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Abstract: The aim of this paper is to find exact solutions for the conformable fractional Harry Dym 
Equation. In this work we deal with three different forms of conformable fractional Harry Dym Equation 
and for each form a suitable wave variable substitution is found. Each substitution transform its 
corresponding problem to an ordinary differential equation, What is more, the resulted ordinary 
differential equations in the three cases are the same. General solutions are obtained by applying the 
direct integration method on the resulted ordinary differential equation. These obtained solutions are 
found for some particular choices for the constants values. The behavior of every solution is discussed 
and illustrated in graphs. The tedious integrals and difficult computations associated with calculations in 
this paper are performed and simplified by using Mathematica 9.0. 
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1. Introduction  

       Recently, differential equations with fractional derivatives attracted the interest of many researchers; 
since such equations describe effectively many phenomena in applied sciences such as physics, biology, 
technology, and engineering [3, 7, 14]. 

       Harry Dym equation (HD) was so named related to the name of its discoverer Harry Dym in his 
unpublished paper 1973-1974, although it appeared to first time in Kruskal and Moser [9]. HD equation 
represents a system which gathers non-linearity and dispersion, also it is a completely integrable 
nonlinear evolution equation which obeys an infinite number of conservation laws, but it does not have 
the Painleve property. More properties for HD equation discussed in details can be found in the reference 
[4]. Moreover HD equation can be connected to the Korteweg-ge Vries equation which has many 
applications in hydrodynamics [4, 15]. 

       Many efforts have been done to find exact and approximate solutions for both HD equation and 
fractional HD equation like algebraic geometric solution of the HD equation[13], solitions solutions of the 
(2+1) dimensional HD equation via Darboux transformation [2], explicit solutions for HD equation [1], 
exact solution of the HD equation [12], an efficient approach for fractional HD equation by using sumudu 
transform [10], symmetries and exact solutions of the time fractional HD equation with Rieman-Liouville 
derivative [5], and a fractional model of HD equation and its approximate solution [11]. 

       Fractional derivatives have many definitions [14] but the most used of these definitions are Riemann-
Liouville derivative and Caputo derivative. They were defined as follows: 

    (i) Riemann - Liouville Definition. For 𝛼𝛼 ∈ [n-1, n), the α derivative of 𝑓𝑓 is:  
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                                𝐷𝐷𝑎𝑎𝛼𝛼𝑓𝑓(𝑡𝑡) = 1
Γ(n−α)

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 ∫
𝑓𝑓(𝑥𝑥)

(𝑡𝑡−𝑥𝑥)𝛼𝛼−𝑛𝑛+1
𝑡𝑡
𝑎𝑎 𝑑𝑑𝑥𝑥                   

(ii) Caputo Definition. For 𝛼𝛼 ∈ [n-1, n), the α derivative of 𝑓𝑓 is:         

𝐷𝐷𝑎𝑎𝛼𝛼𝑓𝑓(𝑡𝑡) =
1

Γ(𝑛𝑛 − 𝛼𝛼)
�

𝑓𝑓(𝑛𝑛)(𝑥𝑥)
(𝑡𝑡 − 𝑥𝑥)𝛼𝛼−𝑛𝑛+1

𝑡𝑡

𝑎𝑎
𝑑𝑑𝑥𝑥                                

          Recently, a new definition called conformable fractional derivative was introduced by authors in 
[6], Since then the interest of it keeps growing and many equations were solved using such definition [8]. 
In this paper we intend to find exact solutions for fractional HD equation in the sense of this definition 
rather than Rieman-Liouville definition or Caputo definition. The rest of the paper is organized as 
follows: Basics of conformable fractional derivative are stated in section 2, in section 3 solutions for 
conformable fractional HD equation are found, in section 4 some examples are discussed.               

 
2. Basic results on conformable fractional derivatives. 

Now, Let us summarize the basic properties of the conformable fractional derivative definition. 

