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1. Introduction

Recently, many mathematicians have studied in the area of the degenerate Euler numbers and
polynomials, degenerate Bernoulli numbers and polynomials, degenerate Genocchi numbers and
polynomials, and degenerate tangent numbers and polynomials(see [1, 2, 3, 4, 5, 6, 7]). In [1], L.
Carlitz introduced the degenerate Bernoulli polynomials. Recently, Feng Qi et al.[2] studied the
partially degenerate Bernoull polynomials of the first kind in p-adic field. The degenerate (h,q)-
tangent numbers 771(};)()\) are defined by the generating function:

oo

2
TN = = . 1.1
Z nl h(1+)\t)2/)\+1 ( )

The degenerate (h, q)-tangent numbers of higher order, 7;(11’};) are defined by means of the following

generating function

2 k o m
(WQ+A®WLHJ =D T N (12

n=0
We recall that the classical Stirling numbers of the first kind S;(n, k) and Sa(n, k) are defined by
the relations(see [7])
)y = Z Sy (n, k)z® and 2" = Z Sa(n, k) (z)k
=0 k=0
respectively. Here (z), = z(x —1)--- (z —n+ 1) denotes the falling factorial polynomial of order n.
We also have

3 Sg(n,m)% B ) L Z Sy (nymy L = (ogL £ D)™ (1.3)

m! n! m!
n=m n=m

The generalized falling factorial (z|A),, with increment X is defined by

n—1

(@[A)n =[] (@ = 2k) (1.4)

k=0

for positive integer n, with the convention (z|\)g = 1. We also need the binomial theorem: for a

variable x,
xT - tn
(14 At)*/A = Z(xu)na. (1.5)
n=0
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Many mathematicians have studied in the area of the linear and nonlinear differential equations
arising from the generating functions of special numbers and polynomials in order to give explicit
identities for special polynomials. In this paper, we study nonlinear differential equations arising
from the generating functions of degenerate (h, ¢)-tangent numbers . We give explicit identities for

the degenerate (h, ¢)-tangent numbers .
2. Nonlinear differential equations associated with degenerate (h,¢)-tangent numbers

In this section, we study nonlinear differential equations arising from the generating functions

of degenerate twisted (h, ¢)-tangent numbers. Let

2 s tn
F=F(t\qh)= = (h)(\)—. 2.1
(thah) = G e ;m( ) (2.1)
Then, by (2.1), we have
0 B) 2
FO = ZF(t,\qh) = =
8t (7 7qa ) 8t qh(1+>\t)2//\+l
- - P 2 i (2.2)
IR AV E B AN T+ At \gh(1+ M)2/> +1
_ 2P
IR ESDY,
By (2.2), we have
F2=2F + (14 Mx)FW, (2.3)

Taking the derivative with respect to ¢ in (2.3), we obtain

2FFW = 2F® 4 \FW 4 (1 4 X)FP

(2.4)
=M\ +2)FY + 1+ ) FP.
From (2.2), (2.3), and (2.4), we have
2F3 = 4F + (1 + N1+ M)FD 4 (14 Xt)2F3.
Continuing this process, we can guess that
N . .
NIFNFTE =3 "a;(N, A g, h)(1+ M) FO, (N =0,1,2,...), (2.5)
i=0
AN , - .
where F() = pn F(t, )\, q,h). Differentiating (2.5) with respect to ¢, we have
(N+)IFNFD =3 "ixa; (N, g, B)(1+ M) T FO +3 " a; (N, g, h)(1+ M) FEFD - (2.6)
i=0 1=0
and
—2F + F? FN+2 _ gpN+1
N+D)FNFO = (N4 1) PV [ ———— ) =N+ 1) [ —————— ). 2.7
(N+1) (N+1) 1+ M (N+1) 14Xt 27)
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By (2.5), (2.6), and (2.7), we have

(N +DIFNT2 = (N + 1)IFNHL

N N
+ ) Niai (N, A g, h)(1+ M) FO £ " a;(N, ) (1+ M) RO
i=0 1=0

=2(N +1)Y " ai(N, A, q,h)(1+ )’ FO

M=

?

Il
o

N N
+ ) Xiai(N, A, g, h)(1+ M) FD +> " a;(N, A, g, h)(1+ M) H FEFD
i=0 1=0
N+1

i i=1

Now replacing N by N + 1 in (2.5), we find

N+1
(N+ N2 =3 " a;(N +1,A, ¢, h)(1+ M) F.
=0

By (2.8) and (2.9), we have

N+1 N
> ai(N +1,0,¢,h)(1+ M) FD =" (2(N + 1) + M) a;(N, A, ¢, h) (1 + At)' FO)
i=0 i=0
N+1 o
+ Z ai*l(Nv )‘u q, h’)(l + )\t)lF(Z)
i=1
Comparing the coefficients on both sides of (2.10), we obtain
aN—l-l(N + 15 /\7 q, h) = aN(N7 )‘a q, h)a

and
az(‘]\f+ 13)‘7(]3 h) = (2(N+ 1) + )‘Z) ai(Na Aa‘Lh) +ai—1(N7>‘aQ7h)ﬂ (]— S { S N)

In addition, by (2.5), we have
F= a0(07 >‘a q, h)Fa

which gives
ap(0, A, q,h) = 1.

