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Abstract. In this paper, some strong and ∆-convergence results for
Suzuki generalized nonexpansive mappings in the setting of complete
CAT (0) spaces are proved. We are using newly introduced K∗ iteration
process for approximation of fixed point. We also give an example to
show the efficiency of the K∗ iteration process. Our results are exten-
sion, improvement and generalization of many well known results in the
literature of fixed point theory in CAT (0) spaces.
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1. Introduction

It is well-known that several mathematics problems are naturally formulated
as fixed point problem Tx = x, where T is some suitable mapping, may
be nonlinear. For example, for given functions ζ : [a, b] ⊆ R → R and ξ :
[a, b]× [a, b]× R→ R, the solution of following nonlinear integral equation

x(c) = ζ(c) +

b∫
a

ξ(c, r, x(r))dr,

where x ∈ C[a, b] (the set of all continuous real-valued functions defined on
[a, b] ⊆ R), is equivalently to fixed point problems for the following mapping
T : C[a, b]→ C[a, b] defined by
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(Tx)(c) = ζ(c) +

b∫
a

ξ(c, r, x(r))dr

for all x ∈ C[a, b].

The well-known Banach contraction theorem uses the Picard iteration
process for approximation of fixed point. Many iterative processes have been
developed to approximate fixed points of contraction type of mapping in
CAT (0) type spaces of ground spaces. Some of the other well-known iter-
ative processes are those of Mann [17], Ishikawa [10], Noor [8], Abbas [1],
Agarwal [2], Phuengrattana and Suantai [19], Karahan and Ozdemir [11],
Chugh, Kumar and Kumar [6], Sahu and Petrusel [20], Khan [14], Gursoy
and Karakaya [9], Thakur, Thakur and Postolache [22] and so on. See also
[13, 23, 25] for more information on CAT (0) spaces and applications. Re-
cently, Ullah and Arshad [24] introduced a new three steps iteration process
as the K∗ iteration process and proved that it is strong and converges fast
as compared to all above mentioned iteration processes. They use uniformly
convex Banach space as a ground space.

Motivated by above, in this paper, first we develop an example of Suzuki
generalized nonexpansive mappings is given which is not nonexpansive. We
compare the speed of convergence of the K∗ iteration process with the lead-
ing two steps S-iteration process and leading three steps Picard-S-iteration
process for Suzuki generalized nonexpansive mappings, and graphic represen-
tation is also given.

Finally, we prove some strong and ∆-convergence theorems for Suzuki
generalized nonexpansive mappings in the setting of CAT (0) spaces.

2. Preliminaries

Let (X, d) be a metric space. A geodesic from x to y in X is a mapping
c from closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and

d(c(t), c(t
′
)) = |t − t′ | for all t, t

′ ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image of c is called a geodesic (or metric) segment joining
x and y. The space (X, d) is said to be a geodesic space if every two points
of X is joined by a geodesic and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X, which we denote by
[x, y], called the segment joining x to y.

A geodesic triangle ∆(x1,x2,x3) in a geodesic metric space (X, d) con-
sists of three points x1, x2, x3 in X (the vertices of ∆) and a geodesic segment
between each pair of vertices (the edges of ∆). A comparison triangle for the
triangle ∆(x1,x2,x3) in (X, d) is a triangle ∆̄(x1,x2,x3) := ∆(x̄1,x̄2,x̄3) in R2

such that dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}.
A geodesic space is said be a CAT (0) space if all geodesic triangles of

appropriate size satisfy the following comparison axiom.
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CAT (0): Let ∆ be a geodesic triangle in X and ∆̄ be a comparison
triangle for ∆. Then ∆ is said to satisfy the CAT (0) inequality if for x, y ∈
∆ and all comparison points x̄, ȳ ∈ ∆̄,

d(x, y) ≤ dE2(x̄, ȳ).