Definition [6]: Given a function𝑓𝑓: [0,∞) → ℝ. And 𝑡𝑡 > 0,𝛼𝛼 ∈ (0, 1],  then the conformable fractional 
derivative of order α is defined as 

𝑇𝑇𝛼𝛼  (𝑓𝑓)(𝑡𝑡) = lim𝜖𝜖→0
𝑓𝑓�𝑡𝑡+𝜖𝜖𝑡𝑡1−𝛼𝛼�−𝑓𝑓(𝑡𝑡)

𝜖𝜖
, 

𝑇𝑇𝛼𝛼   is called the  conformable fractional derivative of  𝑓𝑓 of order 𝛼𝛼 .  

Let 𝑓𝑓𝛼𝛼(𝑡𝑡) stands for  𝑇𝑇𝛼𝛼  (𝑓𝑓)(𝑡𝑡) = 𝑑𝑑𝛼𝛼𝑓𝑓
𝑑𝑑𝑡𝑡𝛼𝛼

  .  

If 𝑓𝑓 is α-differentiable in some(0, 𝑏𝑏), 𝑏𝑏 > 0, and lim𝑡𝑡→0+ 𝑓𝑓𝛼𝛼(𝑡𝑡)  exists, then by definition: 

𝑓𝑓𝛼𝛼(0) = lim𝑡𝑡→0+ 𝑓𝑓𝛼𝛼(𝑡𝑡)       

Theorem 1 [6]: Let 𝛼𝛼 ∈ (0, 1] and 𝑓𝑓,𝑔𝑔 be α-differentiable at a point 𝑡𝑡 > 0. Then 

    1. 𝑇𝑇𝛼𝛼  (𝑎𝑎𝑓𝑓 + 𝑏𝑏𝑔𝑔) = 𝑎𝑎 𝑇𝑇𝛼𝛼  (𝑓𝑓) + 𝑏𝑏 𝑇𝑇𝛼𝛼  (𝑔𝑔), 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎, 𝑏𝑏 ∈  ℝ. 

    2. 𝑇𝑇𝛼𝛼  (𝑡𝑡𝑝𝑝) = 𝑝𝑝𝑡𝑡𝑝𝑝−𝛼𝛼  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝 ∈  ℝ. 

    3.  𝑇𝑇𝛼𝛼  (𝜆𝜆) = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑓𝑓𝑛𝑛𝑐𝑐𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡𝑐𝑐 𝑓𝑓𝑓𝑓𝑛𝑛𝑐𝑐𝑡𝑡𝑓𝑓𝑓𝑓𝑛𝑛𝑐𝑐 𝑓𝑓(𝑡𝑡) = 𝜆𝜆. 

    4. 𝑇𝑇𝛼𝛼  (𝑓𝑓𝑔𝑔) = 𝑓𝑓 𝑇𝑇𝛼𝛼  (𝑔𝑔) + 𝑔𝑔 𝑇𝑇𝛼𝛼  (𝑓𝑓).  

    5.  𝑇𝑇𝛼𝛼  �
𝑓𝑓
𝑔𝑔
� = 𝑔𝑔 𝑇𝑇𝛼𝛼  (𝑓𝑓)−𝑓𝑓 𝑇𝑇𝛼𝛼  (𝑔𝑔)

𝑔𝑔2   . 

    6. If, in addition, 𝑓𝑓 is differentiable, then 𝑇𝑇𝛼𝛼  (𝑓𝑓)(𝑡𝑡) = 𝑡𝑡1−𝛼𝛼 𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

 . 
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 Theorem 2 [8]: let 𝑓𝑓 be an α-differentiable function in conformable sense and differentiable and suppose 
that 𝑔𝑔 is also differentiable and defined in the range of 𝑓𝑓. Then 

𝑇𝑇𝛼𝛼  (𝑓𝑓𝑓𝑓𝑔𝑔) (𝑡𝑡) = 𝑡𝑡1−𝛼𝛼  𝑔𝑔′(𝑡𝑡)𝑓𝑓′�𝑔𝑔(𝑡𝑡)�. 

