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1. Introduction

Recently, many mathematicians have studied in the area of the degenerate Euler numbers and

polynomials, degenerate Bernoulli numbers and polynomials, degenerate Genocchi numbers and

polynomials, and degenerate tangent numbers and polynomials(see [1, 2, 3, 4, 5, 6, 7]). In [1], L.

Carlitz introduced the degenerate Bernoulli polynomials. Recently, Feng Qi et al.[2] studied the

partially degenerate Bernoull polynomials of the first kind in p-adic field. The degenerate (h, q)-

tangent numbers T (h)
n,q (λ) are defined by the generating function:

∞∑
n=0

T (h)
n,q (λ)

tn

n!
=

2

qh(1 + λt)2/λ + 1
. (1.1)

The degenerate (h, q)-tangent numbers of higher order, T (k,h)
n,λ,q are defined by means of the following

generating function (
2

qh(1 + λt)2/λ + 1

)k

=
∞∑

n=0

T (k,h)
n,q (λ)

tn

n!
. (1.2)

We recall that the classical Stirling numbers of the first kind S1(n, k) and S2(n, k) are defined by

the relations(see [7])

(x)n =
n∑

k=0

S1(n, k)x
k and xn =

n∑
k=0

S2(n, k)(x)k,

respectively. Here (x)n = x(x− 1) · · · (x− n+1) denotes the falling factorial polynomial of order n.

We also have

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
and

∞∑
n=m

S1(n,m)
tn

n!
=

(log(1 + t))m

m!
. (1.3)

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =

n−1∏
k=0

(x− λk) (1.4)

for positive integer n, with the convention (x|λ)0 = 1. We also need the binomial theorem: for a

variable x,

(1 + λt)x/λ =
∞∑

n=0

(x|λ)n
tn

n!
. (1.5)
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Many mathematicians have studied in the area of the linear and nonlinear differential equations

arising from the generating functions of special numbers and polynomials in order to give explicit

identities for special polynomials. In this paper, we study nonlinear differential equations arising

from the generating functions of degenerate (h, q)-tangent numbers . We give explicit identities for

the degenerate (h, q)-tangent numbers .

2. Nonlinear differential equations associated with degenerate (h, q)-tangent numbers

In this section, we study nonlinear differential equations arising from the generating functions

of degenerate twisted (h, q)-tangent numbers. Let

F = F (t, λ, q, h) =
2

qh(1 + λt)2/λ + 1
=

∞∑
n=0

T (h)
n,q (λ)

tn

n!
. (2.1)

Then, by (2.1), we have

F (1) =
∂

∂t
F (t, λ, q, h) =

∂

∂t

(
2

qh(1 + λt)2/λ + 1

)
=

1

1 + λt

(
−4

qh(1 + λt)2/λ + 1

)
+

1

1 + λt

(
2

qh(1 + λt)2/λ + 1

)2

=
−2F + F 2

1 + λt
.

(2.2)

By (2.2), we have

F 2 = 2F + (1 + λt)F (1). (2.3)

Taking the derivative with respect to t in (2.3), we obtain

2FF (1) = 2F (1) + λF (1) + (1 + λt)F (2)

= (λ+ 2)F (1) + (1 + λt)F (2).
(2.4)

From (2.2), (2.3), and (2.4), we have

2F 3 = 4F + (1 + λ)(1 + λt)F (1) + (1 + λt)2F (2).

Continuing this process, we can guess that

N !FN+1 =

N∑
i=0

ai(N,λ, q, h)(1 + λt)iF (i), (N = 0, 1, 2, . . .), (2.5)

where F (i) =

(
∂

∂t

)i

F (t, λ, q, h). Differentiating (2.5) with respect to t, we have

(N + 1)!FNF (1) =
N∑
i=0

iλai(N,λ, q, h)(1 + λt)i−1F (i) +
N∑
i=0

ai(N,λ, q, h)(1 + λt)iF (i+1) (2.6)

and

(N + 1)!FNF (1) = (N + 1)!FN

(
−2F + F 2

1 + λt

)
= (N + 1)!

