) 6= 3.

Proof. If b1(A) = 2, then ι(A) > 1 by Theorem 3.6. Since ι(A) = ι(A) ≤ b1(A) from Lemma 3.5 and (2.2), we

have that ι(A) = ι(A) = 2.

Now, suppose that ι(A) = 2 and that b1(A) = 3. Then, we have a factorization of A as A = C × D with

C ∈ Mm,3(B1) and D ∈ M3,n(B1). Then, the three rows of D generate all the rows of A. Since b1(A) = 3, D

cannot have binary Boolean rank 2 or less. Thus, we have b1(D) = 3. Therefore, we have a factorization of D as

D = E × F with E ∈ M3,3(B1) and F ∈ M3,n(B1). Then, the three column of E generate all the columns of D

and b1(E) = 3. Therefore, it is sufficient to consider 3× 3 matrices of binary Boolean rank 3. However, there are

only 10 following 3× 3 matrices of binary Boolean rank 3 up to permutations:

B1 =

 1 0 0

0 1 0

0 0 1

 , B2 =

 1 0 0

0 1 0

0 1 1

 , B3 =

 1 0 0

0 1 0

1 0 1

 , B4 =

 1 0 0

0 1 0

1 1 1

 ,

B5 =

 1 0 0

1 1 0

0 0 1

 , B6 =

 1 0 0

1 1 0

0 1 1

 , B7 =

 1 0 0

1 1 0

1 0 1

 , B8 =

 1 0 0

1 1 0

1 1 1

 ,
B9 =

 1 0 1

1 1 0

0 0 1

 , B10 =

 1 0 1

1 1 0

0 1 1

 .
Since B5 can be permuted to B2 and B7 can be permuted to B4, and B9 can be permuted to B6 with transposing.

Therefore, there are only seven non-equivalent 3× 3 matrices of binary Boolean rank 3. However, these matrices
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have three isolation entries on the main diagonal. Thus, we have a contradiction to the conditions that ι(B) = 2

and rB1(B) = 3. Thus, if ι(A) = 2 then b1(A) 6= 3.

Theorem 3.8. Let A ∈Mm,n(Bk). Then, ι(A) = 2 if and only if b1(A) = 2.

Proof. From Lemma 3.7, we have the sufficiency. So we only need show the necessity.

Suppose there exists A ∈Mm,n(Bk) with ι(A) = ι(A) = 2 and b1(A) > 2. By Lemma 3.7, b1(A) 6= 3, and hence

b1(A) ≥ 4. Thus we choose A such that if b1(A) > b1(C) > 2 then ι(C) > 2. Suppose that A = A1 +A2 + · · ·+Ar

for r = b1(A) where each Ai is binary Boolean rank 1, i.e., r is the minimum r such that b1(A) = r and ι(A) = 2.

Suppose that A1 has the fewest number of nonzero rows of the Ai’s. As in the proof of the above lemma 3.7,

permute the rows of A so that A1 has nonzero rows 1, 2, · · · , r1. For j = 1, · · · , r1, let Bj be the matrix whose

first j rows are the first j rows of A and whose last m − j rows are all zero. Let Cj be the matrix whose first j

rows are all zero and whose last m − j rows are the last m − j rows of A. Then A = Bj + Cj . Further any set

of isolated entries of Cj is a set of isolated entries for A. Now, from b1(A) ≤ b1(Bj) + b1(Cj), and the fact that

b1(Cj) = b1(Cj−1) or b1(Cj) = b1(Cj−1) − 1, there is some t such that b1(Ct) = b1(A) − 1. Since b1(Ct) < r by

the choice of A, for this t, we have that ι(Ct) > 2 since b1(Ct) ≥ 3. That is, ι(A) = ι(A) > 2, which is impossible

since ι(A) = 2. Therefore b1(A) = 2.

Now, as we can see in the following example, there is a Boolean matrix A ∈Mm,n(Bk) such that ι(A) = 3 and

b1(A) is relative large, depending on m and n.

Example 3.9. For n ≥ 3, let Dn = J \ I ∈ Mn(B1). Then, it is easily shown that ι(Dn) = 3 while b1(Dn) = r

where r = min

{
h : n ≤

(
h
h
2

)}
, see [6](Corollary 2). So, ι(D20) = 3 while b1(D20) = 6.

Definition 3.10. A tournament matrix [T ] ∈ Mn(Bk) is the adjacency matrix of a directed graph called a

tournament, T . It is characterized by [T ]◦[T ]t = O and [T ]+[T ]t = J−I, where ◦ denotes entrywise multiplication

of two matrices.

Now, for each r = 1, 2, · · · ,min{m,n}, can we characterize the matrices in Mm,n(Bk) for which ι(A) = b1(A)

? Of course it is done if r = 1 or r = 2 in the above theorems, but only in those cases. For r = m we can also

find a characterization:

Theorem 3.11. Let 1 ≤ m ≤ n and A ∈ Mm,n(Bk). Then, ι(A) = b1(A) = m if and only if there exist

permutation matrices P ∈ Mm(B1) and Q ∈ Mn(B1) such that PAQ = [B|C] where B = Im + T ∈ Mm(B1)

where T ∈Mm(B1) is dominated by a tournament matrix. (There are no restrictions on C.)

Proof. Suppose that ι(A) = m. Then we permute A by permutation matrices P and Q so that the set of isolated

entries are in the (d, d) positions, d = 1, · · · ,m. That is, if X = PAQ then I = {x1,1, x2,2, · · · , xm,m} is the set

of isolated entries in X. Therefore X = [B|C], with bi,i = xi,i = 1 and bi,j · bj,i = 0 for every i and j 6= i from

the definition of the isolated entries. Thus, B = Im + T where T is an m square matrix which is dominated by a

tournament matrix. Thus, PAQ = [B|C] where B = Im + T and clearly there are no conditions on C.
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Conversely, if PAQ = [B|C] and B = Im + T where T is an m square matrix which is dominated by a

tournament matrix, then the diagonal entries of B form a set of isolated entries for PAQ and hence A has a set

of m isolated entries. Thus ι(A) = b1(A) = m.

Corollary 3.12. Let 1 ≤ m ≤ n and A ∈ Mm,n(Bk). If there exist permutation matrices P ∈ Mm(B1) and

Q ∈ Mn(B1) such that PAQ = [B|C] where B ∈ Mm(Bk) is a diagonal matrix or a triangular matrix with

nonzero diagonal entries, then ι(A) = b1(A) = m.

4. Conclusions

In this paper, we investigated the nonbinary Boolean rank of a matrix A and the rank of its support for the

given isolation number k over nonbinary Boolean semirings. Thus, we proved that the isolation number of A is

the same as the Boolean rank of the support of it if the isolation numbers are 1 and 2. If the isolation number

were greater than 2, then we showed by example that binary Boolean rank of the support of the given nonbinary

Boolean matrix may be strictly greater than the isolation number of the matrix. In addition, in some special cases

involving tournament matrices, we obtained that the isolation number of the given matrix and the Boolean rank

of its support of the nonbinary Boolean matrix are the same.
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