    More properties, definitions and theorems as Roll’s Theorem and Mean Value Theorem for 
conformable fractional derivative are expressed in the work [6],   

                                          

3. Fractional Harry Dym Equation. 

The classical HD equation is: 

𝑓𝑓𝑡𝑡  = 𝑓𝑓3𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥                               (∗) 

Where 𝑓𝑓(𝑥𝑥, 𝑡𝑡) is a function of two real variables 𝑥𝑥 𝑎𝑎𝑛𝑛𝑑𝑑 𝑡𝑡. 

Let us write: 

𝑓𝑓𝑡𝑡𝛼𝛼 = 𝑇𝑇𝑡𝑡𝛼𝛼𝑓𝑓 =
𝜕𝜕𝛼𝛼𝑓𝑓
𝜕𝜕𝑡𝑡𝛼𝛼

  , 𝑓𝑓𝑥𝑥𝛼𝛼 = 𝑇𝑇𝑥𝑥𝛼𝛼𝑓𝑓 =
𝜕𝜕𝛼𝛼𝑓𝑓
𝜕𝜕𝑥𝑥𝛼𝛼

 , 𝑓𝑓𝑥𝑥
(3𝛼𝛼) = 𝑇𝑇𝑥𝑥

(3𝛼𝛼)𝑓𝑓 = 𝑇𝑇𝑥𝑥𝛼𝛼  𝑇𝑇𝑥𝑥𝛼𝛼  𝑇𝑇𝑥𝑥𝛼𝛼𝑓𝑓 . 

Now we will solve three fractional forms of(∗): 

(i) 𝑓𝑓𝑡𝑡𝛼𝛼 = 𝑓𝑓3𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥   .                               (1)        
(ii) 𝑓𝑓𝑡𝑡  = 𝑓𝑓3𝑓𝑓𝑥𝑥

(3𝛼𝛼).                                (2) 
(iii) 𝑓𝑓𝑡𝑡𝛼𝛼 = 𝑓𝑓3𝑓𝑓𝑥𝑥

(3𝛼𝛼).                                (3) 

Where 𝛼𝛼 ∈ (0, 1]. 

Using suitable wave variable substitution in each form will transform the equation to an ordinary 
differential equation as follows: 

1. For form (i) let the wave variable substitution 𝜂𝜂 = 𝑥𝑥 + 𝑐𝑐
𝛼𝛼
𝑡𝑡𝛼𝛼  and  𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣( 𝜂𝜂) . So one can write  

𝑓𝑓 = 𝑣𝑣 ∘ 𝜂𝜂 , now apply Theorem 2 to find  𝑓𝑓𝑡𝑡𝛼𝛼  . You will get that  𝑓𝑓𝑡𝑡𝛼𝛼 = 𝑡𝑡1−𝛼𝛼  𝜂𝜂′(𝑡𝑡)𝑣𝑣′�𝜂𝜂(𝑡𝑡)� =
𝑐𝑐𝑣𝑣′ ,𝑎𝑎𝑎𝑎𝑐𝑐𝑓𝑓 𝑓𝑓3 = 𝑣𝑣3𝑎𝑎𝑛𝑛𝑑𝑑 𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑣𝑣′′′    . Hence equation (1) is transformed to: 

𝑐𝑐𝑣𝑣′ = 𝑣𝑣3𝑣𝑣′′′                 (4) 

2. For form (ii) let the wave variable substitution  𝜂𝜂 = 1
𝛼𝛼
𝑥𝑥𝛼𝛼 + 𝑐𝑐𝑡𝑡 and 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣( 𝜂𝜂) = 𝑣𝑣 ∘ 𝜂𝜂.  so  

𝑓𝑓𝑡𝑡𝛼𝛼 = 𝑐𝑐𝑣𝑣′ ,𝑓𝑓3 = 𝑣𝑣3𝑎𝑎𝑛𝑛𝑑𝑑 𝑓𝑓𝑥𝑥
(3𝛼𝛼) = 𝑣𝑣′′′ .  Then equation (2) is transformed to: 

