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Abstract

In this paper, first we derive some nonlinear discrete inequalities, and then as

an application, we study the Ulam stability of the first order nonlinear difference

equation

∆y(n) = f(n, y(n)), n ≥ n0,

where f is a given function. The obtained result on Ulam stability is new to the

literature in the sense that our approach does not require the explicit form of solu-

tions of the investigated equations.
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1. Introduction

In the passed years, the Ulam stability of functional equations received a great

attention.In general, we say that an equation is stable in the sense of Ulam if for
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every approximate solution of that equation there exists an exact solution of the

equation near it. For more details on Ulam stability, one can refer to [13].

The problem of the Ulam stability of difference equations is related to the notion

of the perturbation of discrete dynamical systems. In [2–5, 7–9, 11, 12, 14, 17], the

authors studied Ulam stability of linear difference equations and in [16], the authors

obtained some results on Ulam stability for some second order linear difference

equations. In all these papers, the authors studied the Ulam stability of first and

second order linear difference equations and it seems that no results dealing with

Ulam stability for the nonlinear difference equations are available in the literature.

Therefore the purpose of this paper is to study that Ulam stability of the following

first order nonlinear difference equation

∆y(n) = f(n, y(n)), n ≥ N, (1.1)

where f ∈ C(N,R) and N denotes the set of all non-negative integers, without using

the explicit form of the solutions.

Next, we present the definition of the Ulam stability for difference equations.

Definition 1.1. The equation (1.1) is called stable in Ulam sense if there exists a

constant L ≥ 0 such that for every ε > 0 and every {y(n)} in R satisfying

|∆y(n)− f(n, y(n))| ≤ ε, n ≥ 0 (1.2)

there exists a sequence {x(n)} in R with the properties

∆x(n) = f(n, x(n)), n ≥ 0 (1.3)

and

|y(n)− x(n)| ≤ Lε, n ≥ 0. (1.4)

A sequence {y(n)} which satisfies (1.2) for some ε > 0 is called an approximate

solution of the nonlinear difference equation (1.1), and we reformulate the above

definition as: the equation (1.1) is called Ulam stable if for every approximate

solution of it there exists an exact solutions close to it. If in Definition 1.1, the
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number ε is replaced by a sequence of positive numbers {ε(n)} and Lε from (1.4)by

a sequence of positive numbers {η(n)} the equation (1.1) is called genelized stable

in the Ulam sense.

In this paper first we derive some nonlinear discrete inequalities, and as an appli-

cation we investigate the Ulam stability of equations (1.1).

2. Nonlinear Discrete Inequalities

In this section, we present some nonlinear discrete inequalities which provide us a

powerful tool for investigating the Ulam stability of a nonlinear first order difference

equations.

We begin with the following results which can be found in: [[6], Theorem 41,

pp.39].

Lemma 2.1. If a > 0 and 0 < α ≤ 1, then

aα ≤ αa+ (1− α)

and the equality holds if α = 1.

Theorem 2.2. Let {u(n)}, {f(n)}, {g(n)} and {h(n)} be nonnegative real se-

quences defined for all n ∈ N, and

u(n) ≤ f(n) + g(n)
n−1∑
s=0

h(s)uα(s), (2.1)

where 0 < α ≤ 1. Then

u(n) ≤ f(n) + g(n)
n−1∑
s=0

h(s)(αf(s) + (1− α)) exp

(
n−1∑
t=s+1

αf(t)g(t)

)
. (2.2)

Proof. Defining a sequence R(n) by

R(n) =
n−1∑
s=0

h(s)uα(s),

then R(0) = 0 and u(n) ≤ f(n) + g(n)R(n). Now using Lemma 2.1, one can obtain

∆R(n) = h(n)uα(n) ≤ h(n)(f(n) + g(n)R(n))α

≤ (αh(n)f(n) + (a− α)h(n)) + αh(n)g(n)R(n)
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or

R(n+ 1)− (1 + αh(n)g(n))R(n) ≤ h(n)(αf(n) + (1− α)). (2.3)

Multiplying (2.3) by
∏n

s=0(1 + αh(s)g(s))−1, we have

∆

(
R(n)

n∏
s=0

(1 + αh(s)g(s))−1

)
≤ h(n)(αf(n) + (1− α))

n∏
s=0

(1 + αh(s)g(s))−1.

Summing up the last inequality from 0 to n− 1, we obtain

R(n) ≤
n−1∑
s=0

h(s)(αf(s) + (1− α))
n−1∏
t=s+1

(1 + αh(t)g(t))

≤
n−1∑
s=0

h(s)(αf(s) + (1− α))

(
exp

n−1∑
t=s+1

αh(t)g(t)

)
. (2.4)

Using (2.4) in u(n) ≤ f(n) + g(n)R(n), we have the desired inequality (2.2). This

completes the proof. �

Corollary 2.3. Let u(n) and p(n) be non-negative real sequences defined for all

n ∈ N such that

u(n) ≤ c+
n−1∑
s=0

p(s)uα(s) (2.5)

where c ≥ 0 and 0 < α ≤ 1. Then

u(n) ≤
(
cα + (1− α)

α

)
exp

(
n−1∑
s=0

αp(s)

)
. (2.6)

Proof. Let f(n) = c ≥ 0, g(n) = 1 and h(n) = p(n) in (2.2), we have

u(n) ≤ c+
n−1∑
s=0

p(s)(αc+ 1− α)
n−1∏
t=s+1

(1 + αp(t))

= c+
(αc+ (1− α))

α

n−1∑
s=0

αp(s)
n−1∏
t=s+1

(1 + αp(t))

= c+
(αc+ (1− α))

α

(
n−1∏
s=0

(1 + αp(s))− 1

)

≤
(
αc+ (1− α)

α

)
exp

(
n−1∑
s=0

αp(s)

)
.

