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Abstract

We use the Lie group analysis method to investigate the invariance prop-
erties and the solutions of

Tn—5TLn—3
xn—l(an + bnxn—5mn—3) ’

Tn+1 =

We show that this equation has a two-dimensional Lie algebra and that
its solutions can be presented in a unified manner. Besides presenting
solutions of the recursive sequence above where a, and b, are sequences
of real numbers, some specific cases are emphasized.
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1 Introduction

Difference equations are important in mathematical modelling, especially where
discrete time evolving variables are concerned. They also occur when studying
discretization methods for differential equations. Countless results in the subject
of difference equations have been recorded. For rational difference equations
of order greater than 1, the study can be quite challenging at the same time
rewarding. Rewarding in the sense that such a study lays ground for the theory
of global properties of difference equations (not necessarily rational) of higher
order.

In [4], the author developed an effective symmetry based algorithm to deal with
the obtention of solutions of difference equations of any order. However, the
calculation one deals with in this application to difference equations of order
greater than one can become cumbersome but with great recompense often
times. The method consists of finding a group of transformations that maps
solutions onto themselves. Symmetry method is a valuable tool and it has been
used to solve several difference equations [1-3, 7, 8].

In this paper, our objective is to obtain the symmetry operators of

Tpn—-5Tn—3 (1)

Tn41 =
xnfl(an + bnl'nfonfS)
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where a,, and b,, are real sequences and to find its solutions by way of symme-
tries. Without loss of generality, we equivalently study the forward difference
equation

UpUn+2 (2)

Un+6 = .
Un+4(An + Bnunun+2)

We refer the interested reader to [4, 9] for a deeper knowledge of Lie analysis.

2 Definitions and Notation

In this section, we briefly present some definitions and notation (largely from
Hydon in [4]) indispensable for the understanding of Lie symmetry analysis of
difference equations.

Definition 2.1 Let G be a local group of transformations acting on a manifold
M. A subset S C M is called G-invariant, and G is called symmetry group of
S, if whenever x € S, and g € G is such that g - x is defined, then g-x € S.

Definition 2.2 Let G be a connected group of transformations acting on a man-
ifold M. A smooth real-valued function V : M — R is an invariant function for
G if and only if

XV)=0 for all x e M,

and every infinitesimal generator X of G.
Definition 2.3 A parameterized set of point transformations,
Iz 2(z;e), (3)

where x = x;, 1 = 1,...,p are continuous variables, is a one-parameter local Lie
group of transformations if the following conditions are satisfied:

1. Ty is the identity map if £ = x when € =0
2. T'yl'y = Tays for every a and b sufficiently close to 0

3. Each @; can be represented as a Taylor series (in a neighborhood of e =0
that is determined by x), and therefore

Fi(x:e) =x; +e&i(x) + O, i=1,...,p. (4)
Assuming that the sixth-order difference equation has the form
Unt6 =V (N, Up, ...y Unys), NED (5)

for some smooth function © and a regular domain D C Z. To deduce the
symmetry group of (5), we search for a one parameter Lie group of point trans-
formations

Te:(nyun) = (nyun +Q(n,uy)), (6)
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in which ¢ is the parameter and @) a continuous function, referred to as charac-
teristic. Let

9
+o Q45 unys) 5 —

0 0
X =Q(n,up)=—+Qn+1,upy1) —— D

aun 8un+1

be the corresponding ‘prolonged’ infinitesimal generator and S : n — n+ 1 the
shift operator. The linearized symmetry condition is given by

S6Q — XU =0. (8a)

Upon knowledge of the characteristic @, it is important to introduce the canon-

ical coordinate
du
Sn :/7na 9
QU un) )

a useful tool which allows one to obtain the invariant V.

3 Main results

As earlier emphasized, our equation under study is

UpUn+2
Upag = ¥ = . 10
o Un+4 (An + Bnunun+2) ( )
Appliying the criterion of invariance (8) to (10), we get
UnpUn4-2
6 4
Q(n * 7u”+6) " u%+4 (ATL + Bnunun+2) Q (n * ’u"+4)
Anun
- - Q (TL + 2, u, +2)
Un+4 ((An + Bnunun+2)2 '
ATL n
- Un+2 Q (n,un) = 0. (11)

Up 44 (An + Bnunun+2)

In order to eliminate u,, 43, we invoke implicit differentiation with respect to w,,
(regarding u,4 as a function of u,, un42 and u,,3) via the operator

_J 9, 0
- Ou, U

Up+4 aun+4

With some simplification, one gets
(An + Bnunun+2)

