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Abstract. This paper aims to investigate some striking properties of the g-exponential functions more profound-
ly. To achieve this, at first, the Gauss g-binomial formula is generalized and based on the formula, important
properties of the g-exponential functions are established.
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1 Introduction

The g-analogue of any real number ¢ is defined as [t], = 1%‘{; and the g-factorial, denoted by [n],!, is

T
defined [1, 2] as
1 if n =0,
[nlq! = { (1)

g xn—1]gx---x[1], fn=12,....

The g-analogue of (a + z)", denoted by (a + )y, is defined [3] as

IL.—ola+qmz) n=12....

It is also defined for any complex number « as

(a+a)7 = {1 n=0 ()

(a+z)3° 3)

a+2x)f=—""-—"—,
(a2 (@ +goa)g

where (a + 2)7° := lim,, 1 —o(a+ ¢™z), and the principal value of ¢* is considered, 0 < ¢ < 1.

Yet, the g-Maclaurin series expansion of (a + z)7 is

" /n
(ata)y=3" (k) a"Fatqls) (4)

k=0 q
where (Z)q = % are called g-binomial coefficients. Expression (4) is called Gauss g-binomial
formula (see [3], p. 15). In the ¢g-binomial coefficients, if |¢| < 1 and n tends to infinity (see [3], p. 30) we
obtain lim,, oo (Z)q = ﬁ. More details about the identities involving g-binomial coefficients can be

found in reference [4].
Omne can also recall definitions of the ¢g-functions [2, 5, 6] as follows:

oo

R AT ®

1
n),!

n

EF = (14 (1-q)2)F = aq(3),  zec. (6)

M8 1

n=0

It can be seen that e; E;* =1 and e] , = Ej. The product of the two functions are investigated in a
more detailed way in [6, 7, 8]. The contribution of the corresponding references can be summarized in
the following theorem:

Theorem 1. For all z,y € C the following equation holds

T = 1 n T
B = X gl T = e g
n=0 "1

where (x +y)7 is defined in (4).

In the light of aforementioned preliminaries, this paper aims at studying about the g-exponential functions
more closely. At first, the Gauss g-binomial formula is generalized and based on the formula, some
properties of the g-exponential functions are established.
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2 ¢-Exponential Functions

First, let us generalize the g-binomial formula given in (4). The generalization of the ¢-binomial can then
be carried out as follows.

Theorem 2. For any x,y,z € C and positive integer n, the following identity holds:
" /n
@ =3 (1) @ty ()
k=0 q

Proof. The induction is used to prove the theorem. Equation (8) is valid for n = 1. Assuming that (8)
holds for any n and we show that it holds for n + 1. Then

@+t =@+ ez +a" ") + (@ — ¢"2))

=§(Z)qq (x—2)i(z+y)ot k+zn:<)q D (24 y)nk

k=0

=t 4 Y (7) e e
k=1 q
n Py n+l1—k
#30( ) o

=§(”Zl)q<x D+ )y

k=0
Thus, the proof is complete. O
It is realized that the identity in Theorem 2 can be re-written as

@t =Y (1) @2t st ©

k=0

Its proof can be readily derived form the proof of Theorem 2.

Theorem 2 and its re-expression (9) allow one to conclude the striking identities given as follows:

e For y =0 and z = 1, the ¢-Taylor expansion of 2™ about x = 1, (see [3], p. 23) becomes

Z" = En: (Z)q(m — 1)k

k=0

For x =1, y = —ab and z = a, the following identity (see [2], p. 25 ) is obtained

(1—ab)? = i: (Z)qa"—ku —a)ka -,

k=0

e For y = —x, the identity
Z() r—2) (z—x)”kzo.
k=0 q

is found.

For the case of z = 0 in (9), the ¢-binomial formula in (4) is reached.

For x =1, y = —ab and z = b in (9); the identity (see [2], p. 25 )

n

A-ab)g=3 (Z)qbk(l —a)h(1—b)n "

k=0

is stated.
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Theorem 3. For z,y,z € C, the following equations hold

o o k z—z
(37 + y)q _ Z 1 (:’E - Z)q i _ e((l—q;(zl (10)
z+y), SRS a—gF
and .
(%s) 00 (z+y)q4
l‘+y)q _ Z 1 (Z“Fy)qi — oD (11)
x—2); — [k],! (1—q)far

(x+y)y

[
T
85
/_\
> 3
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|
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+
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3
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Dividing both sides of the last equation by (z + y)go gives

(x+y)zo_ooi(xfz)];i
Sl '

(x—2)g
By using Theorem 1, the right hand side of the previous equation can be re-written as e;' ¥ which
completes the proof of equation (10). In a similar manner, the latter can be proven. O

Example 1. If we take x =1 and y = —az in equation (11), we will get (see [2], p. 8 )

(l—az * 1 (z- az)k_oo (l—a)s . o
(1—2’ ZW (1— —kz_omz = 160 (a;—3¢,2).