It is not difficult to show that
F2? =ag(1,\, ¢, h)F +ay(1,\, ¢, h) (1 + M) FY = 2F 4+ (1 + M) FD),
Thus, by (2.15), we also find
ap(1,\,q,h) =2, ai1(l,A q,h)=1.
From (2.11), we note that

ag(N +1,\,q,h) =2(N + 1)ag(N, A\, q,h) =4(N + 1)Nag(N — 1, A, q,h)
=...=2Nt(N L 1)

N
=3 QN + 1) + M) a; (N, A g, h) (1 + Xt) FO + Y " a; 1 (N, X, g, h)(1+ M) FO.
=0

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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and
aN+1(N+1a)‘7Q7h):aN(Nu)‘vq7h):"':1' (218)

For ¢ =1,2,3 in (2.11), then we find that

I
] =

al(N + 17)‘7Q7 h)

A
2k <N+1+ 2) aO(N_kv)‘vqah)v
k

2??‘
' 1

1
a2(N + 1a)‘7Qv h)

ok (N+1+; ><2> ai(N —k,\ q,h),
k

i
LL

A
az(N+1,\,¢q,h) =Y 2~ <N+1+2><3> az(N =k, A, q, h).
=0 k

b

Continuing this process, we can deduce that, for 1 <i < N,

N—i+1
A
a,-(N+ 1,)\,q, h) = Z Zk (N+ 1+ 5 X Z) ai_l(N — k,)\,q,h). (219)
k=0 k

Note that, here the matrix a;(j, A, ¢, h)o<i j<n+1 is given by

2122 3123 ... (N 41)12N+1

2
1
0 1
0

S O O =

00 O 0o - 1

Now, we give explicit expressions for a;(N + 1, A, q, k). By (2.17), (2.18), and (2.19), we have

N

Z A

al(N+17)‘7qvh): 2k1 <N+1+2> aO(N_klvAa(Lh)
k1=0 k1

a A
:Z2N(N—k’1)!(N+1+) ;
2 Ky

k1=0

N-1
aQ(N+1,/\,q,h):22’“2 (N+1+;><2> a1(N — ko, A, q, h)
ko=0 k2

N—1N—kgo—1 A A
=> > 2N‘1(N—k2—k1—1)!<N+1+><2> <N—k2+> ,
2 ' 2/

ko=0 k1=0

and
N-2

A
a3(N+17)‘>qah):22k3 <N+1+2X3> a2(N7k37>‘aQ7h)
k3=0 ks
N—k3—2 N—ks—ko—2

k

Z Z 2N_2(N—k3—k2—k1—2)!(N+1+;><3)
k3

k3
5=0 k1=0

N—-2
k3=0

A A

x-oox (N—ks+ 2 x2 N—ky—ky—1+2
2 . 2),
2 1
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Continuing this process, we have

N—i+1 N—k;—i+1 N—Fki_1—-—ko—i+1
ZEESSVEED YD VI VI

ki= ki—1=0 k1=0

X (N—ki—ki_l—"'—kg—kl—i+1)!

A A
x(N—i—l—i—xi) (N—ki—kx(i—l))
2 ki 2 ki1

i

X (N—ki—ki1—1+)\X(i—2>>
2 ki_2

X (N—kji—ki_l—k‘i_g—Z—‘r;X(i—3)>

ki—3

X (N—k‘i—kji_l—k‘i_g—"'—k‘g—i-i-Q—l—2)

Therefore, by (2.20), we obtain the following theorem.

Theorem 1. For N =0,1,2,..., the nonlinear functional equation
N . .
NIFNTE =% "a;(N, A, q,h)(1+ At)' F)

has a solution )

F=F(t,\qh) =
(7 7qa> qh(1+>\t)2//\—|—17

where
ao(N, X\, q,h) = 2V N1,

G/N<N,)\,q,h):1,

N—i N—k;—1 N—k;—-—ko—1
Whah)=>, > - >, @ -t
ki=0 k;—1=0 k1=0
X (N—k‘i—k'i_l—-"—k‘g—k‘l—i)!

><(N+)\><i> (N—ki—l—k/\x(z'—l))
2 ks 2 ks

i

A
X (N—kz—k11—2+X(Z—2)>
2 ki_2

A
X (N—ki—kil——ki2—3+2 X (@—3))
ki—3

A
X (N—ki—ki1—]{3i2—~--—]€2—i+1+2>
k1

From (1.1) and (1.2), we note that

NIFN+L _ 1 2 A — N! ZT(N+1 h)
' (14 A2+ 1 n!'

From (2.5), we note that

) 6 ; o0 tl
FO = () F(t A a.n) =Y T8, 05
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k1

(2.20)

(2.21)

(2.22)
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From Theorem 1, (1.5), (2.21), and (2.22), we can derive the following equation:

) N
n S
NIFN Y- 7;<g+1ah>(x)ﬁ = ai(N, X, q,h)(1+ xt)'FD
n=0 : =0
N [e%s) t tl
=0 k=0 =0

N , i
(ZZ( ) (N X g ) (AT O >> =
=0

By comparing the coefficients on both sides of (2.23), we obtain the following theorem.

Theorem 2. For k, N =0,1,2,..., we have

N n
n .
NITEH ) =30 ( k) ai(N, A g W)X T (),

where
ao(N,\) = N2V an(N,\) =1

N—i N—k;—1i N—k;——ko—1
P MDD M
ki=0 k;—1=0 k1=0
><(N—ki—kifl—"'—kg—kl—i)!
A
X(N—ki—k¢_1——]€i_2—3—|—X(i—3)>
2 ki_3
. A
X N—ki—ki_l—ki_g—"'—kg—l+1—|—§
k1
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