Up+44
+ BnunQ(n + 2; U71,+2) - (An + Bnunun—i-Q) Ql(na un)

+ <ZBnun+2 + 1;1") Q (n,uy) =0. (12)

n

(An + Bnunun+2) Q/ (n + 47 un+4) - Q (n + 47 un+4)
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Note that the symbol ’ stands for the derivative with respect to the continuous
variable. After twice differentiating (12) with respect to u,, keeping wu, 2 and
Un+4 fixed, we are led to the equation

— Buuntn2Q" (n,un) — An Q" (n, un) + A Q" (n,un) — QAg Q' (n,uy)
U, Up,
24,
+—5Qmun) =0 (13)

n

Note that the characteristic in (13) is not a function of u,12 and so we split
(13) up with respect to u,+2 to get the system

1: Q" (n,up) — uinQ” (n,u,) + u22Q’ (n,up) — %Q (n,u,) =0 (14a)

n n

Unt2 : Q" (n,up) = 0. (14b)
We find that the solution to (14) is
Q (77/7 un) = anun2 + Bnun (15)
for some arbitrary functions «, and (5, that depend on n. Substituting (16)
and its first, second and third shifts in (11), and then replacing the expression
of up43 given in (10) in the resulting equation yields
Bnun2un+22un+42an+4 + Bnun2un+22un+4(ﬁn+4 + ﬂn+3)
- Anun2un+2un+4an - Anunun+22un+4an+2 + Anunun—i-2un+4204n+4

+ Un2un+22an+2 - A, (571 + 6n+2 - Bn+4 - BnJrS) =0. (16)

Equating all coefficients of all powers of shifts of u,, to zero and simplifying the
resulting system, we get its reduced form

a, =0, (17)
/Bn + Bn,+2 =0. (18)

The two independent solutions of the linear second-order difference equation
above are given by

Bn = B" and B, = ", (19)
where 8 = exp{in/2} and = —exp{in/2} is its complex conjugate. The
characteristic functions are given by

Q1(n,un) = B"u, and  Qa(n,u,) = "Un, (20)

and so the Lie algebra of (10) is generated by
0

0
X — AN n— n+2 n n+4 n 21
1 =8"u B + 8" Upyo s + 8" u +45’un+4 (21)
X2 :Bnuni + Bn+2un+2 + Bn+4un+4 a (22)
8“71 a'Ufn«#2 au'rz+4
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Using the canonical coordinate

o= [ Gy = | = o be 29)
and (17), we derive the invariant function V, as follows:
V= S,8" 4 Snpaf" T2, (24)
Actually,
Xy (V) = 8" + "2 =0 (25)
and
Xo(Va) = 6" + 5" = 0. (26)

For the sake of convenience, we use
Vnl = eXP{_]}n} (27)

instead/ In other words, V,, = £1/(upun+2). Using (10) and (27), one can prove
that
Visa = AV, £ B, (28)

Utilizing the plus sign, the solution of (28) can be written as

n—1 n—1 n—1
Vint; =V, <H A4k1+j> +Y <B4l+j 1T A4k2+j> : (29)
=0

k1=0 ko=Il+1

where j = 0,1, 2,3. From here, obtaining the solution of (10) is straightforward.
We first employ (23) to get

|un| =exp (BnSn) - (30)

Secondly, we employ (24) to obtain

B 1 n—1 L 1 n—1 B ~
|| =exp (ﬂ”cl + B2 =5 > BBV — 5 Y ﬂ”ﬁ’%vkz) . (3
k1=0 k2=0
Lastly, we use (27) to get
B 1 n—1 B 1 n—1 B
|tn| =exp <5"01 thletg > BB IV, | + 3 > 8" n |Vk2|> ;
k1=0 ko=0

(32a)

in which Vj, is given in (28) with v(n, k) = 8"3*. Note that the constants c;
and ¢y satisfy

c1+ca=Inlug] and Beg —c2) =1n|uyl. (32b)
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Note. Equations in (32) give the solutions of (2) in a unified manner.
On a further note, v(n, k) = 8" satisfies

7(07 1) = 6’7(072) = _1’7(1’0) = 6a7(172) = _6a7(173) = -
y(n,n) =1,v(n+2,k) = —y(n, k), (33)
’7(”7 k + 2) = *’7(7% k)v 7(471, k) = 7(07 k)a ’Y(na 4k) = 7(”7 0)

From w,, given in (32a) and equation (33), observe that

An+4j5—1
|Uantj| = exp (Hj + Z Re(7(0, k1)) In |Vk1|> (34)

k1=0

in which . N
=P+ Fe.