𝑐𝑐𝑣𝑣′ = 𝑣𝑣3𝑣𝑣′′′                 (4) 
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3. For form (iii) let the wave variable substitution  𝜂𝜂 = 1
𝛼𝛼
𝑥𝑥𝛼𝛼 + 𝑐𝑐

𝛼𝛼
𝑡𝑡𝛼𝛼  and 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣( 𝜂𝜂) .  so 𝑓𝑓𝑡𝑡𝛼𝛼 =

𝑐𝑐𝑣𝑣′ ,𝑓𝑓3 = 𝑣𝑣3𝑎𝑎𝑛𝑛𝑑𝑑 𝑓𝑓𝑥𝑥
(3𝛼𝛼) = 𝑣𝑣′′′ . Then equation (3) is transformed to: 

𝑐𝑐𝑣𝑣′ = 𝑣𝑣3𝑣𝑣′′′                 (4) 

Now to solve the resulted ordinary differential equation (4), rewrite it as: 

𝑣𝑣′′′ + �
𝑐𝑐

2𝑣𝑣2�
′

= 0            (5)       

    Integrate (5) with respect to η, gets 

𝑣𝑣′′ +
𝑐𝑐

2𝑣𝑣2 =
𝑐𝑐1

2
             (6)            

    Multiply (6) by 𝑣𝑣′ then integrate with respect to 𝜂𝜂  yields 

(𝑣𝑣′)2 =
𝑐𝑐
𝑣𝑣

+ 𝑐𝑐1𝑣𝑣 + 𝑐𝑐 2          (7)                      

Using the separation of variables changes (7) to 

𝑑𝑑𝜂𝜂 = ±�
𝑣𝑣

𝑐𝑐₁𝑣𝑣² + 𝑐𝑐₂𝑣𝑣 + 𝑐𝑐
  𝑑𝑑𝑣𝑣                (8)  

Integrate both sides of (8) using Mathematica 9.0 you will obtain  

𝜂𝜂 = ±��
𝑣𝑣

𝑐𝑐₁𝑣𝑣² + 𝑐𝑐₂𝑣𝑣 + 𝑐𝑐
𝑑𝑑𝑣𝑣  + 𝑐𝑐3          (9) 

𝜂𝜂 = ±𝑓𝑓  
𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷
𝑐𝑐₁𝐺𝐺

[𝐸𝐸𝑎𝑎𝑎𝑎𝑓𝑓𝑝𝑝𝑡𝑡𝑓𝑓𝑐𝑐 𝐸𝐸(𝑓𝑓  𝑐𝑐𝑓𝑓𝑛𝑛ℎ−1(𝐺𝐺),𝐾𝐾) − 𝐸𝐸𝑎𝑎𝑎𝑎𝑓𝑓𝑝𝑝𝑡𝑡𝑓𝑓𝑐𝑐 𝐹𝐹(𝑓𝑓  𝑐𝑐𝑓𝑓𝑛𝑛ℎ−1(𝐺𝐺),𝐾𝐾)] + 𝑐𝑐3      (10)   

Where: A = �
𝑣𝑣

𝑐𝑐₁𝑣𝑣² +𝑐𝑐₂𝑣𝑣+𝑐𝑐
     ,  𝐴𝐴 = −𝑐𝑐₂ +�−4𝑐𝑐𝑐𝑐₁ + 𝑐𝑐2

2,    𝐴𝐴 = �1 + 2𝑐𝑐₁𝑣𝑣
𝑐𝑐₂−�−4𝑐𝑐𝑐𝑐₁+𝑐𝑐₂²
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𝐷𝐷 = �1 + 2𝑐𝑐₁𝑣𝑣
𝑐𝑐2+�−4𝑐𝑐𝑐𝑐₁+𝑐𝑐₂²

      ,  𝐺𝐺 = �
2𝑐𝑐₁𝑣𝑣

𝑐𝑐2+�−4𝑐𝑐𝑐𝑐₁+𝑐𝑐₂²
    and  𝐾𝐾 = 𝑐𝑐₂+�−4𝑐𝑐𝑐𝑐₁+𝑐𝑐₂²

𝑐𝑐₂−�−4𝑐𝑐𝑐𝑐₁+𝑐𝑐₂²
    . 