The proof is now complete. �
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Theorem 2.4. Let u(n), p(n) and h(n) be non-negative real sequences for all n ∈ N

and

u(n) ≤ c+
n−1∑
s=0

p(s)u(s) +
n−1∑
s=0

h(s)uα(s), (2.7)

where c ≥ 0 and 0 < α ≤ 1. Then

u(n) ≤

(
c+ (1− α)

n−1∑
s=0

h(s)

)
exp

(
n−1∑
s=0

(p(s) + αh(s))

)
. (2.8)

Proof. Let R(n) be the right hand side of (2.7). Then R(0) = c and u(n) ≤ R(n)

and

∆R(n) = p(n)u(n) + h(n)uα(n)

≤ p(n)R(n) + h(n)Rα(n)

≤ p(n)R(n) + h(n)(αR(n) + (1− α))

= (p(n) + αh(n))R(n) + (1− α)h(n) (2.9)

where we have used Lemma 2.1. Now from (2.9), we have

R(n+ 1)− (1 + p(n) + αh(n))R(n) ≤ (1− α)h(n).

Arguing as in the proof of Theorem 2.2, one can easily obtain the desired result and

hence the details are omitted. �

Remark 2.1. (a) If α = 1 in Theorem 2.2, then it reduced to the well-known

Pachpatte inequality [10], in 2002. For 0 < α < 1 the estimate (2.2) of Theorem

2.2 is new to the literature.

(b) If α = 1 and g(n) ≡ 1, then Theorem 2.2 reduced to a well-known result due to

Sugiyama [15], in 1969.

Remark 2.2. If α = 1 in Corollary 2.3, then it reduced to the discrete analogue of

the well-known Gronwall-Bellman inequality [1].

Remark 2.3. The result obtained in Theorem 2.4 is different from that one by

Willet and Wong [18] for the case 0 < α < 1.
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3. Ulam Stability

As an application of the discrete inequalities established in Section 2, we investi-

gate the Ulam stability of equation (1.1).

Theorem 3.1. Let p(n) be a positive real sequence for all n ∈ N such that

|f(n, u)− f(n, v)| ≤ p(n)|u− v|α (3.1)

where 0 < α ≤ 1, and
∞∑
n=0

p(n) <∞. (3.2)

If for a positive real sequence φ(n) such that
∑∞

n=0 φ(n) <∞, and

|∆y(n)− f(n, y(n))| ≤ φ(n) (3.3)

then there exists a real sequence x(n) and a constant k > 0 satisfying

∆x(n) = f(n, x(n)) (3.4)

such that |y(n)− x(n)| ≤ k; that is, equation (1.1) has the Ulam stability.

Proof. From the inequality (3.3), we have

y(n) ≤ y(0) +
n−1∑
s=0

f(s, y(s)) +
n−1∑
s=0

φ(s) (3.5)

and from the equation (3.4), we obtain

x(n) = x(0) +
n−1∑
s=0

f(s, x(s)). (3.6)

Combining (3.5) and (3.6) yields

|y(n)− x(n)| ≤ |y(0)− x(0)|+
n−1∑
s=0

|f(s, y(s))− f(s, x(s))|+
n−1∑
s=0

φ(s).

Using the condition (3.1) in the above inequality, we have

|y(n)− x(n)| ≤M1 +
n−1∑
s=0

p(s)|y(s)− x(s)|α +M2 (3.7)
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where M1 = |y(0) − x(0)| and
∑∞

n=0 φ(n) ≤ M2 by hypothesis. Now applying

Corollary 2.3 in (3.7), we obtain

|y(n)− x(n)| ≤ ((M1 +M2)α + (1− α))

α
exp

(
n−1∑
s=0

αp(s)

)
. (3.8)

It follows from (3.2) that there is a constant M3 > 0 such that
∑∞

n=0 p(n) ≤ M3,

and using this in (3.8), one obtains

|y(n)− x(n)| ≤ k

where k = ((M1+M2)α+(1−α))
α

exp(αM3). This completes the proof. �

4. Conclusion

In this paper, first we have obtained some new nonlinear discrete inequalities and

then as an application we investigate the Ulam stability of a nonlinear first order

difference equation. In this approach, we do not need to require the explicit form of

the solution of the studied equation, where as in [3,4,7-9,11,12,14] the authors used

the explicit form of the solutions to prove their established results.
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