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Abstract. In this paper, we investigate a set-valued solution of the following Pexider func-
tional equation

F (ax+ by) = αG(x) + βH(y)

with three unknown functions F , G and H, where a, b, α, β are positive real scalars.

1. Introduction and preliminaries

Assume that Y is a topological vector space satisfying the T0 separation axiom. For real

numbers s, t and sets A,B ⊂ Y we put sA + tB := {y ∈ Y ; y = sa + tb, a ∈ A, b ∈ B}.
Suppose that the space 2Y of all subsets of Y is endowed with the Hausdorff topology (see [4]).

A set-valued function F : X → 2Y is said to be additive if it satisfies the Cauchy functional

equation F (x1 + x2) = F (x1) + F (x2), x1, x2 ∈ X. The family of all closed and convex subsets

of Y will be denoted by CC(Y ), and the sets of all real, rational and positive integer numbers

are denoted by R,Q,N, respectively.

Lemma 1.1. [1] Let λ and µ be real numbers. If A and B are nonempty subsets of a real vector

space X, then

λ(A+B) = λA+ λB,

(λ+ µ)A ⊆ λA+ µB.

Moreover, if A is a convex set and λ, µ ≥ 0, then we have

(λ+ µ)A = λA+ µA.

Lemma 1.2. [3] Let A,B be subsets of Y and assume that B is closed and convex. If there

exists a bounded and nonempty set C ⊂ Y such that A+ C ⊂ B + C, then A ⊂ B.

Lemma 1.3. If (An)n∈N and (Bn)n∈N are decreasing sequences of compact subsets of Y , then⋂
n∈N(An +Bn) =

⋂
n∈NAn +

⋂
n∈NBn.

Lemma 1.4. If (An)n∈N is a decreasing sequence of compact subsets of Y , then An →
⋂

n∈NAn.

Lemma 1.5. If A is a bounded subset of Y and (sn)n∈N is a real sequence converging to an

s ∈ R, then snA→ sA.

Lemma 1.6. If An → A and Bn → B, then An +Bn → A+B.
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Lemma 1.7. If An → A and An → B, then clA = clB.

Lemma 1.3–1.7 are rather known and can be easily verified. The proofs of them can be found

in [1, 2].

2. Set-valued solution of the Pexider functional equation

In the section, we give the solution of the Pexider functional equation.

Theorem 2.1. Assume that (X,+) is a vector space and Y is a T0 topological vector space.

If set-valued functions F : X → CC(Y ), G : X → CC(Y ) and H : X → CC(Y ) satisfy the

functional equation

F (ax+ by) = αG(x) + βH(y) (2.1)

for all x, y ∈ X, where a, b, α and β are positive real numbers, then there exist an additive

set-valued function F0 : X → CC(Y ) and sets A,B ∈ CC(Y ) such that

F (x) = αF0(x) + αA+ βB, G(x) = F0(ax) +A and H(x) = F0(bx) +B

for all x ∈ X.

Proof. First, assume that 0 ∈ G(0) and 0 ∈ H(0). Then, for all x, y ∈ X, we have

F (x+ y) = F
(
a
x

a
+ b

y

b

)
= αG

(x
a

)
+ βH

(y
b

)
⊂ αG

(x
a

)
+ βH(0) + αG(0) + βH

(y
b

)
= F (x) + F (y).

Letting x = y in the above equation, we get F (2x) ⊂ 2F (x), which implies that the sequence

(2−nF (2nx))n∈N is decreasing. Put F0(x) :=
⋂

n∈N 2−nF (2nx), x ∈ X. It is clear that F0(x) ∈
CC(Y ) for all x ∈ X. Similarly, we get

αG(2x) + βH(0) = F (2ax) = F
(
ax+ b

(ax
b

))
= αG(x) + βH

(ax
b

)
⊂ αG(x) + αG(0) + βH

(ax
b

)
= αG(x) + F (ax) = αG(x) + αG(x) + βH(0) = 2αG(x) + βH(0).

In view of Lemma 1.2, we obtain that G(2x) ⊂ 2G(x), and consequently the sequence

(2−nG(2nx))n∈N is decreasing. Applying Lemma1.3 and this equality F (a2nx) = αG(2nx) +

βH(0), n ∈ N, we obtain

F0(ax) =
⋂
n∈N

2−nF (a2nx) = α
⋂
n∈N

2−nG(2nx) + β
⋂
n∈N

2−nH(0).