If x, y1,y2 are points in CAT (0) space and if y0 is the midpoint of the
segment [y1, y2], then the CAT (0) inequality implies

d(x, y0)2 ≤ 1

2
d(x, y1)2 +

1

2
d(x, y2)2 − 1

4
d(y1, y2)2. (CN)

This is the (CN) inequality of Burhat and Tits [5].
We recall the following result from Dhompongsa and Panyanak [8].

Lemma 2.1. ([8]) For x, y ∈ X and α ∈ [0, 1], there exists a unique point z
∈ [x, y] such that

d(x, z) = αd(x, y) and d(y, z) = (1− α)d(x, y). (2.1)

The notation ((1 − α)x ⊕ αy) is used for the unique point z satisfying
(2.1).

CAT (0) space may be regarded as a metric version of Hilbert space.
For example, in CAT (0) space we have the following extended version of
parallelogram law:

d(z, αx⊕ (1− α)y)2 = αd(x, z)2 + (1− α)d(z, y)2 − α(1− α)d(x, y)2 (2.2)

for any α ∈ [0, 1], x, y ∈ X.
If α = 1

2 , then the inequality (2.2) becomes the (CN) inequality.
In fact, a geodesic space is a CAT (0) space if and only if it satisfies the

(CN) inequality (cf. [5]). Complete CAT (0) spaces are often called Hadmard
spaces. For more on these spaces, please refer to [3, 4].

Lemma 2.2. ([14, Lemma 2.4]) For x, y, z ∈ X and α ∈ [0, 1], we have

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y).

Let C be a nonempty closed convex subset of a CAT (0) space X let
{xn} be a bounded sequence in X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radius of {xn} relative to C is given by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}
and the asymptotic center of {xn} relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.
It is well known that, in a complete CAT (0) space, A(C, {xn}) consists

of exactly one point.
We now recall the definition of ∆-convergence in CAT (0) space.
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Definition 2.3. A sequence {xn} in a CAT (0) space X is said to be ∆-
convergent to x ∈ X if x is the unique asymptotic center of {ux} for every
subsequence {ux} of {xn}.

In this case, we write ∆-limnxn = x and call x the ∆-lim of {xn}.
Recall that a bounded sequence {xn} in X is said to be regular if

r({xn}) = r{ux} for every subsequence {ux} of {xn}.
Since in a CAT (0) space every regular sequence ∆-converges, we see

that every bounded sequence in X has a ∆-convergent subsequence.
A CAT (0) space X is said to satisfy the Opial′s property [17] if for each

sequence {xn} in X, ∆-converges to x ∈ X, we have

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y)

for all y ∈ X such that y 6= x.

Definition 2.4. A point p is called a fixed point of a mapping T if T (p) = p
and F (T ) represents the set of all fixed points of the mapping T.

Definition 2.5. Let C be a nonempty subset of a CAT (0) space X.
(i) A mapping T : C → C is called a contraction if there exists α ∈ (0, 1)

such that

d(Tx, Ty) ≤ αd(x, y)

for all x, y ∈ C.
(ii) A mapping T : C → C is called nonexpansive if

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C.
(iii) A mapping is a quasi-nonexpansive if for all x ∈ C and p ∈ F (T ),

we have

d(Tx, p) ≤ d(x, p).

In 2008, Suzuki [21] introduced the concept of generalized nonexpansive
mappings which is a condition on mappings called condition (C). A mapping
T : C → C is said to satisfy condition (C) if for all x, y ∈ C, we have

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y).

Suzuki [21] showed that the mapping satisfying condition (C) is weaker
than nonexpansiveness. The mapping satisfying condition (C) is called a
Suzuki generalized nonexpansive mapping.