𝐸𝐸𝑎𝑎𝑎𝑎𝑓𝑓𝑝𝑝𝑡𝑡𝑓𝑓𝑐𝑐 𝐹𝐹 and 𝐸𝐸𝑎𝑎𝑎𝑎𝑓𝑓𝑝𝑝𝑡𝑡𝑓𝑓𝑐𝑐 𝐸𝐸  are elliptic integrals of the first and second kind respectively. 

 For some particular choices to the constants c, c₁ and c₂ in equation (9) one can get simpler solutions as 

follows: 

• Let 𝑐𝑐₁ = 𝑐𝑐₂ = 0 , then 𝜂𝜂 = ± 2
3

 𝑣𝑣 �𝑣𝑣
𝑐𝑐

   + 𝑐𝑐₃ , hence 

                       𝑣𝑣 = (𝑐𝑐₃ ± 3
2√𝑐𝑐  𝜂𝜂)

2
3           (11)  

• Let   𝑐𝑐₁ = 0, 𝑐𝑐₂ ≠ 0, then 𝜂𝜂 = ±��𝑐𝑐𝑣𝑣+𝑐𝑐2𝑣𝑣2

𝑐𝑐2
  −  𝑐𝑐

𝑐𝑐2
3
2

 log( 2𝑐𝑐2√𝑣𝑣 + 2�𝑣𝑣𝑐𝑐₂² + 𝑐𝑐2𝑐𝑐  )� + 𝑐𝑐₃  

    Other suggested constants are:  

1. Let c2 = 2√cc1. 

2. Let c2 = −2√cc1. 

  You can easily using Mathematica 9.0 to perform the integration of equation (9) to get formula of 𝜂𝜂 

after you determine the suggested constants, however the difficulty that faces is how to get 𝑣𝑣 with 

respect to 𝜂𝜂 explicitly , except the formula in (11), this what was discussed in [12], Hence it seems that 

formula (11) is the only explicit solution for equations (1), (2) and (3). So results can be summarized as 

follows:  

   ∙ The solution of equation (1) is 𝑓𝑓(𝑥𝑥, 𝑡𝑡) =  (c3 ± 3
2√𝑐𝑐  � 𝑥𝑥 + 𝑐𝑐

𝛼𝛼
𝑡𝑡𝛼𝛼�)

2
3.     

    ∙ The solution of equation (2) is  𝑓𝑓(𝑥𝑥, 𝑡𝑡) =  (c3 ± 3
2√𝑐𝑐 (1

𝛼𝛼
𝑥𝑥𝛼𝛼 + 𝑐𝑐𝑡𝑡) )

2
3 .  

    ∙ The solution of equation (3) is 𝑓𝑓(𝑥𝑥, 𝑡𝑡) =  (c3 ± 3
2√𝑐𝑐 (1

𝛼𝛼
𝑥𝑥𝛼𝛼 + 𝑐𝑐

𝛼𝛼
𝑡𝑡𝛼𝛼) )

2
3 . 
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 Remarks:    

  1. The same ordinary differential equation is obtained from the three different forms of conformable 

fractional Harry Dym- Equation after using special wave variable for each form.     

2. A function could be α-differentiable at a point but not differentiable, illustrating example was discussed 

in [6]. 

4. Examples. 

Example 1: Let 𝛼𝛼 = 0.7 , for the graph of equation (1) solution  𝑓𝑓(𝑥𝑥, 𝑡𝑡) =  (c3 + 3
2√𝑐𝑐  � 𝑥𝑥 + 𝑐𝑐

𝛼𝛼
𝑡𝑡𝛼𝛼�)

2
3  with 

respect to 𝑥𝑥 and t, with 𝑐𝑐₃ = 4 and 𝑐𝑐 = 1  see Figure 1. 

