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Abstract. Neutrosophic quadruple structure is used to study BCI-implicative ideal in BCI-algebra. The conceot

of neutrosophic quadruple BCI-implicative ideal based on nonempty subsets in BCI-algebra is introduced, and their

related properties are investigated. Relationship between neutrosophic quadruple ideal, neutrosophic quadruple

BCI-implicative ideal, neutrosophic quadruple BCI-positive implicative ideal and neutrosophic quadruple BCI-

commutative ideal are consulted. Conditions for the neutrosophic quadruple set to be neutrosophic quadruple

BCI-implicative ideal are provided. A characterization of a neutrosophic quadruple BCI-implicative ideal is

displayed, and the extension property of neutrosophic quadruple BCI-implicative ideal is established.

1. Introduction

In [14], Smarandche has introduced the neutrosophic quadruple numbers for the first time. Using the notion

of Smarandache’s neutrosophic quadruple numbers, Akinleye et al. [2] presented the notion of neutrosophic

quadruple algebraic structures. In particular, they studied neutrosophic quadruple rings. Agboola et al. [1]

studied neutrosophic quadruple algebraic hyperstructures, in particular, they developed neutrosophic quadruple

semihypergroups, neutrosophic quadruple canonical hypergroups and neutrosophic quadruple hyperrings. Using

BCK/BCI-algebras, Jun et al. [7] have established neutrosophic quadruple BCK/BCI-algebra, and have studied

neutrosophic quadruple (positive implicative) ideal in neutrosophic quadruple BCK-algebra and neutrosophic

quadruple closed ideal in neutrosophic quadruple BCI-algebra. Muhiuddin et al. [13] have studied neutrosophic

quadruple q-ideal and (regular) neutrosophic quadruple ideal in neutrosophic quadruple BCI-algebra. Muhiuddin

et al. [12] also have studied implicative neutrosophic quadruple ideal in neutrosophic quadruple BCK-algebra.

In this article, we study BCI-implicative ideal in BCI-algebra using neutrosophic quadruple structure. We

define neutrosophic quadruple BCI-implicative ideal based on nonempty subsets in BCI-algebra, and investigate

their related properties. We consult relationship between neutrosophic quadruple ideal, neutrosophic quadruple

BCI-implicative ideal, neutrosophic quadruple BCI-positive implicative ideal and neutrosophic quadruple BCI-

commutative ideal. We provide conditions for the neutrosophic quadruple set to be neutrosophic quadruple

BCI-implicative ideal. We discuss a characterization of an neutrosophic quadruple BCI-implicative ideal, and

establish the extension property of neutrosophic quadruple BCI-implicative ideal.
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2. Preliminaries

A BCK/BCI-algebra, which is an important class of logical algebras, is introduced by K. Iséki (see [4, 5]) and

it is being studied by many researchers.

A BCI-algebra is a set X with a binary operation “·” and a special element “0” that satisfies the following

conditions:

(I) (∀x, y, z ∈ X) (((x · y) · (x · z)) · (z · y) = 0),

(II) (∀x, y ∈ X) ((x · (x · y)) · y = 0),

(III) (∀x ∈ X) (x · x = 0),

(IV) (∀x, y ∈ X) (x · y = 0, y · x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 · x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following conditions:

(∀x ∈ X) (x · 0 = x) , (2.1)

(∀x, y, z ∈ X) (x ≤ y ⇒ x · z ≤ y · z, z · y ≤ z · x) , (2.2)

(∀x, y, z ∈ X) ((x · y) · z = (x · z) · y) , (2.3)

(∀x, y, z ∈ X) ((x · z) · (y · z) ≤ x · y) (2.4)

where x ≤ y if and only if x · y = 0.

Any BCI-algebra X satisfies the following conditions (see [3]):

(∀x, y ∈ X)(x · (x · (x · y)) = x · y), (2.5)

(∀x, y ∈ X)(0 · (x · y) = (0 · x) · (0 · y)), (2.6)

(∀x, y ∈ X)(0 · (0 · (x · y)) = (0 · y) · (0 · x)). (2.7)

An element a in a BCI-algebra X is said to be minimal (see [3]) if the following assertion is valid.

(∀x ∈ X)(x ≤ a ⇒ x = a). (2.8)

Note that the zero element 0 in a BCI-algebra X is minimal (see [3]).

A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x · y ∈ S for all x, y ∈ S. A subset

G of a BCK/BCI-algebra X is called an ideal of X if it satisfies:

0 ∈ G, (2.9)

(∀x ∈ X) (∀y ∈ G) (x · y ∈ G ⇒ x ∈ G) . (2.10)

A subset G of a BCI-algebra X is called

• a closed ideal of X (see [3]) if it is an ideal of X which satisfies:

(∀x ∈ X)(x ∈ G ⇒ 0 · x ∈ G), (2.11)

• a BCI-positive implicative ideal of X (see [8, 9]) if it satisfies (2.9) and

(∀x, y, z ∈ X) (((x · z) · z) · (y · z) ∈ G, y ∈ G ⇒ x · z ∈ G) , (2.12)
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• a BCI-commutative ideal of X (see [10]) if it satisfies (2.9) and

(x · y) · z ∈ G, z ∈ G
⇒ x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ G (2.13)

for all x, y, z ∈ X,

• a BCI-implicative ideal of X (see [8]) if it satisfies (2.9) and

(((x · y) · y) · (0 · y)) · z ∈ G, z ∈ G
⇒ x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ G (2.14)

for all x, y, z ∈ X.

Note that every BCI-implicative ideal is an ideal, but the converse is not true (see [8]).

Lemma 2.1 ([8]). A subset K of X is a BCI-implicative ideal of a BCI-algebra X if and only if it is an ideal of

X that satisfies the following condition.

((x · y) · y) · (0 · y) ∈ K ⇒ x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K (2.15)

for all x, y ∈ X.