Suzuki [21] obtained fixed point theorems and convergence theorems
for Suzuki generalized nonexpansive mapping. In 2011, Phuengrattana [18]
proved convergence theorems for Suzuki generalized nonexpansive mappings
using the Ishikawa iteration in uniformly convex Banach spaces and CAT (0)
spaces. Recently, fixed point theorems for Suzuki generalized nonexpansive
mapping have been studied by a number of authors, see, e.g., [22] and refer-
ences therein.
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The following are some basic properties of Suzuki generalized nonexpan-
sive mappings whose proofs in the setup of CAT (0) spaces follow the same
lines as those of [12, Propostions 11, 14, 19] and therefore we omit them.

Proposition 2.6. Let C be a nonempty subset of a CAT (0) space X and
T : C → C be any mapping.

(i) [21, Proposition 1] If T is nonexpansive, then T is a Suzuki general-
ized nonexpansive mapping.

(ii) [21, Proposition 2] If T is a Suzuki generalized nonexpansive map-
ping and has a fixed point, then T is a quasi-nonexpansive mapping.

(iii) [21, Lemma 7] If T is a Suzuki generalized nonexpansive mapping,
then

d(x, Ty) ≤ 3d(Tx, x) + d(x, y)

for all x, y ∈ C.

Lemma 2.7. [21, Theorem 5] Let C be a weakly compact convex subset of
a CAT (0) space X. Let T be a mapping on C. Assume that T is a Suzuki
generalized nonexpansive mapping. Then T has a fixed point.

Lemma 2.8. [16, Lemma 2.9] Suppose that X is a complete CAT (0) space
and x ∈ X. If {tn} is a sequence in [b, c] for some b, c ∈ (0, 1) and {xn}, {yn}
are sequences in X such that for some r ≥ 0, we have

lim
n→∞

sup d(xn, x) ≤ r,

lim
n→∞

sup d(yn, x) ≤ r,

lim
n→∞

sup d(tnxn + (1− tn)yn, x) = r,

then

lim
n→∞

d(xn, yn) = 0.

Lemma 2.9. [7, Proposition 2.1] If C is a closed comvex subset of a complete
CAT (0) space X and if {xn} is a bounded sequence in C, then the asymptotic
center of {xn} is in C.

Lemma 2.10. [15] Every bounded sequence in a complete CAT (0) space always
has a ∆-convergent subsequence.

Lemma 2.11. [15, Proposition 3.7] Let C is a closed comvex subset of a com-
plete CAT (0) space X and T : C → X be a Suzuki generalized nonexpansive
mapping. Then the conditions {xn} ∆-converges to x and d(Txn, xn) → 0
imply x ∈ C and Tx = x.

The following is an example of Suzuki generalized nonexpansive map-
ping which is not nonexpansive.

Example 1. Define a mapping T : [0, 1]→ [0, 1] by

Tx =

{
1− x if x ∈

[
0, 16
)

x+5
6 if x ∈

[
1
6 , 1
]
.
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We need to prove that T is a Suzuki generalized nonexpansive but not
nonexpansive.

If x = 15
96 and y = 1

6 , then we have

d(Tx, Ty) = |Tx− Ty|

=

∣∣∣∣1− 15

96
− 31

36

∣∣∣∣
=

5

288

>
1

96
= d(x, y).

Hence T is not a nonexpansive mapping.
To verify that T is a Suzuki generalized nonexpansive mapping, consider

the following cases:
Case I: Let x ∈

[
0, 16
)
. Then 1

2d( x, Tx) = 1−2x
2 ∈

(
1
3 ,

1
2

]
. For 1

2d(x, Tx) ≤
d(x, y), we have 1−2x

2 ≤ y − x, i.e., 1
2 ≤ y and hence y ∈

[
1
2 , 1
]
. We have

d(Tx, Ty) =

∣∣∣∣y + 5

6
− (1− x)

∣∣∣∣ =

∣∣∣∣y + 6x− 1

6

∣∣∣∣ < 1

6

and

d(x, y) = |x− y| >
∣∣∣∣16 − 1

2

∣∣∣∣ =
2

6
.

Hence 1
2d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ d(x, y).