But
⋂

n∈N 2−nH(0) = {0}, since the setH(0) is bounded. Therefore F0(ax) = α
⋂

n∈N 2−nG(2nx)

for all x ∈ X. In an analogous way we show that the sequence (2−nH(2nx))n∈N is decreasing
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and F0(bx) = β
⋂

n∈N 2−nH(2nx) for all x ∈ X. Hence,using once more Lemma 1.3, we get

F0(x1 + x2) =
⋂
n∈N

2−nF (2nx1 + 2nx2) =
⋂
n∈N

2−n
(
αG

(
2nx1
a

)
+ βH

(
2nx2
b

))
=
⋂
n∈N

2−nαG

(
2nx1
a

)
+
⋂
n∈N

2−nβH

(
2nx2
b

)
= F0(x1) + F0(x2), x1, x2 ∈ X,

which means that the set-valued function F0 is additive.

Now observe that

F (nbx) + (n− 1)βH(0) = F (bx) + (n− 1)βH(x) (2.2)

for all x ∈ X and n ∈ N. Indeed, for n = 1 the equality is trivial. Assume that it holds for a

natural number k. Then, in virtue of (2.1), we obtain

F ((k + 1)bx) + kβH(0) = αG

(
kbx

a

)
+ βH(x) + kβH(0) = F (kbx) + βH(x) + (kβ − β)H(0)

= F (bx) + (k − 1)βH(x) + βH(x) = F (x) + kβH(x).

which proves that (2.2) holds for n = k + 1. Thus, by induction, it holds for all n ∈ N. In

particular, we have

F (2nx) + (2n − 1)H(0) = F (x) + (2n − 1)H
(x
b

)
,

and so

2−nF (2nx) + (1− 2−n)H(0) = 2−nF (x) + (1− 2−n)H
(x
b

)
for all x ∈ X. By Lemma 1.4, 2−nF (2nx)→

⋂
n∈N 2−nF (2nx) = F0(x).

On the other hand, by Lemma 1.5, 1−2−nH(0)→ H(0), 2−nF (x)→ {0} and (1−2−n)H
(
x
b

)
→

H
(
x
b

)
. Thus, using Lemmas 1.6 and 1.7, we get cl[F0(x) +H(0)] = clH

(
x
b

)
, whence H

(
x
b

)
=

F0(x) + H(0) for all x ∈ X. Similarly, we can obtain G
(
x
a

)
= F0(x) + G(0), x ∈ X. Let

A := G(0) and B := H(0). Then G(x) = F0(ax) + A and H(x) = F0(bx) + B for all x ∈ X.

Moreover F (x) = αF0(x) + αA+ βB, x ∈ X. This finishes our proof in the case that 0 ∈ G(0)

and 0 ∈ H(0).

In the opposite case, fix arbitrarily points a ∈ G(0) and b ∈ H(0), and consider the set-valued

functions F1, G− 1, H1 : X → CC(Y ) defined by F1(x) := F (x)− αa− βb,G1(x) := G(x)− a
and H1 := H(x)− b, x ∈ X. These set-valued functions satisfy the equation (2.1) and moreover

0 ∈ G1(0) and 0 ∈ H1(0). Therefore, by what we have discussed previously, we can get the

same result. This completes the proof. �

In [2], Nikodem proved that a set-valued function F0 : [0,∞)→ CC(Y ), where Y is a locally

convex Hausdorff space, is additive if and only if there exists an additive function f : [0,∞)→ Y

and a set K ∈ CC(Y ) such that F0(x) = f(x) +xK, x ∈ [0,∞). Thus we can get the following.

Theorem 2.2. Let Y be a locally convex Hausdorff space. The set-valued functions F : [0,∞)→
CC(Y ), G : [0,∞) → CC(Y ) and H : [0,∞) → CC(Y ) satisfy the functional equation (2.1) if

and only if there exist an additive function f : [0,∞)→ Y and sets K,A,B ∈ CC(Y ) such that

F (x) = αf(x) + αKx+ αA+ βB,G(x) = f(ax) + akx+A and H(x) = f(bx) + bkx+B
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for all x ∈ [0,∞).
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