Lemma 2.2 ([10]). An ideal K of X is a BCI-commutative ideal of X if and only if it satisfies:

x · y ∈ K ⇒ x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K (2.16)

for all x, y, z ∈ X.

Lemma 2.3 ([9]). An ideal K of X is a BCI-positive implicative ideal of X if and only if it satisfies:

((x · y) · y) · (0 · y) ∈ K ⇒ x · y ∈ K (2.17)

for all x, y, z ∈ X.

We refer the reader to the books [3, 11] for further information regarding BCK/BCI-algebras, and to the site

“http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding neutrosophic set theory.

We consider neutrosophic quadruple numbers based on a set instead of real or complex numbers.

Let X be a set. A neutrosophic quadruple X-number is an ordered quadruple (a, xT, yI, zF ) where a, x, y, z ∈ X
and T, I, F have their usual neutrosophic logic meanings (see [7]).

The set of all neutrosophic quadruple X-numbers is denoted by Nq(X), that is,

Nq(X) := {(a, xT, yI, zF ) | a, x, y, z ∈ X},

and it is called the neutrosophic quadruple set based on X. If X is a BCK/BCI-algebra, a neutrosophic quadruple

X-number is called a neutrosophic quadruple BCK/BCI-number and we say that Nq(X) is the neutrosophic

quadruple BCK/BCI-set.

Let X be a BCK/BCI-algebra. We define a binary operation � on Nq(X) by

(a, xT, yI, zF ) � (b, uT, vI, wF ) = (a · b, (x · u)T, (y · v)I, (z · w)F )

for all (a, xT, yI, zF ), (b, uT, vI, wF ) ∈ Nq(X). Given a1, a2, a3, a4 ∈ X, the neutrosophic quadruple BCK/BCI-

number (a1, a2T, a3I, a4F ) is denoted by ã, that is,

ã = (a1, a2T, a3I, a4F ),
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and the zero neutrosophic quadruple BCK/BCI-number (0, 0T, 0I, 0F ) is denoted by 0̃, that is,

0̃ = (0, 0T, 0I, 0F ).

Then (Nq(X);�, 0̃) is a BCK/BCI-algebra (see [7]), which is called neutrosophic quadruple BCK/BCI-algebra,

and it is simply denoted by Nq(X).

We define an order relation “�” and the equality “=” on Nq(X) as follows:

x̃� ỹ ⇔ xi ≤ yi for i = 1, 2, 3, 4,

x̃ = ỹ ⇔ xi = yi for i = 1, 2, 3, 4

for all x̃, ỹ ∈ Nq(X). It is easy to verify that “�” is an equivalence relation on Nq(X).

Let X be a BCK/BCI-algebra. Given nonempty subsets K and J of X, consider the set

Nq(K,J) := {(a, xT, yI, zF ) ∈ Nq(X) | a, x ∈ K & y, z ∈ J},

which is called the neutrosophic quadruple set based on K and J .

The set Nq(K,K) is denoted by Nq(K), and it is called the neutrosophic quadruple set based on K.

3. Neutrosophic quadruple BCI-implicative ideals

In what follows, let X denote a BCI-algebra unless otherwise specified.

Definition 3.1. Let K and J be nonempty subsets of X. Then the neutrosophic quadruple set based on K and

J is called a neutrosophic quadruple BCI-implicative ideal (briefly, NQ-BCI-implicative ideal) over (X,K, J) if it

is a BCI-implicative ideal of Nq(X). If K = J , then we say that it is an NQ-BCI-implicative ideal over (X,K).

Example 3.2. Consider a BCI-algebra X = {0, 1, 2, 3, 4, 5} with the binary operation ·, which is given in Table

1.

Table 1. Cayley table for the binary operation “·”

· 0 1 2 3 4 5

0 0 0 0 3 3 3

1 1 0 1 3 3 3

2 2 2 0 3 3 3

3 3 3 3 0 0 0

4 4 3 4 1 0 0

5 5 3 5 1 1 0

Then the neutrosophic quadruple BCI-algebra Nq(X) has 64 elements. If we take K = {0, 1, 2}, then the neutro-

sophic quadruple set based on K has 81-elements, that is,

Nq(K) = {0̃, ζ̃i | i = 1, 2, · · · , 80},

and it is an NQ-BCI-implicative ideal over (X,K) where

0̃ = (0, 0T, 0I, 0F ), ζ̃1 = (0, 0T, 0I, 1F ), ζ̃2 = (0, 0T, 0I, 2F ),

ζ̃3 = (0, 0T, 1I, 0F ), ζ̃4 = (0, 0T, 1I, 1F ), ζ̃5 = (0, 0T, 1I, 2F ),

ζ̃6 = (0, 0T, 2I, 0F ), ζ̃7 = (0, 0T, 2I, 1F ), ζ̃8 = (0, 0T, 2I, 2F ),

ζ̃9 = (0, 1T, 0I, 0F ), ζ̃10 = (0, 1T, 0I, 1F ), ζ̃11 = (0, 1T, 0I, 2F ),
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ζ̃12 = (0, 1T, 1I, 0F ), ζ̃13 = (0, 1T, 1I, 1F ), ζ̃14 = (0, 1T, 1I, 2F ),