Case II: Let x ∈
[
1
6 , 1
]
. Then 1

2d( x, Tx) = 1
2

∣∣x+5
6 − x

∣∣ = 5−5x
12 ∈[

0, 2572
]
. For 1

2d(x, Tx) ≤ d(x, y), we have 5−5x
12 ≤ |y − x| , which gives two

possibilities:
(a) Let x < y. Then 5−5x

12 ≤ y − x =⇒ y ≥ 5+7x
12 =⇒ y ∈

[
37
72 , 1

]
⊂[

1
6 , 1
]
. So

d(Tx, Ty) =

∣∣∣∣x+ 5

6
− y + 5

6

∣∣∣∣ =
1

6
d(x, y) ≤ d(x, y).

Hence 1
2d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ d(x, y).

(b) Let x > y. Then 5−5x
12 ≤ x − y =⇒ y ≤ x − 5−5x

12 = 17x−5
12 =⇒

y ∈
[
− 13

72 , 1
]
. Since y ∈ [0, 1], y ≤ 17x−5

12 =⇒ x ∈
[

5
12 , 1

]
. So the case is

x ∈
[

5
12 , 1

]
and y ∈ [0, 1] .

Now the case that x ∈
[

5
12 , 1

]
and y ∈

[
1
6 , 1
]

is the same case as that of

(a). So let x ∈
[

5
12 , 1

]
and y ∈

[
0, 16
)
. Then

d(Tx, Ty) =

∣∣∣∣x+ 5

6
− (1− y)

∣∣∣∣
=

∣∣∣∣x+ 6y − 1

6

∣∣∣∣ .
For convenience, first we consider x ∈

[
5
12 ,

1
2

]
and y ∈

[
0, 16
)
. Then d(Tx, Ty) ≤

1
12 and d(x, y) ≥ 3

12 . Hence d(Tx, Ty) ≤ d(x, y).
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Table 1. Some values produced by S, Picard-S and K∗ IP

K∗ Picard-S S
x0 0.9 0.9 0.9
x1 0.99809713998382 0.99722222222222 0.98333333333333
x2 0.99997729192914 0.99993300629392 0.99758822658104
x3 0.99999985210113 0.99999849779947 0.99967552468466
x4 0.99999999971662 0.99999996779523 0.99995826261755
x5 1 0.99999999933035 0.99999479283092
x6 1 0.99999999998638 0.99999936458953
x7 1 0.99999999999973 0.99999992375668
x8 1 0.99999999999999 0.99999999097156
x9 1 1 0.99999999894221
x10 1 1 0.99999999987715

Table 2. Some values produced by S, Picard-S and K∗ IP

K∗ Picard-S S
x0 0.5 0.5 0.5
x1 0.99048569991909 0.99722222222222 0.98333333333333
x2 0.99988645964572 0.99993300629392 0.99758822658104
x3 0.99999926050565 0.99999926050566 0.99967552468466
x4 0.99999999858311 0.99999996779523 0.99995826261755
x5 1 0.99999999933035 0.99999479283092
x6 1 0.99999999998638 0.99999936458953
x7 1 0.99999999999973 0.99999992375668
x8 1 0.99999999999999 0.99999999097156
x9 1 1 0.99999999894221
x10 1 1 0.99999999987715

Next consider x ∈
[
1
2 , 1
]

and y ∈
[
0, 16
)
. Then d(Tx, Ty) ≤ 1

6 and

d(x, y) ≥ 2
6 . Hence d(Tx, Ty) ≤ d(x, y). So

1

2
d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ d(x, y).

Hence T is a Suzuki generalized nonexpansive mapping.

In order to show the efficiency of K∗ iteration process, we use Exam-
ple 1 with x0 = 0.9, x0 = 0.5 and get the above Tables 1 and 2. Graphic
representation is given in Figure 1.

