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1. Introduction

Bernoulli numbers, Bernoulli polynomials, q-Bernoulli numbers, q-Bernoulli polynomials, the

second kind Bernoulli number and the second kind Bernoulli polynomials were studied by many

authors(see [1-8]). Bernoulli numbers and polynomials posses many interesting properties and arising

in many areas of mathematics and physics. In [5], by using the second kind Bernoulli numbers Bj and

polynomials Bj(x), we investigated the q-analogue of sums of powers of consecutive odd integers(see

[6]). Let k be a positive integer. Then we obtain

Ok(n− 1) =

n−1∑
i=0

(2i+ 1)k−1 =
Bk(2n)−Bk

2k
.

In [4], we introduced the second kind (h, q)-Bernoulli numbers B
(h)
n,q and polynomials B

(h)
n,q(x). By

using computer, we observed an interesting phenomenon of ‘scattering’ of the zeros of the second kind

(h, q)-Bernoulli polynomials B
(h)
n,q(x) in complex plane. Also we carried out computer experiments

for doing demonstrate a remarkably regular structure of the complex roots of the second kind

(h, q)-Bernoulli polynomials B
(h)
n,q(x). In this paper, we give recurrence identities the second kind

(h, q)-Bernoulli polynomials and the sums of powers of consecutive (h, q)-odd integers.

Throughout this paper, we always make use of the following notations: N = {1, 2, 3, · · · }
denotes the set of natural numbers, Z denotes the set of integers, R denotes the set of real numbers,

C denotes the set of complex numbers, Zp denotes the ring of p-adic rational integers, Qp denotes

the field of p-adic rational numbers, and Cp denotes the completion of algebraic closure of Qp. Let

νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one talks of

q-extension, q is considered in many ways such as an indeterminate, a complex number q ∈ C, or
p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1. If q ∈ Cp, we normally assume

that |q − 1|p < p−
1

p−1 so that qx = exp(x log q) for |x|p ≤ 1. For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},

the p-adic q-integral was defined by [2, 5]

Iq(g) =

∫
Zp

g(x)dµq(x) = lim
N→∞

1

[pN ]

pN−1∑
x=0

g(x)qx.
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The bosonic integral was considered from a physical point of view to the bosonic limit q → 1, as

follows:

I1(g) = lim
q→1

Iq(g) =

∫
Zp

g(x)dµ1(x) = lim
N→∞

1

pN

pN−1∑
x=0

g(x) (see [2]). (1.1).

By (1.1), we easily see that

I1(g1) = I1(g) + g′(0), (1.2)

where g1(x) = g(x+ 1) and g′(0) =
dg(x)

dx

∣∣
x=0

.

First, we introduce the second kind Bernoulli numbers Bn and polynomials Bn(x). The second

kind Bernoulli numbers Bn and polynomials Bn(x) are defined by means of the following generating

functions (see [3]):

2tet

e2t − 1
=

∞∑
n=0

Bn
tn

n!
.

and (
2tet

e2t − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!

respectively.

The second kind (h, q)-Bernoulli polynomials, B
(h)
n,q(x) are defined by means of the generating

function: (
(h log q + 2t)et

qhe2t − 1

)
ext =

∞∑
n=0

B(h)
n,q(x)

tn

n!
. (1.3)

The second kind (h, q)-Bernoulli numbers E
(h)
n,q are defined by means of the generating function:

(h log q + 2t)et

qhe2t − 1
=

∞∑
n=0

B(h)
n,q

tn

n!
. (1.4)

In (1.2), if we take g(x) = qhxe(2x+1)t, then we have∫
Zp

qhxe(2x+1)tdµ1(x) =
(h log q + 2t)et

qhe2t − 1
. (1.5)

for |t| ≤ p−
1

p−1 , h ∈ Z. In (1.2), if we take g(x) = e2nxt, then we also have∫
Zp

e2nxtdµ1(x) =
2nt

e2nt − 1
. (1.6)

for |t| ≤ p−
1

p−1 . It will be more convenient to write (1.2) as the equivalent bosonic integral form∫
Zp

g(x+ 1)dµ1(x) =

∫
Zp

g(x)dµ1(x) + g′(0), (see [2]). (1.7)

For n ∈ N, we also derive the following bosonic integral form by (1.7),∫
Zp

g(x+ n)dµ1(x) =

∫
Zp

g(x)dµ1(x) +
n−1∑
k=0

g′(k), where g′(k) =
dg(x)

dx

∣∣
x=k

. (1.8)

In [4], we introduced the second kind (h, q)-Bernoulli numbers B
(h)
n,q and polynomials B

(h)
n,q(x)

and investigate their properties. The following elementary properties of the second kind (h, q)-

Bernoulli numbers B
(h)
n,q and polynomials B

(h)
n,q(x) are readily derived form (1.1), (1.2), (1.3) and

(1.4). We, therefore, choose to omit details involved.
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Theorem 1. For h ∈ Z, q ∈ Cp with |1− q|p < p−
1

p−1 , we have

B(h)
n,q =

∫
Zp

qhx(2x+ 1)ndµ1(x),

B(h)
n,q(x) =

∫
Zp

qhy(x+ 2y + 1)ndµ1(y).