(
FN+2 − 2FN+1

1 + λt

)
. (2.7)
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By (2.5), (2.6), and (2.7), we have

(N + 1)!FN+2 = 2(N + 1)!FN+1

+

N∑
i=0

λiai(N,λ, q, h)(1 + λt)iF (i) +

N∑
i=0

ai(N,λ)(1 + λt)i+1F (i+1)

= 2(N + 1)

N∑
i=0

ai(N,λ, q, h)(1 + λt)iF (i)

+

N∑
i=0

λiai(N,λ, q, h)(1 + λt)iF (i) +

N∑
i=0

ai(N,λ, q, h)(1 + λt)i+1F (i+1)

=
N∑
i=0

(2(N + 1) + λi) ai(N,λ, q, h)(1 + λt)iF (i) +
N+1∑
i=1

ai−1(N,λ, q, h)(1 + λt)iF (i).

(2.8)

Now replacing N by N + 1 in (2.5), we find

(N + 1)!FN+2 =

N+1∑
i=0

ai(N + 1, λ, q, h)(1 + λt)iF (i). (2.9)

By (2.8) and (2.9), we have

N+1∑
i=0

ai(N + 1, λ, q, h)(1 + λt)iF (i) =
N∑
i=0

(2(N + 1) + λi) ai(N,λ, q, h)(1 + λt)iF (i)

+
N+1∑
i=1

ai−1(N,λ, q, h)(1 + λt)iF (i).

(2.10)

Comparing the coefficients on both sides of (2.10), we obtain

2(N + 1)a0(N,λ, q, h) = a0(N + 1, λ, q, h),

aN+1(N + 1, λ, q, h) = aN (N,λ, q, h),
(2.11)

and

ai(N + 1, λ, q, h) = (2(N + 1) + λi) ai(N,λ, q, h) + ai−1(N,λ, q, h), (1 ≤ i ≤ N). (2.12)

In addition, by (2.5), we have

F = a0(0, λ, q, h)F, (2.13)

which gives

a0(0, λ, q, h) = 1. (2.14)

It is not difficult to show that

F 2 = a0(1, λ, q, h)F + a1(1, λ, q, h)(1 + λt)F (1) = 2F + (1 + λt)F (1). (2.15)

Thus, by (2.15), we also find

a0(1, λ, q, h) = 2, a1(1, λ, q, h) = 1. (2.16)

From (2.11), we note that

a0(N + 1, λ, q, h) = 2(N + 1)a0(N,λ, q, h) = 4(N + 1)Na0(N − 1, λ, q, h)

= · · · = 2N+1(N + 1)!,
(2.17)
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and

aN+1(N + 1, λ, q, h) = aN (N,λ, q, h) = · · · = 1. (2.18)

For i = 1, 2, 3 in (2.11), then we find that

a1(N + 1, λ, q, h) =
N∑

k=0

2k
(
N + 1 +

λ

2

)
k

a0(N − k, λ, q, h),

a2(N + 1, λ, q, h) =

N−1∑
k=0

2k
(
N + 1 +

λ

2
× 2

)
k

a1(N − k, λ, q, h),

a3(N + 1, λ, q, h) =

N−2∑
k=0

2k
(
N + 1 +

λ

2
× 3

)
k

a2(N − k, λ, q, h).

Continuing this process, we can deduce that, for 1 ≤ i ≤ N,

ai(N + 1, λ, q, h) =

N−i+1∑
k=0

2k
(
N + 1 +

λ

2
× i

)
k

ai−1(N − k, λ, q, h). (2.19)

Note that, here the matrix ai(j, λ, q, h)0≤i,j≤N+1 is given by

1 2 2!22 3!23 · · · (N + 1)!2N+1

0 1 · · · · · ·
0 0 1 · · · · ·
0 0 0 1 · · · ·
...

...
...

...
. . .

...

0 0 0 0 · · · 1


Now, we give explicit expressions for ai(N + 1, λ, q, h). By (2.17), (2.18), and (2.19), we have

a1(N + 1, λ, q, h) =
N∑

k1=0

2k1

(
N + 1 +

λ

2

)
k1

a0(N − k1, λ, q, h)

=

N∑
k1=0

2N (N − k1)!

(
N + 1 +

λ

2

)
k1

,

a2(N + 1, λ, q, h) =

N−1∑
k2=0

2k2

(
N + 1 +

λ

2
× 2

)
k2

a1(N − k2, λ, q, h)

=
N−1∑
k2=0

N−k2−1∑
k1=0

2N−1(N − k2 − k1 − 1)!

(
N + 1 +

λ

2
× 2

)
k2

(
N − k2 +

λ

2

)
k1

,

and

a3(N + 1, λ, q, h) =
N−2∑
k3=0

2k3

(
N + 1 +

λ

2
× 3

)
k3

a2(N − k3, λ, q, h)

=
N−2∑
k3=0

N−k3−2∑
k2=0

N−k3−k2−2∑
k1=0

2N−2(N − k3 − k2 − k1 − 2)!