Let n ≥ 0 and {αn} and {βn} be real sequences in [0, 1]. Ullah and
Arshad [24] introduced a new iteration process known as the K∗ iteration
process 

x0 ∈ C
zn = (1− βn)xn + βnTxn

yn = T ((1− αn)zn + αnTzn)
xn+1 = Tyn.
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Figure 1. Convergence of iterative sequences generated by
K∗ (red line), Picard-S (blue line) and S (green line) itera-
tion process to the fixed point 1 of the mapping T defined
in Example 1.

They also proved that the K∗ iteration process is faster than the Picard-
S iteration and S-iteration processes with the help of a numerical example.

3. Convergence results for Suzuki generalized nonexpansive
mappings

In this section, we prove some strong and ∆-convergence theorems of a se-
quence generated by a K∗ iteration process for Suzuki generalized nonexpan-
sive mappings in the setting of CAT (0) space. The K∗ iteration process in
the language of CAT (0) space is given by

x0 ∈ C
zn = (1− βn)xn ⊕ βnTxn

yn = T ((1− αn)zn ⊕ αnTzn)
xn+1 = Tyn

. (3.1)

Lemma 3.1. Let C be a nonempty closed convex subset of a CAT (0) space X
and T : C → C be a Suzuki generalized nonexpansive mapping with F (T ) 6= ∅.
For arbitrarily chosen x0 ∈ C, let the sequence {xn} be generated by (3.1).
Then lim

n→∞
d(xn, p) exists for any p ∈ F (T ).

Proof. Let p ∈ F (T ) and z ∈ C. Since T is a Suzuki generalized nonexpansive
mapping,

1

2
d(p, Tp) = 0 ≤ d(p, z) implies that d(Tp, Tz) ≤ d(p, z).

By Proposition 2.6 (ii), we have

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.4, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

675 Ullah 668-681



d(zn, p) = d(((1− βn)xn ⊕ βnTxn), p)

≤ (1− βn)d(xn, p) + βnd(Txn, p)

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p). (3.2)

Using (3.2), we get

d(yn, p) = d((T (1− αn)zn ⊕ αnTzn), p)

≤ d(((1− αn)zn ⊕ αnTzn), p)

≤ (1− αn)d(zn, p) + αnd(Tzn, p)

≤ (1− αn)d(xn, p) + αnd(zn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

= d(xn, p). (3.3)

Similarly by using (3.3), we have

d(xn+1, p) = d(Tyn, p)

≤ d(yn, p)

≤ d(xn, p).

This implies that {d(xn, p)} is bounded and nonincreasing for all p ∈
F (T ). Hence lim

n→∞
d(xn, p) exists, as required. �

Theorem 3.2. Let C be a nonempty closed convex subset of a CAT (0) space X
and T : C → C be a Suzuki generalized nonexpansive mapping. For arbitrary
chosen x0 ∈ C, let the sequence {xn} be generated by (3.1) for all n ≥ 1,
where {αn} and {βn} are sequences of real numbers in [a, b] for some a, b
with 0 < a ≤ b < 1. Then F (T ) 6= ∅ if and only if {xn} is bounded and
lim
n→∞

d(Txn, xn) = 0.

Proof. Suppose F (T ) 6= ∅ and let p ∈ F (T ). Then, by Theorem 3.2, lim
n→∞

d(xn, p)

exists and {xn} is bounded. Put

lim
n→∞

d(xn, p) = r. (3.4)

From (3.2) and (3.4), we have

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = r. (3.5)

By Proposition 2.6 (ii) we have

lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(xn, p) = r. (3.6)
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On the other hand, by using (3.2), we have

d(xn+1, p) = d(Tyn, p)

≤ d(yn, p)

= d((T (1− αn)zn ⊕ αnTzn), p)

≤ d(((1− αn)zn ⊕ αnTzn), p)

≤ (1− αn)d(zn, p) + αnd(Tzn, p)

≤ (1− αn)d(xn, p) + αnd(zn, p)

= d(xn, p)− αnd(xn, p) + αnd(zn, p).