Theorem 2. For any positive integer n, we have

B(h)
n,q(x) =

n∑
k=0

(
n

k

)
B

(h)
k,qx

n−k.

Theorem 3. For any positive integer m, we obtain

B(h)
n,q(x) = mn−1

m−1∑
i=0

qhiB
(h)
n,qm

(
2i+ x+ 1−m

m

)
for n ≥ 0.

2. On the symmetries of the second kind (h, q)-Bernoulli polynomials

In this section, we assume that q ∈ Cp and h ∈ Z. We investigate interesting properties of

symmetry p-adic invariant integral on Zp for the second kind (h, q)-Bernoulli polynomials. W also

obtain recurrence identities the second kind (h, q)-Bernoulli polynomials.

By (1.7), we obtain

1

h log q + 2t

(∫
Zp

qhxqhne(2x+2n+1)tdµ1(x)−
∫
Zp

qhxe(2x+1)tdµ1(x)

)

=
n
∫
Zp

qhxe(2x+1)tdµ1(x)∫
Zp

qhnxe2ntxdµ1(x)

(2.1)

By (1.8), we obtain

1

h log q + 2t

(∫
Zp

qhxqhne(2x+2n+1)tdµ1(x)−
∫
Zp

qhxe(2x+1)tdµ1(x)

)

=

∞∑
k=0

(
n−1∑
i=0

qhi(2i+ 1)k

)
tk

k!
.

(2.2)

For each integer k ≥ 0, let

O
(h)
k,q (n) = 1k + qh3k + q2h5k + q3h7k + · · ·+ qnh(2n+ 1)k.

The above sum O
(h)
k,q (n) is called the sums of powers of consecutive (h, q)-odd integers. From the

above and (2.2), we obtain

1

h log q + 2t

(∫
Zp

qhxqhne(2x+2n+1)tdµ1(x)−
∫
Zp

qhxe(2x+1)tdµ1(x)

)
tk

k!

=
∞∑
k=0

O
(h)
k,q (n− 1)

tk

k!
.

(2.3)

Thus, we have

∞∑
k=0

(
qhn

∫
Zp

qhx(2x+ 2n+ 1)kdµ1(x)−
∫
Zp

qhx(2x+ 1)kdµ1(x)

)
tk

k!
=

∞∑
k=0

(h log q+2t)O
(h)
k,q (n−1)

tk

k!
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By comparing coefficients
tk

k!
in the above equation, we have

(h log q + 2t)O
(h)
k,q (n− 1)

=

∫
Zp

qhx(2x+ 2n+ 1)kdµ1(x)−
∫
Zp

qhx(2x+ 1)kdµ1(x)
.

By using the above equation we arrive at the following theorem:

Theorem 4. Let k be a positive integer. Then we obtain

qhnB(h)
n,q(2n)−B(h)

n,q = h log qO
(h)
k,q (n− 1) + 2kO

(h)
k−1,q(n− 1). (2.4)

Remark 5. For the alternating sums of powers of consecutive integers, we have

lim
q→1

(
h log qO

(h)
k,q (n− 1) + 2kO

(h)
k−1,q(n− 1)

)
=

n−1∑
i=0

(2i+ 1)k−1

=
Bk(2n)−Bk

2k
, for k ∈ N.

By using (2.1) and (2.3), we arrive at the following theorem:

Theorem 6. Let n be positive integer. Then we have

n
∫
Zp

qhxe(2x+1)tdµ1(x)∫
Zp

qhnxe2ntxdµ1(x)
=

∞∑
m=0

(
O(h)

m,q(n− 1)
) tm

m!
. (2.5)

Let w1 and w2 be positive integers. By using (1.5) and (1.6), we have∫
Zp

∫
Zp

qh(w1x1+w2x2)e(w1(2x1+1)+w2(2x2+1)+w1w2x)tdµ1(x1)dµ1(x2)∫
Zp

qhw1w2xe2w1w2xtdµ1(x)

=
(h log q + 2t)ew1tew2tew1w2xt(qhw1w2e2w1w2t − 1)

(qhw1e2w1t − 1)(qhw2e2w2t − 1)

(2.6)

By using (2.4) and (2.6), after calculations, we obtain

S =

(
1

w1

∫
Zp

qhw1x1e(w1(2x1+1)+w1w2x)tdµ1(x1)

)(
w1

∫
Zp

qhw2x2e(2x2+1)(w2t)dµ1(x2)∫
Zp

qhw1w2xe2w1w2txdµ1(x)

)

=

(
1

w1

∞∑
m=0

B
(h)
m,qw1 (w2x)w

m
1

tm

m!

)( ∞∑
m=0

O
(h)
m,qw2 (w1 − 1)wm

2

tm

m!

)
.