For j = 0, we have,

|tgn| =exp(Ho +In Vo] —=In|[Va| + ... + In [Vyp—g| — In|Vin—2|)

n—1
V4s
=exp(H, | I . 35
xp(Ho) o Vist2 (35)

It can be shown that there is no need for the absolute values via the utilization
of the fact that

1
V, = . (36)
Ui Uj42
In order to deduce exp(Hp), we set n = 0 in (35) and note that |ug| = exp(Hp).
Thus .
i V4s
Uy = U
! ° 51;[0 Vist2

Similarly, replacing n with 4n + j for j = 0,1,2, 3, we obtain

n—1

Utn+j = u; H

Nevertheless, from (28), using the plus sign we are led to

Vin+j (H A4k1+]> + Z <B4l+] H A4k2+g> ) (38)

k1=0 ko=I+1

V4s+]
37
V4é+]+2 ( )
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for j =0,1,2,3, where Vy = ——. Thus, using (37) with j =0, we get

Upu2

s—1 s—1 s—1
o Vo ( II A4k1> + > <B4z II A4k2>
1=0

ko=Il+1

s s—1 s—1
II A4k1+2> + >0 <B4z+2 I1 A4k2+2>
=0

ko=Il+1

s—1 s—1 s—1
no1 ( [I A4k1> +uguz Y <B4l I1 A4k2>
=0

Uy k1=0 ko=I+1
it
Uuo s—1 s—1 s—1
s=0
II Aurivo | +uoug Y- | Baugo I Adroto
k1= =0 ko=I+1

s—1 s—1 s—1

IT Aug, | +uoue > (Bu I Aak,
k1=0 =0 ko=1+1

_ 1-n..n 1 2

=Uy Uy I |

s—1 s—1 s—1

s=0

T Aary42 | +uouwa Y | Bugo I Aagy+2
k1=0 =0 ko=Il+1

For j =1, we have

n—1
Lﬁs+l
Usnt1 = w1 H V.
5—0 4s5+3
s—1 s—1 s—1
w1 | I Adky 1 | +waus Buw1 Il Aakotr
—n n k1=0 =0 ko=I1+1
=Up Ug
=0 s—1 s—1 s—1
II Aaki4s | +usus D | Buys [I  Aakoys
k1=0 1=0 ko=l+1
For j = 2, we have
n—1
Lﬁs+2
Usnt2 = us H
o Vasta

s—1 s—1 s—1
T Aary2 | +uouwa Y | Buyo ] Aaryt2
=0

-1
no—n 1 k1 =0 ko=l+1
= ufuy "uy H
s=0 S S S
IT Aaw, | +uwoue > [ Bu ] Auag,
k1=0 =0 ka=l+1
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For j = 3, we get

Vist3
Usni3 = u3 H
5=0 V4s+5
s—1 s—1 s—1
oo I Adkyes ) +usus Z Byys I Aagy+3
n —n k1=0 ko=I1+1
= 'u,l U5 us H . . .
s=0
IT Asy+1 | +wius > [ Busr [] Aaky41
k1=0 =0 ko—=I+1

Hence, our solution in terms of z,, (n > 0) is given by

s—1 s—1
I ( [I a4k1> +T 573 ) <b4z II a4k2>
k1=0 =0 ko=Il+1
Tam_s —1‘1 n an ,
s—1 s—1
( I1 a4k1+2> +x_gr_q ), <b4l+2 I1 a4k2+2>
=0

k1=0 ko=Il+1
(39)
s—1 s— s—1
— H gk 41 | F 242 )5 [ barr [ aar, 11
=0 ka=l+1
1 2
LTon—4 = -T_4”I6L H 1 1 I (40)
S— S—
H Qaky+3 | + @20 Y | bags [  Ganot3
k1=0 =0 ko=I+1
s—1 s—1 s—1
mo1 | I aakygo | + 2321 37 (bure ] aary+2
k1=0 = ka=l+1
Lan—3 = T _5T_1T-3 H
S S
s=0 s
[T aan, | +x—s52_3> | bu [I aa,
ki= ko=l41
(41)
and
s—1 s—1
1 H a3 | +T-270 ) | bats [l aak,43
=0 ka=l+1

s=0

Tgmn— 2—.13 4.’1)0 "w_ QH
S S
( [T a4k1+1> +a_g4x_2 ) <b4l+1 I1 a4k2+1>
=0

k1=0 ko=Il+1
(42)

In the following sections, we specifically look at some special cases.

