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Abstract

We use the Lie group analysis method to investigate the invariance prop-
erties and the solutions of

xn+1 =
xn−5xn−3

xn−1(an + bnxn−5xn−3)
.

We show that this equation has a two-dimensional Lie algebra and that
its solutions can be presented in a unified manner. Besides presenting
solutions of the recursive sequence above where an and bn are sequences
of real numbers, some specific cases are emphasized.
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1 Introduction

Difference equations are important in mathematical modelling, especially where
discrete time evolving variables are concerned. They also occur when studying
discretization methods for differential equations. Countless results in the subject
of difference equations have been recorded. For rational difference equations
of order greater than 1, the study can be quite challenging at the same time
rewarding. Rewarding in the sense that such a study lays ground for the theory
of global properties of difference equations (not necessarily rational) of higher
order.
In [4], the author developed an effective symmetry based algorithm to deal with
the obtention of solutions of difference equations of any order. However, the
calculation one deals with in this application to difference equations of order
greater than one can become cumbersome but with great recompense often
times. The method consists of finding a group of transformations that maps
solutions onto themselves. Symmetry method is a valuable tool and it has been
used to solve several difference equations [1–3, 7, 8].
In this paper, our objective is to obtain the symmetry operators of

xn+1 =
xn−5xn−3

xn−1(an + bnxn−5xn−3)
(1)
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where an and bn are real sequences and to find its solutions by way of symme-
tries. Without loss of generality, we equivalently study the forward difference
equation

un+6 =
unun+2

un+4(An +Bnunun+2)
. (2)

We refer the interested reader to [4, 9] for a deeper knowledge of Lie analysis.

2 Definitions and Notation

In this section, we briefly present some definitions and notation (largely from
Hydon in [4]) indispensable for the understanding of Lie symmetry analysis of
difference equations.

Definition 2.1 Let G be a local group of transformations acting on a manifold
M . A subset S ⊂ M is called G-invariant, and G is called symmetry group of
S, if whenever x ∈ S, and g ∈ G is such that g · x is defined, then g · x ∈ S.

Definition 2.2 Let G be a connected group of transformations acting on a man-
ifold M . A smooth real-valued function V : M → R is an invariant function for
G if and only if

X(V) = 0 for all x ∈M,

and every infinitesimal generator X of G.

Definition 2.3 A parameterized set of point transformations,

Γε : x 7→ x̂(x; ε), (3)

where x = xi, i = 1, . . . , p are continuous variables, is a one-parameter local Lie
group of transformations if the following conditions are satisfied:

1. Γ0 is the identity map if x̂ = x when ε = 0

2. ΓaΓb = Γa+b for every a and b sufficiently close to 0

3. Each x̂i can be represented as a Taylor series (in a neighborhood of ε = 0
that is determined by x), and therefore

x̂i(x : ε) = xi + εξi(x) +O(ε2), i = 1, ..., p. (4)

Assuming that the sixth-order difference equation has the form

un+6 =Ψ(n, un, . . . , un+5), n ∈ D (5)

for some smooth function Ω and a regular domain D ⊂ Z. To deduce the
symmetry group of (5), we search for a one parameter Lie group of point trans-
formations

Γε : (n, un) 7→ (n, un + εQ(n, un)), (6)
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in which ε is the parameter and Q a continuous function, referred to as charac-
teristic. Let

X =Q(n, un)
∂

∂un
+Q(n+ 1, un+1)

∂

∂un+1
+ · · ·+Q(n+ 5, un+5)

∂

∂un+5
(7)

be the corresponding ‘prolonged’ infinitesimal generator and S : n 7→ n+ 1 the
shift operator. The linearized symmetry condition is given by

S6Q−XΨ = 0. (8a)

Upon knowledge of the characteristic Q, it is important to introduce the canon-
ical coordinate

Sn =

∫
dun

Q(n, un)
, (9)

a useful tool which allows one to obtain the invariant V.