ζ̃15 = (0, 1T, 2I, 0F ), ζ̃16 = (0, 1T, 2I, 1F ), ζ̃17 = (0, 1T, 2I, 2F ),

ζ̃18 = (0, 2T, 0I, 0F ), ζ̃19 = (0, 2T, 0I, 1F ), ζ̃20 = (0, 2T, 0I, 2F ),

ζ̃21 = (0, 2T, 1I, 0F ), ζ̃22 = (0, 2T, 1I, 1F ), ζ̃23 = (0, 2T, 1I, 2F ),

ζ̃24 = (0, 2T, 2I, 0F ), ζ̃25 = (0, 2T, 2I, 1F ), ζ̃26 = (0, 2T, 2I, 2F ),

ζ̃27 = (1, 0T, 0I, 0F ), ζ̃28 = (1, 0T, 0I, 1F ), ζ̃29 = (1, 0T, 0I, 2F ),

ζ̃30 = (1, 0T, 1I, 0F ), ζ̃31 = (1, 0T, 1I, 1F ), ζ̃32 = (1, 0T, 1I, 2F ),

ζ̃33 = (1, 0T, 2I, 0F ), ζ̃34 = (1, 0T, 2I, 1F ), ζ̃35 = (1, 0T, 2I, 2F ),

ζ̃36 = (1, 1T, 0I, 0F ), ζ̃37 = (1, 1T, 0I, 1F ), ζ̃38 = (1, 1T, 0I, 2F ),

ζ̃39 = (1, 1T, 1I, 0F ), ζ̃40 = (1, 1T, 1I, 1F ), ζ̃41 = (1, 1T, 1I, 2F ),

ζ̃42 = (1, 1T, 2I, 0F ), ζ̃43 = (1, 1T, 2I, 1F ), ζ̃44 = (1, 1T, 2I, 2F ),

ζ̃45 = (1, 2T, 0I, 0F ), ζ̃46 = (1, 2T, 0I, 1F ), ζ̃47 = (1, 2T, 0I, 2F ),

ζ̃48 = (1, 2T, 1I, 0F ), ζ̃49 = (1, 2T, 1I, 1F ), ζ̃50 = (1, 2T, 1I, 2F ),

ζ̃51 = (1, 2T, 2I, 0F ), ζ̃52 = (1, 2T, 2I, 1F ), ζ̃53 = (1, 2T, 2I, 2F ),

ζ̃54 = (2, 0T, 0I, 0F ), ζ̃55 = (2, 0T, 0I, 1F ), ζ̃56 = (2, 0T, 0I, 2F ),

ζ̃57 = (2, 0T, 1I, 0F ), ζ̃58 = (2, 0T, 1I, 1F ), ζ̃59 = (2, 0T, 1I, 2F ),

ζ̃60 = (2, 0T, 2I, 0F ), ζ̃61 = (2, 0T, 2I, 1F ), ζ̃62 = (2, 0T, 2I, 2F ),

ζ̃63 = (2, 1T, 0I, 0F ), ζ̃64 = (2, 1T, 0I, 1F ), ζ̃65 = (2, 1T, 0I, 2F ),

ζ̃66 = (2, 1T, 1I, 0F ), ζ̃67 = (2, 1T, 1I, 1F ), ζ̃68 = (2, 1T, 1I, 2F ),

ζ̃69 = (2, 1T, 2I, 0F ), ζ̃70 = (2, 1T, 2I, 1F ), ζ̃71 = (2, 1T, 2I, 2F ),

ζ̃72 = (2, 2T, 0I, 0F ), ζ̃73 = (2, 2T, 0I, 1F ), ζ̃74 = (2, 2T, 0I, 2F ),

ζ̃75 = (2, 2T, 1I, 0F ), ζ̃76 = (2, 2T, 1I, 1F ), ζ̃77 = (2, 2T, 1I, 2F ),

ζ̃78 = (2, 2T, 2I, 0F ), ζ̃79 = (2, 2T, 2I, 1F ), ζ̃80 = (2, 2T, 2I, 2F ).

Theorem 3.3. Every NQ-BCI-implicative ideal is a neutrosophic quadruple ideal.

Proof. It is straightforward since every BCI-implicative ideal is an ideal in BCI-algebras. �

The converse of Theorem 3.3 is not true in general as seen in the following example.

Example 3.4. Let X = {0, 1, 2, 3, 4} be a set with the binary operation ·, which is given in Table 2.

Table 2. Cayley table for the binary operation “·”

· 0 1 2 3 4

0 0 0 0 0 4

1 1 0 0 0 4

2 2 2 0 0 4

3 3 3 2 0 4

4 4 4 4 4 0
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Then X is a BCI-algebra (see [8]), and the neutrosophic quadruple BCI-algebra Nq(X) has 625 elements. If we

take K = {0, 1}, then the neutrosophic quadruple set based on K has 16-elements, that is,

Nq(K) = {0̃, ζ̃i | i = 1, 2, · · · , 15},

and it is a neutrosophic quadruple ideal over (X,K) where

0̃ = (0, 0T, 0I, 0F ), ζ̃1 = (0, 0T, 0I, 1F ),

ζ̃2 = (0, 0T, 1I, 0F ), ζ̃3 = (0, 0T, 1I, 1F ),

ζ̃4 = (0, 1T, 0I, 0F ), ζ̃5 = (0, 1T, 0I, 1F ),

ζ̃6 = (0, 1T, 1I, 0F ), ζ̃7 = (0, 1T, 1I, 1F ),

ζ̃8 = (1, 0T, 0I, 0F ), ζ̃9 = (1, 0T, 0I, 1F ),

ζ̃10 = (1, 0T, 1I, 0F ), ζ̃11 = (1, 0T, 1I, 1F ),

ζ̃12 = (1, 1T, 0I, 0F ), ζ̃13 = (1, 1T, 0I, 1F ),

ζ̃14 = (1, 1T, 1I, 0F ), ζ̃15 = (1, 1T, 1I, 1F ).

If we take x̃ = (2, 2T, 2I, 2F ) and ỹ = (3, 3T, 3I, 3F ) in Nq(X), then

(((ỹ � x̃) � x̃) � (0̃ � x̃)) � 0̃

= ((((3, 3T, 3I, 3F ) � (2, 2T, 2I, 2F )) � (2, 2T, 2I, 2F ))�

((0, 0T, 0I, 0F ) � (2, 2T, 2I, 2F ))) � (0, 0T, 0I, 0F )

= (0, 0T, 0I, 0F ) ∈ Nq(K).