—o Mg Q) q

The function on the right hand side of the above equation is called basic hypergeometric series and more
details about it can be found in [2].

Now we concentrate about the g-exponential functions. At first, product of the g-exponential functions
is given in the next theorem and then some properties of the g-exponential functions are derived.

Remark 1. For |z| <1 and |q| < 1, the following identity holds

Theorem 4. For z,y,z € C, the following identity holds

egﬂc‘i‘y)q — e((]'t_z)q egz"l‘y)q_ (13)

Proof. The identity (7) is taken to expand the g-exponential functions on the right hand side of (13), and
thus

R S (Z %(x —2)7)( Z L’(z +9)g)

= [nlq = [nlg!
= Lo (n x—2),(z n-k
=2 s (1) e o
_ i Loty =
"0 [n]q!
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Corollary 1. For z,z, € C, the following identity holds

oty 1
q e((zz+:c)q
Proof. By taking y := —x and z := —z in Theorem 4, the requirement can be easily carried out. O

Theorem 5. For x € C and m,n € Z, the following identity

H J+1 —3)q% Zf m>n
(m—n)qz _ Jj=n
q n—1

(J (J+1))qz if m<n

H:]

holds.

Proof. First, consider the case of m > n. The theorem is proven by induction. For the basis step,
m = n + 1, the theorem is valid. Take the case m = k, k > n. Then it needs to be proven that it holds
for the case m = k + 1. By using identity (13) and the induction, it can be reached

k—1 k
e((](k-l—l)—n)qw _ e(g(k-i—l)—k)q;ve‘(]k—n)qw _ e((](k-l—l)—k:)q:r H e((](j-i—l)—j)q;v _ H e((](j-i—l)—j)qz
j=n ‘
which completes the proof of the first part.
For the case of m < n, Corollary 1 is used. Then the result of the first part is applied to get

1 n—1
(m—n)qz _ - (I—(+1))q
€q - n—m)g(z) —+1 x H 6
61(1 )a () HJ - E](] )=3)a ;

which completes the proof. O

Corollary 2. For x € C, and positive integers m and n, the following identities hold:

m—1
E H e((](j'i'l)_j)qx’ (14)
n—1 ) )
B = H e(gj—(]"rl))qx (15)

Proof. Consideration of (7) with n = 0 and m any positive integer in Theorem 5 leads to the complete
proof of the first identity. Replacing m and n values between each other in the first identity gives the
proof of the second one. O

Now then, the n-th g-derivative of the g-exponential functions is found in the next theorem.
Theorem 6. For o, 3,z € C and positive integer n,

D;zega—&-,@)q:v = (a +B) a+q "B)aT (16)

Proof. We use the induction to prove the theorem. For the case of n = 1, we need to get the g-derivative

of ef{HB )17 " So we use equation (7) and then take the g-derivative to obtain

© ©
qu((za—‘rﬁ)qx = Dq(kzo Wq'(a —+ ﬁ)§$k> — (O{ 4 ﬁ) ];J W( qﬁ)k k (O( +ﬁ) ((1044-(15):11

Assuming that (16) holds for a given k and to prove that it holds for k + 1, we need to obtain the

(QJFB)LI

g-derivative of Dk . Hence

Dttt Ma — D (Dhel M) = (a + B)k Dy e+ D) = (a4 B+ efota™™ Das,

Thus the proof is complete. O
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Theorem 7. For |z| < 1, |¢| < 1 and any arbitrary «, the following identity holds
o 1
eyl 1t = - (—gae (17)
Proof. To prove the theorem, we use equations (3), (5), (6) and (7). Then we have
i et = L g gpeae= L
(1—=(1=qz)g -0 -ga)g
which completes the proof. O
Remark 2. Equation (17) can be rewritten as e,gqa_l)“x =(1-(01-q).

In the next example, we show that the g-binomial theorem (see: [1] P. 247 or [9] P. 488) can be proven
shortly by using Theorem 1.

Example 2. For |z| <1 and |g| < 1,

Yt D o Ut YRE N G T Ut
LTk T Ty (1-a)F

Note that to reach this result; (7) in the second and third equations, and (5) and (6) in the last equation
have been considered.

3 Conclusions and Recommendation

Some striking properties of the g-exponential functions have been analyzed in detail. In doing so, the
Gauss g-binomial identity has generalized and based on it, remarkable properties of the g-exponential
have been established. For further studies, similar discussion can be carried out for g-trigonometric
functions.
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