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Abstract : In this paper we construct Carlitz’s type twisted (p, q)-Euler zeta function. In order

to define Carlitz’s type twisted (p, q)-Euler zeta function, we introduce the Carlitz’s type twisted

(p, q)-Euler numbers and polynomials by generalizing the Euler numbers and polynomials, Carlitz’s

type q-Euler numbers and polynomials. We also give some interesting properties, explicit formulas, a

connection with Carlitz’s type twisted (p, q)-Euler numbers and polynomials. Finally, we investigate

the zeros of the Carlitz’s type twisted (p, q)-Euler polynomials by using computer.
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1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers and polynomials,

Euler numbers and polynomials, Genocchi numbers and polynomials, tangent numbers and polyno-

mials(see [1-10]). In this paper, we define Carlitz’s type twisted (p, q)-Euler numbers and polynomials

and study some properties of the Carlitz’s type twisted (p, q)-Euler numbers and polynomials.

Throughout this paper, we always make use of the following notations: N denotes the set of

natural numbers, Z+ = N ∪ {0} denotes the set of nonnegative integers, Z−
0 = {0,−1,−2,−3, . . .}

denotes the set of nonpositive integers, Z denotes the set of integers, R denotes the set of real

numbers, and C denotes the set of complex numbers.

We remember that the classical Euler numbers En and Euler polynomials En(x) are defined

by the following generating functions(see [1, 2, 3, 4, 5])

2

et + 1
=

∞∑
n=0

En
tn

n!
, (|t| < π). (1.1)

and (
2

et + 1

)
ext =

∞∑
n=0

En(x)
tn

n!
, (|t| < π). (1.2)

respectively.

The (p, q)-number is defined as

[n]p,q =
pn − qn

p− q
= pn−1 + pn−2q + pn−3q2 + · · ·+ p2qn−3 + pqn−2 + qn−1.

It is clear that (p, q)-number contains symmetric property, and this number is q-number when p = 1.

In particular, we can see limq→1[n]p,q = n with p = 1.

By using (p, q)-number, we define the (p, q)-analogue of Euler polynomials and numbers, which

generalized the previously known numbers and polynomials, including the Carlitz’s type q-Euler

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.3, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

582 RYOO 582-587



numbers and polynomials. We begin by recalling here the Carlitz’s type q-Euler numbers and

polynomials(see 1, 2, 3, 4, 5]).

Definition 1. The Carlitz’s type q-Euler polynomials En,q(x) are defined by means of the

generating function

Fq(t, x) =
∞∑

n=0

En,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m+x]qt. (1.3)

and their values at x = 0 are called the Carlitz’s type q-Euler numbers and denoted En,q.

Many kinds of of generalizations of these polynomials and numbers have been presented in

the literature(see [1-10]). Based on this idea, we generalize the Carlitz’s type q-Euler number En,q

and q-Euler polynomials En,q(x). It follows that we define the following (p, q)-analogues of the the

Carlitz’s type q-Euler number En,q and q-Euler polynomials En,q(x) (see [6, 7, 9, 10]).

Definition 2. For 0 < q < p ≤ 1, the Carlitz’s type (p, q)-Euler numbers En,p,q and polyno-

mials En,p,q(x) are defined by means of the generating functions

Fp,q(t) =

∞∑
n=0

En,p,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m]p,qt. (1.4)

and

Fp,q(t, x) =

∞∑
n=0

En,p,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m+x]p,qt, (1.5)

respectively.

In the following section, we define Carlitz’s type twisted (p, q)-Euler zeta function. We introduce

the Carlitz’s type twisted (p, q)-Euler polynomials and numbers. After that we will investigate

some their properties. Finally, we investigate the zeros of the Carlitz’s type twisted (p, q)-Euler

polynomials by using computer.

2. Twisted (p, q)-Euler numbers and polynomials

In this section, we define twisted (p, q)-Euler numbers and polynomials and provide some of

their relevant properties. Let r be a positive integer, and let ω be rth root of 1.