(2.7)

By using Cauchy product in the above, we have

S =
∞∑

m=0

 m∑
j=0

(
m

j

)
B

(h)
j,qw1 (w2x)w

j−1
1 O

(h)
m−j,qw2 (w1 − 1)wm−j

2

 tm

m!
(2.8)

By using the symmetry in (2.7), we have

S =

(
1

w2

∫
Zp

qhw2x2e(w2(2x2+1)+w1w2x)tdµ1(x2)

)(
w2

∫
Zp

qhw1x1e(2x1+1)(w1t)dµ1(x1)∫
Zp

qhw1w2xe2w1w2txdµ1(x)

)

=

(
1

w2

∞∑
m=0

B
(h)
m,qw2 (w1x)w

m
2

tm

m!

)( ∞∑
m=0

O
(h)
m,qw1 (w2 − 1)wm

1

tm

m!

)
.
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Thus we have

S =
∞∑

m=0

 m∑
j=0

(
m

j

)
B

(h)
j,qw2 (w1x)w

j−1
2 O

(h)
m−j,qw1 (w2 − 1)wm−j

1

 tm

m!
(2.9)

By comparing coefficients
tm

m!
in the both sides of (2.8) and (2.9), we arrive at the following theorem:

Theorem 7. Let w1 and w2 be positive integers. Then we obtain

m∑
j=0

(
m

j

)
B

(h)
j,qw1 (w2x)w

j−1
1 O

(h)
m−j,qw2 (w1 − 1)wm−j

2

=
m∑
j=0

(
m

j

)
B

(h)
j,qw2 (w1x)w

j−1
2 O

(h)
m−j,qw1 (w2 − 1)wm−j

1 ,

where B
(h)
k,q (x) and O

(h)
m,q(k) denote the second kind (h, q)-Bernoulli polynomials and the sums of

powers of consecutive (h, q)-odd integers, respectively.

By using Theorem 2, we have the following corollary:

Corollary 8. Let w1 and w2 be positive integers. Then we have

m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
wm−k

1 wj−1
2 xj−kB

(h)
k,qw2O

(h)
m−j,qw1 (w2 − 1)

=

m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
wj−1

1 wm−k
2 xj−kB

(h)
k,qw1O

(h)
m−j,qw2 (w1 − 1),

By using (2.6), we have

S =

(
1

w1
ew1w2xt

∫
Zp

qhw1x1e(2x1+1)w1tdµ1(x1)

)(
w1

∫
Zp

qhw2x2e(2x2+1)(w2t)dµ1(x2)∫
Zp

qhw1w2xe2w1w2txdµ1(x)

)

=

(
1

w1
ew1w2xt

∫
Zp

qhw1x1e(2x1+1)w1tdµ1(x1)

)w1−1∑
j=0

qw2hje(2j+1)(w2t)


=

w1−1∑
j=0

qw2hj

∫
Zp

qhw1x1e

(
2x1+1+w2x+(2j+1)

w2

w1

)
(w1t)

dµ1(x1)

=

∞∑
n=0

w1−1∑
j=0

qw2hjB
(h)
n,qw1

(
w2x+ (2j + 1)

w2

w1

)
wn−1

1

 tn

n!
.

(2.10)

By using the symmetry property in (2.10), we also have

S =

(
1

w2
ew1w2xt

∫
Zp

qhw2x2e(2x2+1)w2tdµ1(x2)

)(
w2

∫
Zp

qhw1x1e(2x1+1)(w1t)dµ1(x1)∫
Zp

qhw1w2xe2w1w2txdµ1(x)

)

=

(
1

w2
ew1w2xt

∫
Zp

qhw2x2e(2x2+1)w2tdµ1(x2)

)w2−1∑
j=0

qw1hje(2j+1)(w1t)


=

w2−1∑
j=0

qw1hj

∫
Zp

qhw2x2e

(
2x2+1+w1x+(2j+1)

w1

w2

)
(w2t)

dµ1(x2)

=
∞∑

n=0

w2−1∑
j=0

qw1hjB
(h)
n,qw2

(
w1x+ (2j + 1)

w1

w2

)
wn−1

2

 tn

n!
.

(2.11)
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By comparing coefficients
tn

n!
in the both sides of (2.10) and (2.11), we have the following theorem.

Theorem 9. Let w1 and w2 be positive integers. Then we obtain

w1−1∑
j=0

qw2hjB
(h)
n,qw1

(
w2x+ (2j + 1)

w2

w1

)
wn−1

1

=

w2−1∑
j=0

qw1hjB
(h)
n,qw2

(
w1x+ (2j + 1)

w1

w2

)
wn−1

2 .

(2.12)

Observe that if h = 1, then (2.12) reduces to Theorem 5 in [9](see [5, 9]). Substituting w1 = 1 into

(2.12), we arrive at the following corollary.

Corollary 10. Let w2 be positive integer. Then we obtain

B(h)
n,q(x) = wn−1

2

w2−1∑
j=0

qhjB
(h)
n,qw2

(
x− w2 + 2j + 1

w2

)
. (2.13)

The Corollary 10 is shown to yield the known distribution relation of the second kind (h, q)-

Bernoulli polynomials(see Theorem 3). Note that if q → 1, then (2.13) reduces to distribution

relation of the second kind Bernoulli polynomials(see [8]).

Corollary 11. Let w2 be positive integer. Then we have

Bn(x) = wn−1
2

w2−1∑
j=0

Bn

(
x− w2 + 2j + 1

w2

)
.
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