3 Main results

As earlier emphasized, our equation under study is

un+6 = Ψ =
unun+2

un+4(An +Bnunun+2)
. (10)

Appliying the criterion of invariance (8) to (10), we get

Q(n+ 6, un+6) +
unun+2

u2n+4 (An +Bnunun+2)
Q (n+ 4, un+4)

− Anun

un+4 ((An +Bnunun+2)
2Q (n+ 2, un+2)

− Anun+2

un+4 (An +Bnunun+2)
2Q (n, un) = 0. (11)

In order to eliminate un+3, we invoke implicit differentiation with respect to un
(regarding un+4 as a function of un, un+2 and un+3) via the operator

L =
∂

∂un
− Ψun

Ψun+4

∂

∂un+4
.

With some simplification, one gets

(An +Bnunun+2)Q′ (n+ 4, un+4)− (An +Bnunun+2)

un+4
Q (n+ 4, un+4)

+BnunQ(n+ 2, un+2)− (An +Bnunun+2)Q′(n, un)

+

(
2Bnun+2 +

An

un

)
Q (n, un) = 0. (12)
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Note that the symbol ′ stands for the derivative with respect to the continuous
variable. After twice differentiating (12) with respect to un, keeping un+2 and
un+4 fixed, we are led to the equation

−Bnunun+2Q
′′′(n, un)−AnQ

′′′(n, un) +
An

un
Q′′ (n, un)− 2An

un2
Q′ (n, un)

+
2An

un3
Q (n, un) = 0 (13)

Note that the characteristic in (13) is not a function of un+2 and so we split
(13) up with respect to un+2 to get the system

1 : Q′′′(n, un)− 1

un
Q′′ (n, un) +

2

un2
Q′ (n, un)− 2

un3
Q (n, un) = 0 (14a)

un+2 : Q′′′(n, un) = 0. (14b)

We find that the solution to (14) is

Q (n, un) = αnun
2 + βnun (15)

for some arbitrary functions αn and βn that depend on n. Substituting (16)
and its first, second and third shifts in (11), and then replacing the expression
of un+3 given in (10) in the resulting equation yields

Bnun
2un+2

2un+4
2αn+4 +Bnun

2un+2
2un+4(βn+4 + βn+3)

−Anun
2un+2un+4αn −Anunun+2

2un+4αn+2 +Anunun+2un+4
2αn+4

+ un
2un+2

2αn+2 −An (βn + βn+2 − βn+4 − βn+3) = 0. (16)

Equating all coefficients of all powers of shifts of un to zero and simplifying the
resulting system, we get its reduced form

αn = 0, (17)

βn + βn+2 = 0. (18)

The two independent solutions of the linear second-order difference equation
above are given by

βn = βn and βn = β̄n, (19)

where β = exp{iπ/2} and β̄ = − exp{iπ/2} is its complex conjugate. The
characteristic functions are given by

Q1(n, un) = βnun and Q2(n, un) = β̄nun, (20)

and so the Lie algebra of (10) is generated by

X1 =βnun
∂

∂un

+ βn+2un+2
∂

∂un+2

+ βn+4un+4
∂

∂un+4

(21)

X2 =β̄nun
∂

∂un

+ β̄n+2un+2
∂

∂un+2

+ β̄n+4un+4
∂

∂un+4

. (22)
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Using the canonical coordinate

Sn =

∫
dun

Q1(n, un)
=

∫
dun
βnun

=
1

βn
ln |un| (23)

and (17), we derive the invariant function Ṽn as follows:

Ṽn = Snβ
n + Sn+2β

n+2. (24)

Actually,

X1(Ṽn) = βn + βn+2 = 0 (25)

and

X2(Ṽn) = β̄n + β̄n+2 = 0. (26)

For the sake of convenience, we use

|Vn| = exp{−Ṽn} (27)

instead/ In other words, Vn = ±1/(unun+2). Using (10) and (27), one can prove
that

Vn+4 = AnVn ±Bn. (28)

Utilizing the plus sign, the solution of (28) can be written as

V4n+j =Vj

(
n−1∏
k1=0

A4k1+j

)
+

n−1∑
l=0

(
B4l+j

n−1∏
k2=l+1

A4k2+j

)
, (29)

where j = 0, 1, 2, 3. From here, obtaining the solution of (10) is straightforward.
We first employ (23) to get

|un| = exp (βnSn) . (30)