This implies that

d(xn+1, p)− d(xn, p)

αn
≤ d(zn, p)− d(xn, p).

So

d(xn+1, p)− d(xn, p) ≤
d(xn+1, p)− d(xn, p)

αn
≤ d(zn, p)− d(xn, p),

which implies that

d(xn+1, p) ≤ d(zn, p).

Therefore,

r ≤ lim inf
n→∞

d(zn, p). (3.7)

By (3.5) and (3.7), we get

r = lim
n→∞

d(zn, p)

= lim
n→∞

d(((1− βn)xn + βnTxn), p)

= lim
n→∞

d(βn(Txn, p) + (1− βn)(xn, p)). (3.8)

From (3.4), (3.6), (3.8) and Lemma 2.8, we have that lim
n→∞

d(Txn, xn) =

0.
Conversely, suppose that {xn} is bounded and lim

n→∞
d(Txn, xn) = 0. Let

p ∈ A(C, {xn}). By Proposition 2.6 (iii), we have

r(Tp, {xn}) = lim sup
n→∞

d(xn, Tp)

≤ lim sup
n→∞

(3d(Txn, xn) + d(xn, p))

≤ lim sup
n→∞

d(xn, p)

= r(p, {xn}).

This implies that Tp ∈ A(C, {xn}). SinceX is uniformly convex,A(C, {xn})
is a singleton and hence we have Tp = p. So F (T ) 6= ∅. �

Now we are in the position to prove ∆-convergence theorem.
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Theorem 3.3. Let C be a nonempty closed convex subset of a complete CAT (0)
space X and T : C → C be a Suzuki generalized nonexpansive mapping with
F (T ) 6= ∅. Let {tn} and {sn} be sequences in [0, 1] such that {tn} ∈ [a, b] and
{sn} ∈ [0, b] or {tn} ∈ [a, 1] and {sn} ∈ [a, b for some a, b with 0 < a ≤ b < 1.
For an arbitrary element x1 ∈ C, {xn} ∆-converges to a fixed point of T .

Proof. Since F (T ) 6= ∅, by Theorem 3.3, we have that {xn} is bounded and
lim
n→∞

d(Txn, xn) = 0. We now let ww{xn} :=
⋃
A({un}) where the union is

taken over all subsequences {un} of {xn}. We claim that ww{xn} ⊂ F (T ).
Let u ∈ ww{xn}. Then there exists a subsequence {un} of {xn} such that
A({un}) = {u}. By Lemmas 2.9 and 2.10, there exists a subsequence {vn} of
{un} such that ∆-limn {vn} = v ∈ C. Since lim

n→∞
d(vn, T vn) = 0, v ∈ F (T )

by Lemma 2.11. We claim that u = v. Suppose not. Since T is a Suzuki
generalized nonexpansive mapping and v ∈ F (T ), limn d(xn, v) exists by
Theorem 3.2. Then by uniqueness of asymptotic centers,

lim
n→∞

supd(vn, v) < lim
n→∞

supd(vn, u)

≤ lim
n→∞

supd(un, u)

< lim
n→∞

supd(un, v)

= lim
n→∞

supd(xn, v))

= lim
n→∞

supd(vn, v),

which is a contradiction and hence u = v ∈ F (T ). To show that {xn} ∆-
converges to a fixed point of T , it is sufices to show that ww{xn} consists of
exactly one point. Let {un} be a subsequence of {xn}. By Lemmas 2.9 and
2.10, there exists a subsequence {vn} of {un} such that ∆-limn {vn = v ∈ C.
Let A({un}) = {u} and A({xn}) = {x}. We have seen that c ∈ F (T ). We
can complete the proof by showing that x = v. Suppose not. Since {d(xn, v)}
is convergent, by the uniqueness of asymptotic centers,

lim
n→∞

supd(vn, v) < lim
n→∞

supd(vn, x)

≤ lim
n→∞

supd(xn, x)

< lim
n→∞

supd(xn, v)

= lim
n→∞

supd(vn, v),

which is a contradiction and hence the conclusion follows. �

Next we prove the strong convergence theorem.