But

ỹ � ((x̃� (x̃� ỹ)) � (0̃ � (0̃ � (ỹ � x̃))))

= (3, 3T, 3I, 3F ) � (((2, 2T, 2I, 2F ) � ((2, 2T, 2I, 2F ) � (3, 3T, 3I, 3F )))�

((0, 0T, 0I, 0F ) � ((0, 0T, 0I, 0F ) � ((3, 3T, 3I, 3F ) � (2, 2T, 2I, 2F )))))

= (2, 2T, 2I, 2F ) /∈ Nq(K).

Hence Nq(K) is not a BCI-implicative ideal of Nq(X), and so it is not an NQ-BCI-implicative ideal over (X,K).

Lemma 3.5 ([7]). If K and J are ideals of X, then the neutrosophic quadruple set based on K and J is a

neutrosophic quadruple ideal over (X,K, J).

Theorem 3.6. The neutrosophic quadruple set based on BCI-implicative ideals K and J of X is an NQ-BCI-

implicative ideal over (X,K, J).

Proof. Let K and J be BCI-implicative ideals of X. Since 0 ∈ K ∩ J , we get 0̃ ∈ Nq(K,J). Let x̃ = (x1, x2T,

x3I, x4F ), ỹ = (y1, y2T, y3I, y4F ) and z̃ = (z1, z2T, z3I, z4F ) be elements of Nq(X) such that

(((x̃� ỹ) � ỹ) � (0̃ � ỹ)) � z̃ ∈ Nq(K,J)
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and z̃ ∈ Nq(K,J). Then z̃ = (z1, z2T, z3I, z4F ) ∈ Nq(K,J) and

(((x̃� ỹ) � ỹ) � (0̃ � ỹ)) � z̃

= ((((x1, x2T, x3I, x4F ) � (y1, y2T, y3I, y4F )) � (y1, y2T, y3I, y4F ))�

((0, 0T, 0I, 0F ) � (y1, y2T, y3I, y4F ))) � (z1, z2T, z3I, z4F )

= (((((x1 · y1) · y1) · (0 · y1)) · z1), ((((x2 · y2) · y2) · (0 · y2)) · z2)T,

((((x3 · y3) · y3) · (0 · y3)) · z3)I, ((((x4 · y4) · y4) · (0 · y4)) · z4)F )

∈ Nq(K,J).

Hence zi ∈ K and (((xi · yi) · yi) · (0 · yi)) · zi ∈ K for i = 1, 2; and zj ∈ J and (((xj · yj) · yj) · (0 · yj)) · zj ∈ K for

j = 3, 4. Since K and J are BCI-implicative ideals of X, it follows that xi · ((yi · (yi · xi)) · (0 · (0 · (xi · yi)))) ∈ K
and xj · ((yj · (yj · xj)) · (0 · (0 · (xj · yj)))) ∈ J for i = 1, 2 and j = 3, 4. Thus

x̃� ((ỹ � (ỹ � x̃)) · (0̃ � (0̃ � (x̃� ỹ))))

= (x1, x2T, x3I, x4F ) · (((y1, y2T, y3I, y4F ) · ((y1, y2T, y3I, y4F )·

(x1, x2T, x3I, x4F ))) · ((0, 0T, 0I, 0F ) · ((0, 0T, 0I, 0F )·

((x1, x2T, x3I, x4F ) · (y1, y2T, y3I, y4F )))))

= (x1 · ((y1 · (y1 · x1)) · (0 · (0 · (x1 · y1)))),

(x2 · ((y2 · (y2 · x2)) · (0 · (0 · (x2 · y2)))))T,

(x3 · ((y3 · (y3 · x3)) · (0 · (0 · (x3 · y3)))))I,

(x4 · ((y4 · (y4 · x4)) · (0 · (0 · (x4 · y4)))))F )

∈ Nq(K,J).

Hence Nq(K,J) is a BCI-implicative ideal of Nq(X), and therefore the neutrosophic quadruple set based on K

and J is an NQ-BCI-implicative ideal over (X,K, J). �

Corollary 3.7. The neutrosophic quadruple set based on a BCI-implicative ideal K of X is an NQ-BCI-implicative

ideal over (X,K).

Proposition 3.8. Every neutrosophic quadruple set based on BCI-implicative ideals K and J of X satisfies the

following condition.

((x̃� ỹ) � ỹ) � (0̃ � ỹ) ∈ Nq(K,J)

⇒ x̃� ((ỹ � (ỹ � x̃)) � (0̃ � (0̃ � (x̃� ỹ)))) ∈ Nq(K,J).
(3.1)

for all x̃, ỹ, z̃ ∈ Nq(X).
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Proof. Let ((x̃� ỹ) � ỹ) � (0̃ � ỹ) ∈ Nq(K,J) for all x̃, ỹ, z̃ ∈ Nq(X). Then

((((x1 · y1) · y1) · (0 · y1)) · 0, ((((x2 · y2) · y2) · (0 · y2)) · 0)T,

((((x3 · y3) · y3) · (0 · y3)) · 0)I, ((((x4 · y4) · y4) · (0 · y4)) · 0)F )

= (((x1 · y1) · y1) · (0 · y1), (((x2 · y2) · y2) · (0 · y2))T,

(((x3 · y3) · y3) · (0 · y3))I, (((x4 · y4) · y4) · (0 · y4))F )

= (((x1, x2T, x3I, x4F ) � (y1, y2T, y3I, y4F )) � (y1, y2T, y3I, y4F ))�

((0, 0T, 0I, 0F ) � (y1, y2T, y3I, y4F ))