Secondly, we employ (24) to obtain

|un| = exp

(
βnc1 + β̄nc2 −

1

2

n−1∑
k1=0

βnβ̄k1 Ṽk1
− 1

2

n−1∑
k2=0

β̄nβk2 Ṽk2

)
. (31)

Lastly, we use (27) to get

|un| = exp

(
βnc1 + β̄nc2 +

1

2

n−1∑
k1=0

βnβ̄k1 ln |Vk1 |+
1

2

n−1∑
k2=0

β̄nβk2 ln |Vk2 |

)
,

(32a)

in which Vk is given in (28) with γ(n, k) = βnβ̄k. Note that the constants c1
and c2 satisfy

c1 + c2 = ln |u0| and β(c1 − c2) = ln |u1|. (32b)
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Note. Equations in (32) give the solutions of (2) in a unified manner.
On a further note, γ(n, k) = βnβ̄k satisfies

γ(0, 1) = β̄, γ(0, 2) = −1, γ(1, 0) = β, γ(1, 2) = −β, γ(1, 3) = −1,

γ(n, n) = 1, γ(n+ 2, k) = −γ(n, k),

γ(n, k + 2) = −γ(n, k), γ(4n, k) = γ(0, k), γ(n, 4k) = γ(n, 0).

(33)

From un given in (32a) and equation (33), observe that

|u4n+j | = exp

(
Hj +

4n+j−1∑
k1=0

Re(γ(0, k1)) ln |Vk1 |

)
(34)

in which
Hj = βjc1 + β̄jc2.

For j = 0, we have,

|u4n| = exp(H0 + ln |V0| − ln |V2|+ . . .+ ln |V4n−4| − ln |V4n−2|)

= exp(H0)

n−1∏
s=0

∣∣∣∣ V4sV4s+2

∣∣∣∣ . (35)

It can be shown that there is no need for the absolute values via the utilization
of the fact that

Vi =
1

uiui+2
. (36)

In order to deduce exp(H0), we set n = 0 in (35) and note that |u0| = exp(H0).
Thus

u4n = u0

n−1∏
s=0

V4s
V4s+2

.

Similarly, replacing n with 4n+ j for j = 0, 1, 2, 3, we obtain

U4n+j = uj

n−1∏
s=0

V4s+j

V4s+j+2
. (37)

Nevertheless, from (28), using the plus sign we are led to

V4n+j =Vj

(
n−1∏
k1=0

A4k1+j

)
+

n−1∑
l=0

(
B4l+j

n−1∏
k2=l+1

A4k2+j

)
, (38)
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for j = 0, 1, 2, 3, where V0 = 1
u0u2

. Thus, using (37) with j = 0, we get

U4n = u0

n−1∏
s=0

V4s
V4s+2

= u0

n−1∏
s=0

V0

(
s−1∏
k1=0

A4k1

)
+

s−1∑
l=0

(
B4l

s−1∏
k2=l+1

A4k2

)

V2

(
s−1∏
k1=0

A4k1+2

)
+

s−1∑
l=0

(
B4l+2

s−1∏
k2=l+1

A4k2+2

)

= u0

n−1∏
s=0

u4
u0

(
s−1∏
k1=0

A4k1

)
+ u0u2

s−1∑
l=0

(
B4l

s−1∏
k2=l+1

A4k2

)
(

s−1∏
k1=0

A4k1+2

)
+ u2u4

s−1∑
l=0

(
B4l+2

s−1∏
k2=l+1

A4k2+2

)

= u1−n0 un4

n−1∏
s=0

(
s−1∏
k1=0

A4k1

)
+ u0u2

s−1∑
l=0

(
B4l

s−1∏
k2=l+1

A4k2

)
(

s−1∏
k1=0

A4k1+2

)
+ u2u4

s−1∑
l=0

(
B4l+2

s−1∏
k2=l+1

A4k2+2

)

For j = 1, we have

U4n+1 = u1

n−1∏
s=0

V4s+1

V4s+3

= u1−n1 un5

n−1∏
s=0

(
s−1∏
k1=0

A4k1+1

)
+ u1u3

s−1∑
l=0

(
B4l+1

s−1∏
k2=l+1

A4k2+1

)
(

s−1∏
k1=0

A4k1+3

)
+ u3u5

s−1∑
l=0

(
B4l+3

s−1∏
k2=l+1

A4k2+3

)