Definition 2. For 0 < q < p ≤ 1, the Carlitz’s type twisted (p, q)-Euler numbers En,p,q,ω and

polynomials En,p,q,ω(x) are defined by means of the generating functions

Fp,q,ω(t) =
∞∑

n=0

En,p,q,ω(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqmωme[m]p,qt. (2.1)

and

Fp,q,ω(t, x) =
∞∑

n=0

En,p,q,ω(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqmωme[m+x]p,qt, (2.2)

respectively.

Setting p = 1 in (2.1) and (2.2), we can obtain the corresponding definitions for the Carlitz’s

type twisted q-Euler number En,q,ω and q-Euler polynomials En,q,ω(x) respectively. Obviously, if

we put ω = 1, then we have

En,p,q,ω(x) = En,p,q(x), En,p,q,ω = En,p,q.

Putting p = 1, we have

lim
q→1

En,p,q,ω(x) = En,ω(x), lim
q→1

En,p,q,ω = En,ω.
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By using above equation (2.1), we have

∞∑
n=0

En,p,q,ω
tn

n!
= [2]q

∞∑
m=0

(−1)mqmωme[m]p,qt

=
∞∑

n=0

(
[2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + ωql+1pn−l

)
tn

n!
.

(2.3)

By comparing the coefficients tn

n! in the above equation, we have the following theorem.

Theorem 3. For n ∈ Z+, we have

En,p,q,ω = [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + ωql+1pn−l
.

If we put p = 1 in the above theorem we obtain

En,p,q,ω = [2]q

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + ωql+1
.

By (2.2), we obtain

En,p,q,ω(x) = [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x 1

1 + ωql+1pn−l
. (2.4)

By using (2.2) and (2.4), we obtain

∞∑
n=0

En,p,q,ω(x)
tn

n!
=

∞∑
n=0

(
[2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x 1

1 + ωql+1pn−l

)
tn

n!

= [2]q

∞∑
m=0

(−1)mqmωme[m+x]p,qt.

(2.5)

Since [x+ y]p,q = py[x]p,q + qx[y]p,q, we see that

En,p,q,ω(x) = [2]q

n∑
l=0

(
n

l

)
[x]n−l

p,q qxl
l∑

k=0

(
l

k

)
(−1)k

(
1

p− q

)l
1

1 + ωqk+1pn−k
. (2.6)

Next, we introduce Carlitz’s type twisted (h, p, q)-Euler polynomials E
(h)
n,p,q,ω(x).

Definition 4. The Carlitz’s type twisted (h, p, q)-Euler polynomials E
(h)
n,p,q,ω(x) are defined by

E(h)
n,p,q(x) = [2]q

∞∑
m=0

(−1)mqmphmωm[m+ x]np,q. (2.7)

By using (2.7) and (p, q)-number, we have the following theorem.

Theorem 5. For n ∈ Z+, we have

E(h)
n,p,q,ω(x) = [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x 1

1 + ωql+1pn−l+h
.

By (2.6) and Theorem 2.4, we have

En,p,q,ω(x) =
n∑

l=0

(
n

l

)
[x]n−l

p,q qxlE
(n−l)
l,p,q,ω
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The following elementary properties of the (p, q)-analogue of Euler numbers En,p,q,ω and poly-

nomials En,p,q,ω(x) are readily derived form (2.1) and (2.2). We, therefore, choose to omit details

involved.

Theorem 6. (Distribution relation) For any positive integer m(=odd), we have

En,p,q,ω(x) =
[2]q
[2]qm

[m]np,q

m−1∑
a=0

(−1)aqaωaEn,pm,qm,ωm

(
a+ x

m

)
, n ∈ Z+.

Theorem 7. (Property of complement) For n ∈ Z+, we have

En,p−1,q−1,ω−1(1− x) = (−1)nωpnqnEn,p,q,ζ(x).

Theorem 8. For n ∈ Z+, we have

ωqEn,p,q,ω(1) + En,p,q,ω =

{
[2]q, if n = 0,

0, if n ̸= 0.