= ((x̃� ỹ) � ỹ) � (0̃ � ỹ) ∈ Nq(K,J),

and so (((xi · yi) · yi) · (0 · yi)) · 0 ∈ K for i = 1, 2 and (((xj · yj) · yj) · (0 · yj)) · 0 ∈ J for j = 3, 4. Since 0 ∈ K ∩ J ,

and since K and J are BCI-implicative ideals of X, it follows that xi · ((yi · (yi · xi)) · (0 · (0 · (xi · yi)))) ∈ K for

i = 1, 2, and xj · ((yj · (yj · xj)) · (0 · (0 · (xj · yj)))) ∈ J for j = 3, 4. Hence we have

x̃� ((ỹ � (ỹ � x̃)) � (0̃ � (0̃ � (x̃� ỹ))))

= (x1 · ((y1 · (y1 · x1)) · (0 · (0 · (x1 · y1)))),

(x2 · ((y2 · (y2 · x2)) · (0 · (0 · (x2 · y2)))))T,

(x3 · ((y3 · (y3 · x3)) · (0 · (0 · (x3 · y3)))))I,

(x4 · ((y4 · (y4 · x4)) · (0 · (0 · (x4 · y4)))))F )

∈ Nq(K,J).

This completes the proof. �

We provide conditions for a neutrosophic quadruple set to be an NQ-BCI-implicative ideal.

Theorem 3.9. Let K and J be ideals of X such that

((x · y) · y) · (0 · y) ∈ K (resp., J)

⇒ x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K (resp., J)
(3.2)

for all x, y ∈ X. Then the neutrosophic quadruple set based on K and J is an NQ-BCI-implicative ideal over

(X,K, J).

Proof. Assume that (((x · y) · y) · (0 · y)) · z ∈ K (resp., J) for all x, y ∈ X and z ∈ K (resp., J). Then

((x · y) · y) · (0 · y) ∈ K (resp., J) since K and J are ideals of X. It follows from the condition (3.2) that

x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K (resp., J). Hence K and J are BCI-implicative ideals of X, and therefore the

neutrosophic quadruple set based on K and J is an NQ-BCI-implicative ideal over (X,K, J) by Theorem 3.6. �

Corollary 3.10. Let K be an ideal of X such that

((x · y) · y) · (0 · y) ∈ K
⇒ x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K (3.3)

for all x, y ∈ X. Then the neutrosophic quadruple set based on K is an NQ-BCI-implicative ideal over (X,K).
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Theorem 3.11. Let K and J be ideals of X such that

0 · x ∈ K (resp., J), (3.4)

((x · y) · y) · (0 · y) ∈ K (resp., J) ⇒ x · (y · (y · x)) ∈ K (resp., J) (3.5)

for all x, y ∈ X. Then the neutrosophic quadruple set based on K and J is an NQ-BCI-implicative ideal over

(X,K, J).

Proof. Assume that ((x · y) · y) · (0 · y) ∈ K (resp., J) for all x, y ∈ X. Then x · (y · (y · x)) ∈ K (resp., J) by (3.5).

Using (I), (II), (2.3), (2.5), (2.6) and (3.4), we have

(x · ((y · (y · x)) · (0 · (0 · (x · y))))) · (x · (y · (y · x)))

≤ (y · (y · x)) · ((y · (y · x)) · (0 · (0 · (x · y))))

≤ 0 · (0 · (x · y))

= 0 · ((0 · x) · (0 · y))

= 0 · ((((0 · y) · x) · (0 · y)) · (0 · y))

= 0 · ((((0 · (0 · (0 · y))) · x) · (0 · y)) · (0 · y))

= 0 · ((((0 · x) · (0 · y)) · (0 · y)) · (0 · (0 · y)))

= 0 · (((0 · (x · y)) · (0 · y)) · (0 · (0 · y)))

= 0 · (0 · (((x · y) · y) · (0 · y)))

∈ K (resp., J).

It follows that x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K (resp., J). Hence K and J are BCI-implicative ideals of X

by Lemma 2.1. Therefore the neutrosophic quadruple set based on K and J is an NQ-BCI-implicative ideal over

(X,K, J) by Theorem 3.6. �

Corollary 3.12. Let K be an ideal of X such that

0 · x ∈ K, (3.6)

((x · y) · y) · (0 · y) ∈ K ⇒ x · (y · (y · x)) ∈ K (3.7)

for all x, y ∈ X. Then the neutrosophic quadruple set based on K is an NQ-BCI-implicative ideal over (X,K).

Theorem 3.13. Let X be a BCI-algebra satisfying the conditions:

(∀x, y ∈ X)(x · y = ((x · y) · y) · (0 · y)), (3.8)

(∀x, y ∈ X)(x · (x · y) = y · (y · (x · (x · y)))). (3.9)

If K and J are closed ideals of X, then the neutrosophic quadruple set based on K and J is an NQ-BCI-implicative

ideal over (X,K, J).
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Proof. Let K and J be closed ideals of X. Assume that ((x·y)·y)·(0·y) ∈ K (resp., J). Then 0·(((x·y)·y)·(0·y)) ∈
K (resp., J). Using the conditions (3.8), (3.9), (2.3), (2.5), (I) and (III), we have

(x · (y · (y · x))) · (((x · y) · y) · (0 · y))

= (x · (y · (y · x))) · (x · y)

= (x · (x · y)) · (y · (y · x))

= (y · (y · (x · (x · y)))) · (y · (y · x))

= (y · (y · (y · x))) · (y · (x · (x · y)))

= (y · x) · (y · (x · (x · y)))

≤ (x · (x · y)) · x

= 0 · (x · y)

= 0 · (((x · y) · y) · (0 · y))

∈ K (resp., J).

(3.10)

It follows that x · (y · (y · x)) ∈ K (resp., J), and so that

x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K (resp., J)

in the proof of Theorem 3.18. Thus K and J are BCI-implicative ideals of X by Lemma 2.1, and therefore the

neutrosophic quadruple set based on K and J is an NQ-BCI-implicative ideal over (X,K, J) by Theorem 3.6. �

Corollary 3.14. Let X be a BCI-algebra satisfying the conditions (3.8) and (3.9). If K is a closed ideal of X,

then the neutrosophic quadruple set based on K is an NQ-BCI-implicative ideal over (X,K).