For j = 2, we have

U4n+2 = u2

n−1∏
s=0

V4s+2

V4s+4

= un0u
−n
4 u2

n−1∏
s=0

(
s−1∏
k1=0

A4k1+2

)
+ u2u4

s−1∑
l=0

(
B4l+2

s−1∏
k2=l+1

A4k2+2

)
(

s∏
k1=0

A4k1

)
+ u0u2

s∑
l=0

(
B4l

s∏
k2=l+1

A4k2

)
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For j = 3, we get

U4n+3 = u3

n−1∏
s=0

V4s+3

V4s+5

= un1u
−n
5 u3

n−1∏
s=0

(
s−1∏
k1=0

A4k1+3

)
+ u3u5

s−1∑
l=0

(
B4l+3

s−1∏
k2=l+1

A4k2+3

)
(

s∏
k1=0

A4k1+1

)
+ u1u3

s∑
l=0

(
B4l+1

s∏
k2=l+1

A4k2+1

)

Hence, our solution in terms of xn (n > 0) is given by

x4n−5 = x1−n−5 xn−1

n−1∏
s=0

(
s−1∏
k1=0

a4k1

)
+ x−5x−3

s−1∑
l=0

(
b4l

s−1∏
k2=l+1

a4k2

)
(

s−1∏
k1=0

a4k1+2

)
+ x−3x−1

s−1∑
l=0

(
b4l+2

s−1∏
k2=l+1

a4k2+2

) ,
(39)

x4n−4 = x1−n−4 xn0

n−1∏
s=0

(
s−1∏
k1=0

a4k1+1

)
+ x−4x−2

s−1∑
l=0

(
b4l+1

s−1∏
k2=l+1

a4k2+1

)
(

s−1∏
k1=0

a4k1+3

)
+ x−2x0

s−1∑
l=0

(
b4l+3

s−1∏
k2=l+1

a4k2+3

) , (40)

x4n−3 = xn−5x
−n
−1x−3

n−1∏
s=0

(
s−1∏
k1=0

a4k1+2

)
+ x−3x−1

s−1∑
l=0

(
b4l+2

s−1∏
k2=l+1

a4k2+2

)
(

s∏
k1=0

a4k1

)
+ x−5x−3

∑s
l=0

(
b4l

s∏
k2=l+1

a4k2

)
(41)

and

x4n−2 = xn−4x
−n
0 x−2

n−1∏
s=0

(
s−1∏
k1=0

a4k1+3

)
+ x−2x0

s−1∑
l=0

(
b4l+3

s−1∏
k2=l+1

a4k2+3

)
(

s∏
k1=0

a4k1+1

)
+ x−4x−2

s∑
l=0

(
b4l+1

s∏
k2=l+1

a4k2+1

)
(42)

In the following sections, we specifically look at some special cases.

4 The case an , bn are 1-periodic

Let an = a and bn = b, where a and b are non-zero constants.
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4.1 Case: a 6= 1

We have

x4n−5 = x1−n−5 xn−1

n−1∏
s=0

as + bx−5x−3
1−as

1−a

as + bx−3x−1
1−as

1−a
,

x4n−4 = x1−n−4 xn0

n−1∏
s=0

as + bx−4x−2
1−as

1−a

as + bx−2x0
1−as

1−a
,

x4n−3 = xn−5x
−n
−1x−3

n−1∏
s=0

as + bx−3x−1
1−as

1−a

as+1 + bx−5x−3
1−as+1

1−a
,

x4n−2 = xn−4x
−n
0 x−2

n−1∏
s=0

as + bx−2x0
1−as

1−a

as+1 + bx−4x−2
1−as+1

1−a

as long as any of the denominators does not vanish.