Theorem 3.4. Let C be a nonempty compact convex subset of a CAT (0)
space X and T : C → C be a Suzuki generalized nonexpansive mapping. For
arbitrary chosen x0 ∈ C, let the sequence {xn} be generated by (3.1) for all
n ≥ 1, where {αn} and {βn} are sequences of real numbers in [a, b] for some
a, b with 0 < a ≤ b < 1. Then {xn} converges strongly to a fixed point of T .
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Proof. By Lemma 2.7, we have that F (T ) 6= ∅ and so by Theorem 3.2 we
have lim

n→∞
d(Txn, xn) = 0. Since C is compact, there exists a subsequence

{xnk
} of {xn} such that {xnk

} converges strongly to p for some p ∈ C. By
Proposition 2.6 (iii), we have

d(xnk
, Tp) ≤ 3d(Txnk

, xnk
) + d(xnk

, p), for all n ≥ 1.

Letting k → ∞, we get Tp = p, i.e., p ∈ F (T ). By Theorem 3.2,
lim
n→∞

d(xn, p) exists for every p ∈ F (T ) and so {xn} converges strongly to

p. �

Senter and Dotson [22] introduced the notion of a mappings satisfying
condition (I) as follows.

A mapping T : C → C is said to satisfy condition (I) if there exists a
nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0 and f(r) > 0 for all
r > 0 such that d(x, Tx) ≥ f(d(x, F (T ))) for all x ∈ C, where d(x, F (T )) =
infp∈F (T ) d(x, p).

Now we prove the strong convergence theorem using condition (I).

Theorem 3.5. Let C be a nonempty closed convex subset of a CAT (0) space X
and T : C → C be a Suzuki generalized nonexpansive mapping. For arbitrary
chosen x0 ∈ C, let the sequence {xn} be generated by (3.1) for all n ≥ 1,
where {αn} and {βn} are sequences of real numbers in [a, b] for some a, b
with 0 < a ≤ b < 1 such that F (T ) 6= ∅. If T satisfies condition (I), then
{xn} converges strongly to a fixed point of T .

Proof. By Lemma 3.1, we see that lim
n→∞

d(xn, p) exists for all p ∈ F (T ) and

so lim
n→∞

d(xn, F (T )) exists. Assume that lim
n→∞

d(xn, p) = r for some r ≥ 0. If

r = 0, then the result follows. Suppose r > 0. Then from the hypothesis and
condition (I),

f(d(xn, F (T ))) ≤ d(Txn, xn). (3.9)

Since F (T ) 6= ∅, by Theorem 3.3, we have lim
n→∞

d(Txn, xn) = 0. So (3.9)

implies that

lim
n→∞

f(d(xn, F (T ))) = 0. (3.10)

Since f is a nondecreasing function, from (3.10), we have lim
n→∞

d(xn, F (T )) =

0. Thus we have a subsequence {xnk
} of {xn} and a sequence {yk}, yk ∈ F (T ),

such that

d(xnk
, yk) <

1

2k
for all k ∈ N.

So using (3.4), we get

d(xnk+1
, yk) ≤ d(xnk

, yk) <
1

2k
.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.4, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

679 Ullah 668-681



Hence

d(yk+1, yk) ≤ d(yk+1, xk+1) + d(xk+1, yk)

≤ 1

2k+1
+

1

2k

<
1

2k−1
→ 0, as k →∞.

This shows that {yk} is a Cauchy sequence in F (T ) and so it converges
to a point p. Since F (T ) is closed, p ∈ F (T ) and then {xnk

} converges
strongly to p. Since lim

n→∞
d(xn, p) exists, we have that xn → p ∈ F (T ). Hence

the proof is complete. �
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