 

 

Example 2: The graph of equation (1) solution 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = (c3 + 3
2√𝑐𝑐  � 𝑥𝑥 + 𝑐𝑐

𝛼𝛼
𝑡𝑡𝛼𝛼�)

2
3 versus 𝑥𝑥 at 𝑡𝑡 = 1 ,

𝑐𝑐₃ = 4 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 = 1 for different values of 𝛼𝛼  is in Figure 2. 

Fig. 1 The graph of  𝑓𝑓(𝑥𝑥, 𝑡𝑡) =  (4 + 3
2

 � 𝑥𝑥 + 1
𝛼𝛼
𝑡𝑡𝛼𝛼�)

2
3   at  𝛼𝛼 = 0.7  

for example 1 
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Example 3: Let 𝛼𝛼 = 0.9 , for the graph of equation (2) solution 𝑓𝑓(𝑥𝑥, 𝑡𝑡) =  (c3 + 3
2√𝑐𝑐 (1

𝛼𝛼
𝑥𝑥𝛼𝛼 + 𝑐𝑐𝑡𝑡) )

2
3 

with respect to 𝑥𝑥 and t, with 𝑐𝑐₃ = 4 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 = 1 see Figure 3. 

 

 

Fig. 2 The graph of  𝑓𝑓(𝑥𝑥, 𝑡𝑡) = (4 + 3
2
� 𝑥𝑥 + 1

𝛼𝛼
�)

2
3  versus 𝑥𝑥 at 𝑡𝑡 = 1 𝑎𝑎𝑡𝑡  𝛼𝛼 = 1, 0.9 𝑎𝑎𝑛𝑛𝑑𝑑 0.7 

for example 2 

Fig. 3 The graph of  𝑓𝑓(𝑥𝑥, 𝑡𝑡) =  (4 + 3
2

 � 1
𝛼𝛼
𝑥𝑥𝛼𝛼 + 𝑡𝑡�)

2
3   at  𝛼𝛼 = 0.9  

for example 3 
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 Example 4: The graph of equation (2) solution 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = �4 + 3
2

 �1
𝛼𝛼
𝑥𝑥𝛼𝛼 + 𝑡𝑡��

2
3
versus x at 𝑡𝑡 = 0, 𝑐𝑐₃ =

4  𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 = 1 for different values of α is in Figure 4. 

 

 

Example 5:  Let 𝛼𝛼 = 0.9 , for the graph of equation (3) solution 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = (c3 + 3
2√𝑐𝑐 (1

𝛼𝛼
𝑥𝑥𝛼𝛼 + 𝑐𝑐

𝛼𝛼
𝑡𝑡𝛼𝛼) )

2
3   

with respect to 𝑥𝑥 and t, with 𝑐𝑐₃ = 4 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 = 1 see Figure 5. 

 

 

Fig. 4 The graph of  𝑓𝑓(𝑥𝑥, 𝑡𝑡) = (4 + 3
2
�1
𝛼𝛼

 𝑥𝑥𝛼𝛼 + 𝑡𝑡�)
2
3  versus 𝑥𝑥 at t = 0 𝑎𝑎𝑡𝑡 𝛼𝛼 = 1, 0.9 𝑎𝑎𝑛𝑛𝑑𝑑 0.7 

for example 4 

 

Fig. 5 The graph of  𝑓𝑓(𝑥𝑥, 𝑡𝑡) =  (4 + 3
2

 � 1
𝛼𝛼
𝑥𝑥𝛼𝛼 + 1

𝛼𝛼 𝑡𝑡
𝛼𝛼�)

2
3   at  𝛼𝛼 = 0.9  

for example 5 
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Example 6: The graph of equation (3) solution 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = (c3 + 3
2√𝑐𝑐 (1

𝛼𝛼
𝑥𝑥𝛼𝛼 + 𝑐𝑐

𝛼𝛼
𝑡𝑡𝛼𝛼) )

2
3  versus 𝑥𝑥  at 𝑡𝑡 = 1 

, 𝑐𝑐₃ = 4 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐 = 1 for different values of 𝛼𝛼  is in Figure 6. 