(
N + 1 +

λ

2
× 3

)
k3

× · · · ×
(
N − k3 +

λ

2
× 2

)
k2

(
N − k3 − k2 − 1 +

λ

2

)
k1
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Continuing this process, we have

ai(N + 1, λ, q, h) =

N−i+1∑
ki=0

N−ki−i+1∑
ki−1=0

· · ·
N−ki−1−···−k2−i+1∑

k1=0

2N−i+1

× (N − ki − ki−1 − · · · − k2 − k1 − i+ 1)!

×
(
N + 1 +

λ

2
× i

)
ki

(
N − ki +

λ

2
× (i− 1)

)
ki−1

×
(
N − ki − ki−1 − 1 +

λ

2
× (i− 2)

)
ki−2

×
(
N − ki − ki−1 − ki−2 − 2 +

λ

2
× (i− 3)

)
ki−3

· · ·

×
(
N − ki − ki−1 − ki−2 − · · · − k2 − i+ 2 +

λ

2

)
k1

.

(2.20)

Therefore, by (2.20), we obtain the following theorem.

Theorem 1. For N = 0, 1, 2, . . . , the nonlinear functional equation

N !FN+1 =

N∑
i=0

ai(N,λ, q, h)(1 + λt)iF (i)

has a solution

F = F (t, λ, q, h) =
2

qh(1 + λt)2/λ + 1
,

where
a0(N,λ, q, h) = 2NN !,

aN (N,λ, q, h) = 1,

ai(N,λ, q, h) =

N−i∑
ki=0

N−ki−i∑
ki−1=0

· · ·
N−ki−···−k2−i∑

k1=0

(2qh − x)N−i

× (N − ki − ki−1 − · · · − k2 − k1 − i)!

×
(
N +

λ

2
× i

)
ki

(
N − ki − 1 +

λ

2
× (i− 1)

)
ki−1

×
(
N − ki − ki−1 − 2 +

λ

2
× (i− 2)

)
ki−2

×
(
N − ki − ki−1 −−ki−2 − 3 +

λ

2
× (i− 3)

)
ki−3

· · ·

×
(
N − ki − ki−1 − ki−2 − · · · − k2 − i+ 1 +

λ

2

)
k1

.

From (1.1) and (1.2), we note that

N !FN+1 = N !

(
2

qh(1 + λt)2/λ + 1

)N+1

= N !

∞∑
n=0

T (N+1,h)
n,q (λ)

tn

n!
. (2.21)

From (2.5), we note that

F (i) =
( ∂
∂t

)i
F (t, λ, q, h) =

∞∑
l=0

T (h)
i+l,q(λ)

tl

l!
. (2.22)
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From Theorem 1, (1.5), (2.21), and (2.22), we can derive the following equation:

N !FN
∞∑

n=0

T (N+1,h)
n,q (λ)

tn

n!
=

N∑
i=0

ai(N,λ, q, h)(1 + λt)iF (i)

=
N∑
i=0

ai(N,λ, q, h)
∞∑
k=0

(i)kλ
k t

k

k!

∞∑
l=0

T (h)
i+l,q(λ)

tl

l!

=
∞∑

n=0

(
N∑
i=0

n∑
k=0

(
n

k

)
ai(N,λ, q, h)(i)kλ

kT (h)
n−k+i,q(λ)

)
tn

n!
.

(2.23)

By comparing the coefficients on both sides of (2.23), we obtain the following theorem.

Theorem 2. For k,N = 0, 1, 2, . . . , we have

N !T (N+1,h)
n,q (λ) =

N∑
i=0

n∑
k=0

(
n

k

)
ai(N,λ, q, h)(i)kλ

kT (h)
n−k+i,q(λ),

where
a0(N,λ) = N !2N , aN (N,λ) = 1,

ai(N,λ) =
N−i∑
ki=0

N−ki−i∑
ki−1=0

· · ·
N−ki−···−k2−i∑

k1=0

2N−i

× (N − ki − ki−1 − · · · − k2 − k1 − i)!

×
(
N − ki − ki−1 −−ki−2 − 3 +

λ

2
× (i− 3)

)
ki−3

· · ·

×
(
N − ki − ki−1 − ki−2 − · · · − k2 − i+ 1 +

λ

2

)
k1

.
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