Corollary 3.15. Let X be a BCI-algebra satisfying the condition:

(∀x, y ∈ X)((x · (x · y)) · (y · x) = y · (y · x)). (3.11)

If K and J are closed ideals of X, then the neutrosophic quadruple set based on K and J is an NQ-BCI-implicative

ideal over (X,K, J).

Proof. If X satisfies the condition (3.11), then it satisfies two conditions (3.8) and (3.9) (see [?, ?]). Hence the

result is induced from Theorem 3.13. �

Corollary 3.16. Let X be a BCI-algebra satisfying the condition (3.11). If K is a closed ideal of X, then the

neutrosophic quadruple set based on K is an NQ-BCI-implicative ideal over (X,K).

Theorem 3.17. Let X be a BCI-algebra satisfying the condition (3.9) and

(∀x, y ∈ X)((x · (y · x)) · (0 · (y · x)) = x). (3.12)

If K and J are closed ideals of X, then the neutrosophic quadruple set based on K and J is an NQ-BCI-implicative

ideal over (X,K, J).

Proof. Let K and J be closed ideals of X. The conditions (3.12) and (III) lead to the following fact.

(z · y) · (((z · y) · (z · (z · y))) · (0 · (z · (z · y)))) = 0. (3.13)
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It follows from (2.1), (I), (2.2), (2.3) and (III) that

(z · y) · (((z · y) · y) · (0 · y)) = ((z · y) · (((z · y) · y) · (0 · y))) · 0

= ((z · y) · (((z · y) · y) · (0 · y))) · ((z · y) · (((z · y) · (z · (z · y)))·

(0 · (z · (z · y)))))

≤ (((z · y) · (z · (z · y))) · (0 · (z · (z · y)))) · (((z · y) · y) · (0 · y))

≤ (((z · y) · y) · (0 · (z · (z · y)))) · (((z · y) · y) · (0 · y))

≤ (0 · y) · (0 · (z · (z · y)))

≤ (z · (z · y)) · y

= (z · y) · (z · y) = 0.

(3.14)

Hence (z · y) · (((z · y) · y) · (0 · y)) = 0 since 0 is a minimal element of X, that is,

z · y ≤ ((z · y) · y) · (0 · y). (3.15)

On the other hand, we get

(((z · y) · y) · (0 · y)) · (z · y) = (((z · y) · y) · (z · y)) · (0 · y)

= (((z · y) · (z · y)) · y) · (0 · y) = (0 · y) · (0 · y) = 0

by (2.3) and (III), that is,

((z · y) · y) · (0 · y) ≤ z · y. (3.16)

Conditions (3.15) and (3.16) induce

z · y = ((z · y) · y) · (0 · y).

Therefore the neutrosophic quadruple set based on K and J is an NQ-BCI-implicative ideal over (X,K, J) by

Theorem 3.13. �

We now consider extension property of NQ-BCI-implicative ideal.

Theorem 3.18. For any nonempty subsets K and J of X, let A and B be closed ideals of X such that K ⊆ A

and J ⊆ B. If K and J are BCI-implicative ideals of X, then the neutrosophic quadruple set based on A and B

is an NQ-BCI-implicative ideal over (X,A,B), which is larger than the NQ-BCI-implicative ideal over (X,K, J).

Proof. Assume that K and J are BCI-implicative ideals of X. It is clear that Nq(K,J) ⊆ Nq(A,B). Let

((x · y) · y) · (0 · y) ∈ A (resp., B) for all x, y ∈ X. Then 0 · (((x · y) · y) · (0 · y)) ∈ A (resp., B) since A and B are

closed ideals of X. Using (2.3) and (III) induce

(((x · (((x · y) · y) · (0 · y))) · y) · y) · (0 · y)

= (((x · y) · y) · (0 · y)) · (((x · y) · y) · (0 · y))

= 0 ∈ K (resp., J),

(3.17)

which implies from Lemma 2.1 that

(x · (((x · y) · y) · (0 · y))) · ((y · (y · (x · (((x · y) · y) · (0 · y)))))·

(0 · (0 · ((x · (((x · y) · y) · (0 · y))) · y))))

∈ K ⊆ A (resp., J ⊆ B).

(3.18)
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Since

0 · (((x · y) · y) · (0 · y)) = ((0 · (x · y)) · (0 · y)) · (0 · (0 · y))

= (((0 · x) · (0 · y)) · (0 · y)) · (0 · (0 · y))

= (((0 · (0 · (0 · y))) · x) · (0 · y)) · (0 · y)

= (((0 · y) · x) · (0 · y)) · (0 · y)

= (0 · x) · (0 · y)

= 0 · (x · y)

(3.19)

by (2.6), (2.3), (2.5) and (III), we have

0 · (0 · ((x · (((x · y) · y) · (0 · y))) · y))

= 0 · (0 · ((x · y) · (((x · y) · y) · (0 · y))))

= 0 · ((0 · (x · y)) · (0 · (((x · y) · y) · (0 · y))))

= 0 · ((0 · (x · y)) · (0 · (x · y)))

= 0.

(3.20)

Combining (3.18) and (3.20) implies that

(x · (y · (y · (x · (((x · y) · y) · (0 · y)))))) · (((x · y) · y) · (0 · y))

= (x · (((x · y) · y) · (0 · y))) · (y · (y · (x · (((x · y) · y) · (0 · y)))))

∈ A (resp., B).

(3.21)

Since A and B are ideals of X, it follows that

x · (y · (y · (x · (((x · y) · y) · (0 · y))))) ∈ A (resp., B). (3.22)

On the other hand, we have

(x · (y · (y · x))) · (x · (y · (y · (x · (((x · y) · y) · (0 · y))))))

≤ (y · (y · (x · (((x · y) · y) · (0 · y))))) · (y · (y · x))

≤ (y · x) · (y · (x · (((x · y) · y) · (0 · y))))

≤ (x · (((x · y) · y) · (0 · y))) · x

= 0 · (((x · y) · y) · (0 · y))

∈ A (resp., B).