 

 

 

 

References 

 [1] B. Fuchssteinert , T. Schulzet, S. Carllot, Explicit solutions for Harry Dym equation, J Phys A: Math 
Gen.25(1992) 223-30 

[2] A.A. Halim, Solition solutions of the (2+1) dimentional Harry Dym equation via Darboux transformation, Chaos 
Solitions Fractals 36 ( 2008) 646-53. 

[3] J.H. He, Some applications of non linear fractional differential equations and their approximations, Bull. Sci. 
Technol. 15 (2) (1999) 86--90. 

[4]  W.Hereman, P.P. Banerjee,  M.R. Chatterjee, On the nonlocal equations and nonlocal charges associated with 
the Harry-Dym hierarchy Korteweg-de Vries equation, J. Phys. A: Math. 22 (1989) 241-252. 
 
[5] Q. Huang , R. Zhdanov, Symmetries and exact solutions of the time fractional Harry- Dym equation with 
Rieman-Liouville derivative, Physica A. 409 (2014) 110-118. 

[6] R. Khalil, M. Al horani, A. Yousef , M. Sababheh, Anew definition of fractional derivative,  Journal of 
Computational Applied Mathematics, 264 (2014) 65-70. 

[7] A.A. Kilbas, H.M. Srivastava, J.J Trujillo,Theory and Applications of Fractional Differential 
Equations.  North-Holland Math. Stud. 204 (2006). 
 
[8] A. Korkmaz, Exact Solutions to Some Conformable Time Fractional Equations in Benjamin-Bona-Mohany 
Family. https://arxiv.org/abs/1611.07086, 2007 (accessed 3 December 2007). 

Fig. 6 The graph of  𝑓𝑓(𝑥𝑥, 𝑡𝑡) = (4 + 3
2
�1
𝛼𝛼 𝑥𝑥

𝛼𝛼 + 1
𝛼𝛼 𝑡𝑡

𝛼𝛼�)
2
3  versus 𝑥𝑥 at t = 1 𝑎𝑎𝑡𝑡 𝛼𝛼 = 1, 0.9 𝑎𝑎𝑛𝑛𝑑𝑑 0.7 for 

example 6 

 

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.4, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

735 Asma ALHabees 727-736

https://arxiv.org/abs/1611.07086


[9] M.D.Kruskal , J.Moser, Dynamical system: Theory and Applications (Lecture Notes in Physics 38),  
Springer, Berlin (1975). 

[10] D. Kumar , J. Singh, A. Kılıçman, An Efficient Approach for Fractional Harry Dym Equation by Using 
Sumudu Transform, Abstract and Applied Analysis. Article ID 608943(2013) 8 pages . 

[11] S. Kumar, M. P. Tripathi , O. P. Singh, A fractional model of Harry Dym equation and its approximate solution, 
Ain Shams Engineering Journa l .4 (2013),111-115. 

[12] R. Mokhtari, Exact solutions of the Harry- Dym equation, Commun. Theor. Phys. 55 (2).(2011) 204-208.  

[13] D.P. Novikov,  Alalgebraic geometric solution of the Harry Dym equation, Siberian Math J. 40 (1) (1999). 
136-140. 
 
[14] I. Podlubny, Fractional differential equations. An introduction to fractional derivatives fractional 
differential equations some methods of their Solution and some of their applications, Academic Press, 
San Diego, 1999. 

[15] G.L. Vasconcelos,  L.P. Kadanoff, Stationary solutions for the Saffman-Taylor problem with surface tention, . 
Phys Re A.  44 (10). (1991) 6490-6495.  
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 
. 
     
     
     
                                    

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.4, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

736 Asma ALHabees 727-736