Case: a = −1

We have

x4n−5 =


x1−n−5 xn−1

(
−1+bx−5x−3

−1+bx−3x−1

)bn−1
2 c

, if n is odd;

x1−n−5 xn−1

(
−1+bx−5x−3

−1+bx−3x−1

)bn−1
2 c+1

, if n is even;

x4n−4 =


x1−n−4 xn0

(
−1+bx−4x−2

−1+bx−2x0

)bn−1
2 c

, if n is even;

x1−n−4 xn0

(
−1+bx−4x−2

−1+bx−2x0

)bn−1
2 c+1

, if n is odd;

x4n−3 =


xn
−5x

−n
−1 x−3

−1+bx−5x−3

(
−1+bx−3x−1

−1+bx−5x−3

)bn−1
2 c+1

, if n is odd;

xn−5x
−n
−1x−3

(
−1+bx−3x−1

−1+bx−5x−3

)bn−1
2 c+1

, if n is even;

and

x4n−2 =


xn
−4x

−n
0 x−2

−1+bx−4x−2

(
−1+bx−2x0

−1+bx−4x−2

)bn−1
2 c+1

, if n is odd;

xn−4x
−n
0 x−2

(
−1+bx−2x0

−1+bx−4x−2

)bn−1
2 c+1

, if n is even;

9
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where bx−ix2−i 6= 1 for i = 2, 3, 4, 5.

4.2 Case: a = 1

The solution is given by

x4n−5 = x1−n−5 xn−1

n−1∏
s=0

1 + bx−5x−3s

1 + bx−3x−1s
, x4n−4 = x1−n−4 xn0

n−1∏
s=0

1 + bx−4x−2s

1 + bx−2x0s
,

x4n−3 = xn−5x
−n
−1x−3

n−1∏
s=0

1 + bx−3x−1s

1 + bx−5x−3(s+ 1)
,

x4n−2 = xn−4x
−n
0 x−2

n−1∏
s=0

1 + bx−2x0s

1 + bx−4x−2(s+ 1)
.

5 The case an, bn are 2-periodic

In this case, we have {an}∞n=0 = a0, a1, a0, a1, . . ., and similarly {bn}∞n=0 =
b0, b1, b0, b1, . . . where a0 6= a1, and b0 6= b1. Then the solution is given by

x4n−5 = x1−n−5 xn−1

n−1∏
s=0

as0 + b0x−5x−3
s−1∑
l=0

al0

as0 + b0x−3x−1
s−1∑
l=0

al0

,

x4n−4 = x1−n−4 xn0

n−1∏
s=0

as1 + b1x−4x−2
s−1∑
l=0

al1

as1 + b1x−2x0
s−1∑
l=0

al1

,

x4n−3 = xn−5x
−n
−1x−3

n−1∏
s=0

as0 + b0x−3x−1
s−1∑
l=0

al0

as+1
0 + b0x−5x−3

s∑
l=0

al0

and

x4n−2 = xn−4x
−n
0 x−2

n−1∏
s=0

as1 + b1x−2x0
s−1∑
l=0

al1

as+1
1 + b1x−4x−2

s∑
l=0

al1

as long as any of the denominators does not vanish.
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6 The case an, bn are 4-periodic

We assume that {an} = a0, a1, a2, a3, a0, a1, a2, a3, . . . and {bn} = b0, b1, b2, b3,
b0, b1, b2, b3, · · · . The solution is given by

x4n−5 = x1−n−5 xn−1

n−1∏
s=0

as0 + b0x−5x−3
s−1∑
l=0

al0

as2 + b2x−3x−1
s−1∑
l=0

al2

, (43)

x4n−4 = x1−n−4 xn0

n−1∏
s=0

as1 + b1x−4x−2
s−1∑
l=0

al1

as3 + b3x−2x0
s−1∑
l=0

al3

, (44)

x4n−3 = xn−5x
−n
−1x−3

n−1∏
s=0

as2 + b2x−3x−1
s−1∑
l=0

al2

as+1
0 + b0x−5x−3

s∑
l=0

al0

(45)

and

x4n−2 = xn−4x
−n
0 x−2

n−1∏
s=0

as3 + b3x−2x0
s−1∑
l=0

al3

as+1
1 + b1x−4x−2

s∑
l=0

al1

(46)

as long as any of the denominators does not vanish.

7 Conclusion

In this paper, non-trivial symmetries for difference equations of the form (1) were
found. Consequently, the results were used to find formulas for the solutions of
the equations. Specific cases of the solutions were also discussed.
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