(3.23)

By (3.22) and (3.23), we get x · (y · (y · x)) ∈ A (resp., B). Using (3.19), (I), (II) we get

(x · ((y · (y · x)) · (0 · (0 · (x · y))))) · (x · (y · (y · x)))

≤ (y · (y · x)) · ((y · (y · x)) · (0 · (0 · (x · y))))

≤ 0 · (0 · (x · y))

= 0 · (0 · (((x · y) · y) · (0 · y))) ∈ A (resp., B).

(3.24)

It follows that x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ A (resp., B). Hence A and B are BCI-implicative ideals of X

by Lemma 2.1. Therefore the neutrosophic quadruple set based on A and B is an NQ-BCI-implicative ideal over

(X,A,B) by Theorem 3.6. �
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Corollary 3.19. For any nonempty subset K of X, let A be a closed ideal of X such that K ⊆ A. If K is a

BCI-implicative ideals of X, then the neutrosophic quadruple set based on A is an NQ-BCI-implicative ideal over

(X,A), which is larger than the NQ-BCI-implicative ideal over (X,K).

4. Relations between NQ-BCI-commutative ideal, NQ-BCI-positive implicative ideal and

NQ-BCI-implicative ideal

Theorem 4.1. For any nonempty subsets K and J of X, every NQ-BCI-implicative ideal over (X,K, J) is an

NQ-BCI-commutative ideal over (X,K, J).

Proof. Let K and J be nonempty subsets of X such that the neutrosophic quadruple set based on K and J is an

NQ-BCI-implicative ideal over (X,K, J). Let x, y, z ∈ X be such that z ∈ K (resp., J) and (((x·y)·y)·(0·y))·z ∈ K
(resp., J). Then (z, zT, zI, zF ) ∈ Nq(K,J) and

((((x, xT, xI, xF ) � (y, yT, yI, yF )) � (y, yT, yI, yF ))�

((0, 0T, 0I, 0F ) � (y, yT, yI, yF ))) � (z, zT, zI, zF )

= ((((x · y) · y) · (0 · y)) · z, ((((x · y) · y) · (0 · y)) · z)T,

((((x · y) · y) · (0 · y)) · z)I, ((((x · y) · y) · (0 · y)) · z)F )

∈ Nq(K,J)

Since Nq(K,J) is a BCI-implicative ideal of Nq(X), it follows that

(x · ((y · (y · x)) · (0 · (0 · (x · y)))), (x · ((y · (y · x)) · (0 · (0 · (x · y)))))T,

(x · ((y · (y · x)) · (0 · (0 · (x · y)))))I, (x · ((y · (y · x)) · (0 · (0 · (x · y)))))F )

= (x, xT, xI, xF ) � (((y, yT, yI, yF ) � ((y, yT, yI, yF ) � (x, xT, xI, xF )))�

((0, 0T, 0I, 0F ) � ((0, 0T, 0I, 0F ) � ((x, xT, xI, xF ) � (y, yT, yI, yF )))))

∈ Nq(K,J).

Hence x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K (resp., J), and so K and J are BCI-implicative ideals of X. Thus K

and J are ideals of X. Assume that x · y ∈ K (resp., J) for all x, y ∈ X. Then

(((x · y) · y) · (0 · y)) · (x · y) = (0 · y) · (0 · y) = 0 ∈ K (resp., J)

by using (2.3) and (III), which implies that

((x · y) · y) · (0 · y) ∈ K (resp., J).

Hence (((x · y) · y) · (0 · y)) · 0 ∈ K (resp., J) and 0 ∈ K (resp., J). Since K (resp., J) is a BCI-implicative ideal

of X, it follows that

x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K (resp., J).

Therefore K (resp., J) is a BCI-commutative ideal of X by Lemma 2.2, and consequently the neutrosophic

quadruple set based on K and J is an NQ-BCI-commutative ideal over (X,K, J). �

The converse of Theorem 4.1 is not true in general. In fact, Nq(K) in Example 3.4 is not a BCI-implicative

ideal of Nq(X). But it is routine to verify that Nq(K) is a BCI-commutative ideal of Nq(X).
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Lemma 4.2 ([6]). If K and J are BCI-positive implicative ideals of X, then the neutrosophic quadruple set based

on K and J is an NQ-BCI-positive implicative ideal over (X,K, J).

Theorem 4.3. For any nonempty subsets K and J of X, every NQ-BCI-implicative ideal over (X,K, J) is an

NQ-BCI-positive implicative ideal over (X,K, J).

Proof. Let K and J be nonempty subsets of X such that Nq(K,J) is a BCI-implicative ideal of Nq(X). Then K

and J are ideals of X (see the proof of Theorem 4.1). Let x, y ∈ X be such that ((x · y) · y) · (0 · y) ∈ K (resp., J).

Then

x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K (resp., J)

by Lemma 2.1. Note that

(x · y) · (x · ((y · (y · x)) · (0 · (0 · (x · y)))))

≤ ((y · (y · x)) · (0 · (0 · (x · y)))) · y

= (0 · (y · x)) · (0 · (0 · (x · y)))

= (0 · (x · y)) · (y · x)

= ((0 · x) · (0 · y)) · (y · x)

= (0 · (0 · x)) · x

= 0 ∈ K (resp., J).

It follows that x · y ∈ K (resp., J). Hence K and J are BCI-positive implicative ideals of X by Lemma 2.3, and

therefore Nq(K,J) is a BCI-positive implicative ideal of Nq(X) by Lemma 4.2. �

In the following example, we can see that the converse of Theorem 4.3 is not true in general.

Example 4.4. Let X = {0, 1, 2, 3, 4} be a set with the binary operation “·”, which is given in Table 3.