4 The case a, , b, are 1-periodic

Let a,, = a and b,, = b, where a and b are non-zero constants.
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4.1 Case: a #1

)

s

We have
1-n_n n*1a5+bx 5L — 3%
Tyn—5 = T_5 T_1 @+ br_ 3351 aé,
s=0 1—
nn - S+b$,4$,211%0;
Tanes = 0 H a® + br_owo =Y
n—1

Tgn— 3—1‘ 5$ 133‘ 3H

n—1

astl + br_sx_ 31

as+1 ?

@ + b gy 2

Logn— 2—!17 41’0 "r_ 21—[

as long as any of the denominators does not vanish.

astl +br_yx_o

l—qgst?
1—a

if n is even;

if n is even;

if n is odd;

)

)

)

)

if n is odd;

if n is even;

if n is odd;

if n is even;

Case: a = —1
We have
Lnflj
—1+bx_s5x_ 2 . .
x1_5"x”1 (ﬁ) , if n is odd;
Ton—-5 =
n—1
SCl nxn —1+bx_57x_3 [z 1+1
5 1\ 15tz sz )
=
1-n_n [ —1+bz_yx_o 2
T —4 xo ( —14bx_sx0 ) ’
Ton—4 =
n—1
xl ngn —1+bx_yx_9 151+
—4 0 —1+bx_oxo ?
n—1
$ﬁ5w:?£73 —1+bx_sx_1 L 2 J+
—1+4bx_sx_3 \ —14+bxr_s572_3
Tyn—-3 =
n—1
n o..—n —1+bxr_3x_3 =1+
1:_533_117_3 —14bx_s5x_3
and
—— |25t |41
A N —14+bx_sxo 2
—1+bx_4x_o \ —14+bxr_4x_o
Ton—2 =
n—1
n -n —1+bx_ox0 7z ]+1
TogTo T2\ “T1bz_40_4
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where bxr_;xo_; # 1 for i = 2,3,4,5.

4.2 Case: a =1

The solution is given by

n—1 n—1
. plongn 1+ bxr_sx_35 - plongn 14+ br_yx_28
dn—5 =T_5 T_ 0 Tdn—4 = T_ E Erre—
e 5 -l 1+br_sx_q18 " 470 o 1+ br_owos ’
5=

s=0

n—1

_ 1+br_3x_15s
— '!Lr n _

nt 14 br_oxos

— —n
Tan-2 = Lg%y T2 ];10 L+bz_gz_s(s+1)

5 The case a,, b, are 2-periodic

In this case, we have {a,}>, = ag,a1,a0,0a1,..., and similarly {b,}52, =
bo, b1, b0, b1, ... where ag # a1, and by # b;. Then the solution is given by

s—1
l
n-1a§ +bor_5x_3 > a;

1-n_n =0
Tan—s =25 2" [ —

-1
5=0 qf + box_37_1 ab
1=0

s—1
l
no1@] +b1r_4x_o > ay
1-n_mn =0
Tan—4 = 213" T] —
s=0 q% +bix_omwo Y, a}
1=0
s—1

s l
n—1 aa + bpr_3x_1 E ag
=0

n ..—n

Tap-3 =a" sz x_3 s

s=0 a8+1 + b0$,5$,3 Z 0/6
=0

and

s—1

l

n—1 a‘{ + bix_2x0 Z ai
=0

n —n
Tan—2 =" 425" T2 » i
S
s=0 a7 + b1z 4T 2 ) ay
=0

as long as any of the denominators does not vanish.

10
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6 The case a,,b, are 4-periodic

We assume that {a,} = ap, a1, a2, as,a9,a1,az,as,... and {b,} = by, b1, ba, b3,
bo, b1, b2, b3, - - -. The solution is given by

n—1 64 + box_57_ 32@0

n =0
Tan_s =z 5", H 0 (43)
5=0 a5 + bor_37_1 Y db
=0
s—1
n— 1a1+b1$ 4T — 22&1
l_O
Tam g = Z,El nn H , (44)
5=0 a5 + by _2x Z ak
=0

s—
l
n—1 CLS + b2$_3.13_1 Z as
—n =0
Tap—3 =2 TT_3 H 5 (45)

s+1 l
ag" 4+ bor_sr_3 Y ah
1=0

and

s—1
s l
n—1 a§ + bsr_oxg Z as
n —-n =0
Tan—2 = T2y " T_o I | S (46)

s=0 a“;+1 +bix_4x_o Z all
=0

as long as any of the denominators does not vanish.

7 Conclusion

In this paper, non-trivial symmetries for difference equations of the form (1) were
found. Consequently, the results were used to find formulas for the solutions of
the equations. Specific cases of the solutions were also discussed.
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