By (2.1) and (2.2), we get

− [2]q

∞∑
l=0

(−1)l+nql+nωl+ne[l+n]p,qt + [2]q

∞∑
l=0

(−1)lqlωle[l]p,qt = [2]q

n−1∑
l=0

(−1)lqlωle[l]p,qt. (2.8)

Hence we have

(−1)n+1qnωn
∞∑

m=0

Em,p,q,ω(n)
tm

m!
+

∞∑
m=0

Em,p,q,ω
tm

m!
=

∞∑
m=0

(
[2]q

n−1∑
l=0

(−1)lqlωl[l]mp,q

)
tm

m!
. (2.9)

By comparing the coefficients tm

m! on both sides of (2.9), we have the following theorem.

Theorem 9. For n ∈ Z+, we have

n−1∑
l=0

(−1)lqlωl[l]mp,q =
(−1)n+1qnωnEm,p,q,ω(n) + Em,p,q,ω

[2]q
.

We investigate the zeros of the twisted (p, q)-Euler polynomials En,p,q,ω(x) by using a computer.

We plot the zeros of the twisted (p, q)-Euler polynomials En,p,q,ω(x) for x ∈ C(Figure 1). In Figure

1(top-left), we choose n = 20, p = 1/2, q = 1/10 and ω = e
2πi
2 . In Figure 1(top-right), we choose

n = 40, p = 1/2, q = 1/10 and ω = e
2πi
2 . In Figure 1(bottom-left), we choose n = 20, p = 1/2, q =

1/10 and ω = e
2πi
4 . In Figure 1(bottom-right), we choose n = 40, p = 1/2, q = 1/10 and ω = e

2πi
4 .

3. Twisted (p, q)-Euler zeta function

By using twisted (p, q)-Euler numbers and polynomials, (p, q)-Euler zeta function and Hurwitz

(p, q)-Euler zeta function is defined. These functions interpolate the twisted (p, q)-Euler numbers

En,p,q,ω, and polynomials En,p,q,ω(x), respectively. From (2.1), we note that

dk

dtk
Fp,q,ω(t)

∣∣∣∣
t=0

= [2]q

∞∑
m=0

(−1)nqmωm[m]kp,q

= Ek,p,q,ω, (k ∈ N).

By using the above equation, we are now ready to define twisted (p, q)-Euler zeta function.
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Figure 1: Zeros of En,p,q,ω(x)

Definition 10. Let s ∈ C with Re(s) > 0.

ζp,q,ω(s) = [2]q

∞∑
n=1

(−1)nqnωn

[n]sp,q
. (3.1)

Note that ζp,q,ω(s) is a meromorphic function on C. Note that, if p = 1, q → 1, then ζp,q,ω(s) = ζE(s)

which is the Euler zeta functions(see [4]). Relation between ζp,q,ω(s) and Ek,p,q,ω is given by the

following theorem.

Theorem 11. For k ∈ N, we have

ζp,q,ω(−k) = Ek,p,q,ω.

Observe that ζp,q,ω(s) function interpolates Ek,p,q,ω numbers at non-negative integers. By using

(2.2), we note that

dk

dtk
Fp,q,ω(t, x)

∣∣∣∣
t=0

= [2]q

∞∑
m=0

(−1)mqmωm[m+ x]kp,q (3.2)

and (
d

dt

)k
( ∞∑

n=0

En,p,q(x)
tn

n!

)∣∣∣∣∣
t=0

= Ek,p,q(x), for k ∈ N. (3.3)

By (3.2) and (3.3), we are now ready to define the Hurwitz (p, q)-Euler zeta function.
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Definition 12. Let s ∈ C with Re(s) > 0 and x /∈ Z−
0 .

ζp,q,ω(s, x) = [2]q

∞∑
n=0

(−1)nqnωn

[n+ x]sp,q
. (3.4)

Note that ζp,q,ω(s, x) is a meromorphic function on C. Obverse that, if p = 1 and q → 1, then

ζp,q,ω(s, x) = ζE(s, x) which is the Hurwitz Euler zeta functions(see [1, 3, 6]). Relation between

ζp,q,ω(s, x) and Ek,p,q,ω(x) is given by the following theorem.

Theorem 13. For k ∈ N, we have

ζp,q,ω(−k, x) = Ek,p,q,ω(x).

Observe that ζp,q,ω(−k, x) function interpolates Ek,p,q,ω(x) numbers at non-negative integers.
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