Table 3. Cayley table for the binary operation “·”

· 0 1 2 3 4

0 0 0 0 0 4

1 1 0 1 0 4

2 2 2 0 0 4

3 3 3 3 0 4

4 4 4 4 4 0

Then X is a BCI-algebra (see [8]), and the neutrosophic quadruple BCI-algebra Nq(X) has 625 elements. If we

take K = {0, 2}, then the neutrosophic quadruple set based on K has 16-elements, that is,

Nq(K) = {0̃, ρ̃i | i = 1, 2, · · · , 15},

where

0̃ = (0, 0T, 0I, 0F ), ρ̃1 = (0, 0T, 0I, 2F ), ρ̃2 = (0, 0T, 2I, 0F ),

ρ̃3 = (0, 0T, 2I, 1F ), ρ̃4 = (0, 2T, 0I, 0F ), ρ̃5 = (0, 2T, 0I, 2F ),
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ρ̃6 = (0, 2T, 2I, 0F ), ρ̃7 = (0, 2T, 2I, 2F ), ρ̃8 = (2, 0T, 0I, 0F ),

ρ̃9 = (2, 0T, 0I, 2F ), ρ̃10 = (2, 0T, 2I, 0F ), ρ̃11 = (2, 0T, 2I, 2F ),

ρ̃12 = (2, 2T, 0I, 0F ), ρ̃13 = (2, 2T, 0I, 2F ), ρ̃14 = (2, 2T, 2I, 0F ),

ρ̃15 = (2, 2T, 2I, 2F ).

It is routine to verify that Nq(K) is an NQ-BCI-positive implicative ideal over (X,K). If we take α̃1 =

(1, 1T, 1I, 1F ) and α̃3 = (3, 3T, 3I, 3F ) in Nq(X), then 0̃ ∈ Nq(K) and

(((α̃1 � α̃3) � α̃3) � (0̃ � α̃3)) � 0̃ = 0̃ ∈ Nq(K).

But,

α̃1 � ((α̃3 � (α̃3 � α̃1)) � (0̃ � (0̃ � (α̃1 � α̃3)))) = α̃1 � (0̃ � 0̃) = α̃1 /∈ Nq(K).

Hence Nq(K) is not an NQ-BCI-implicative ideal over (X,K).

We display a characterization of an NQ-BCI-implicative ideal.

Theorem 4.5. For any nonempty subsets K and J of X, the neutrosophic quadruple set based on K and J is

both an NQ-BCI-commutative ideal and an NQ-BCI-positive implicative ideal over (X,K, J) if and only if it is an

NQ-BCI-implicative ideal over (X,K, J).

Proof. For the sufficiency, see Theorems 4.1 and 4.3. Let Nq(K,J) be both an NQ-BCI-commutative ideal and

an NQ-BCI-positive implicative ideal over (X,K, J). Then K and J are both a BCI-commutative ideal and a

BCI-positive implicative ideal of X. Assume that ((x ·y) ·y) · (0 ·y) ∈ K (resp., J) for all x, y ∈ X. Then x ·y ∈ K
(resp., J) by Lemma 2.3, and so

x · ((y · (y · x)) · (0 · (0 · (x · y)))) ∈ K(resp., J)

by Lemma 2.2. It follows from Lemma 2.1 that K and J are BCI-implicative ideals of X. Therefore the neutro-

sophic quadruple set based on K and J is an NQ-implicative ideal over (X,K, J) by Theorem 3.6. �

Corollary 4.6. For any nonempty subset K of X, the neutrosophic quadruple set based on K is both an NQ-BCI-

commutative ideal and an NQ-BCI-positive implicative ideal over (X,K) if and only if it is an NQ-BCI-implicative

ideal over (X,K).

5. Conclusions

Smarandache introduced the notion of neutrosophic quadruple numbers by considering an entry (i.e., a number,

an idea, an object, etc.) which is represented by a known part (a) and an unknown part (bT, cI, dF ) where

a, b, c and d are real or complex numbers and T , I, F have their usual neutrosophic logic meanings. Jun

et al. made up neutrosophic quadruple BCK/BCI-algebras and (positive) implicative neutrosophic quadruple

BCK-algebras using neutrosophic quadruple numbers based on BCK/BCI-algebras (instead of real or complex

numbers). In this article, we have studied BCI-implicative ideal in BCI-algebra using neutrosophic quadruple

structure. We have introduced neutrosophic quadruple BCI-implicative ideal based on nonempty subsets in BCI-

algebra, and have investigated their related properties. We have consulted relationship between neutrosophic

quadruple ideal, neutrosophic quadruple BCI-implicative ideal, neutrosophic quadruple BCI-positive implicative

ideal and neutrosophic quadruple BCI-commutative ideal. We have provided conditions for the neutrosophic
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quadruple set to be neutrosophic quadruple BCI-implicative ideal. We have discussed a characterization of an

NQ-BCI-implicative ideal, and have established the extension property of neutrosophic quadruple BCI-implicative

ideal. Based on the contents and ideas of this manuscript, we will study neutrosophic quadruple structure for

various algebraic sub-structures in the future.

Acknowledgement The second author, Seok-Zun Song, was supported by Basic Science Research Pro-

gram through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No.

2016R1D1A1B02006812). The last author, G. Muhiuddin, is partially supported by the research grant S-0064-

1439, Deanship of Scientific Research, University of Tabuk, Tabuk-71491, Saudi Arabia.

References

[1] A.A.A. Agboola, B. Davvaz and F. Smarandache, Neutrosophic quadruple algebraic hyperstructures, Ann

Fuzzy Math. Inform. 14 (2017), no. 1, 29–42.

[2] S.A. Akinleye, F. Smarandache and A.A.A. Agboola, On neutrosophic quadruple algebraic structures, Neu-

trosophic Sets and Systems 12 (2016), 122–126.

[3] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
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