
Reachable sets for semilinear
integrodifferential control systems

Hyun-Hee Roh1 and Jin-Mun Jeong2,∗

1,2Department of Applied Mathematics, Pukyong National University

Busan 48513, South Korea

E-mail: hhn9486@hanmail.net, ∗jmjeong@pknu.ac.kr(Corresponding author)

Abstract
In this paper, we consider a control system for semilinear integrodifferential

equations in Hilbert spaces with Lipschitz continuous nonlinear term. Our
method is to find the equivalence of approximate controllability for the given
semilinear system and the linear system excluded the nonlinear term, which is
based on results on regularity for the mild solution. Finally, we give a simple
example to which our main result can be applied.
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1 Introduction

Let H and V be real Hilbert spaces such that V is a dense subspace in H. In this
paper, we are concerned with the control results for the following retarded semilinear
control system in Hilbert space H:{

x
′
(t) = Ax(t) + g(t, x(t),

∫ t
0
k(t, s, x(s))ds)) +Bu(t), t > 0,

x(0) = x0,
(1.1)
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where t > 0, B is a bounded linear controller, and u(t) is an appropriate control
functions. Let A be the operator associated with a bounded sesquilinear form defined
in V × V satisfying G̊arding inequality. Then it is well known that S(t) generated
by A is an analytic semigroup in both H and V ∗, where V ∗ is the dual space of V ,
and so the system (1.1) may be considered as an system in both H and V ∗. g is is
a nonlinear mapping as detailed in Section 2.

Whether the reachable set associated with control space in dense subset of H.
This is called an approximate controllability problem. As for linear evolution sys-
tems in general Banach, there are many papers and monographs, see [1, 2], Triggiani
[3], Curtain and Zwart [4] and references and therein.

The controllability for nonlinear control systems has been studied by many au-
thors, for example, control of nonlinear infinite dimensional systems in [5], control-
lability for parabolic equations with uniformly bounded nonlinear terms in [6], local
controllability of neutral functional differential systems in [7].

Recently, the approximate controllability for semilinear control systems can be
founded in [8, 9, 10], their results give sufficient condition on strict assumptions on
the control action operator B. Similar considerations of semilinear systems have
been dealt with in many references [11, 12, 13, 14].

We investigate the equivalence of approximate controllability for (1.1) such that
excluded the nonlinear term and the controller. The solution mapping from the
initial space to the solution space is Lipschitz continuous in [0, T ]. We no longer
require the strict range condition on B, and the uniform boundedness in [6] but
instead we need the regularity and a variation of solutions of the given equations.
For the basis of our study we construct the fundamental solution and establish
variations of constant formula of solutions for the linear systems, see [15, 16].

Based on L2-regularity properties of semilinear integrodifferential equations in
Hilbert space and the regularity of solutions discussed in Section 2. We will obtain
the relations between the reachable set of the semilinear system and that of its
corresponding linear system in Section 3. Finally, a simple example to which our
main result can be applied is given.

2 Regularity for retarded semilinear equations

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and the
corresponding injections are continuous. The norms on V , H and V ∗ will be denoted
by || · ||, | · | and || · ||∗, respectively. The duality pairing between the element v1
of V ∗ and the element v2 of V is denoted by (v1, v2), which is the ordinary inner
product in H if v1, v2 ∈ H.
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For l ∈ V ∗ we denote (l, v) by the value l(v) of l at v ∈ V . The norm of l as
element of V ∗ is given by

||l||∗ = sup
v∈V

|(l, v)|
||v||

.

Therefore, we assume that V has a stronger topology than H and, for brevity, we
may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V. (2.1)

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying
G̊arding’s inequality

Re a(u, u) ≥ ω1||u||2 − ω2|u|2, (2.2)

where ω1 > 0 and ω2 is a real number. Let A be the operator associated with this
sesquilinear form:

(Au, v) = −a(u, v), u, v ∈ V. (2.3)

Then A is a bounded linear operator from V to V ∗ by the Lax-Milgram Theorem.
The realization of A in H which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}

is also denoted by A. It is well known that A generates an analytic semigroup in
both of H and V ∗(see [17]).

From the following inequalities

ω1||u||2 ≤ Re a(u, u) + ω2|u|2 ≤ |Au| |u|+ ω2|u|2 ≤ max{1, ω2}||u||D(A)|u|,

where
||u||D(A) = (|Au|2 + |u|2)1/2

is the graph norm of D(A), it follows that there exists a constant C > 0 such that

||u|| ≤ C||u||1/2D(A)|u|
1/2. (2.4)

Thus we have the following sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗, (2.5)

where each space is dense in the next one, which is continuous injection.

Lemma 2.1. With the notations (2.1), (2.4), and (2.5), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section
1.3.3 of [18]).
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Assumption (K). Let k : R+ × [ − h, 0] × V → H be a nonlinear mapping
satisfying the following:

(K1) For any x ∈ V the mapping k(·, ·, x) is measurable;

(K2) There exist positive constants K0, K1 such that

|k(t, s, x)− k(t, s, y)| ≤ K1||x− y||,
|k(t, s, 0)| ≤ K0

for all (t, s) ∈ R+ × [−h, 0] and x, y ∈ V .

Assumption (G). Let g : R+×V ×H → H be a nonlinear mapping satisfying the
following:

(G1) For any x ∈ V , y ∈ H the mapping g(·, x, y) is measurable;

(G2) There exist positive constants L0, L1, L2 such that

|g(t, x, y)− g(t, x̂, ŷ)| ≤ L1||x− x̂||+ L2|y − ŷ|,
|g(t, 0, 0)| ≤ L0

for all t ∈ R+, x, x̂ ∈ V , and y, ŷ ∈ H.

For x ∈ L2(−h, T ;V ), T > 0 we set

G(t, x) = g(t, x(t),

∫ t

0

k(t, s, x(s))ds).

The above operator g is the semilinear case of the nonlinear part of quasilinear
equations considered by Yong and Pan [19]. The mild solution of (1.1) is represented
by

x(t) = S(t)x0 +

∫ t

0

{
G(s, x(s)0 +Bu(s)

}
ds, t ≥ 0.

Lemma 2.2. Let x ∈ L2(0, T ;V ), T > 0. Then G(·, x) ∈ L2(0, T ;H) and

||G(·, x)||L2(0,T ;H) ≤ (L0 +K0L2)
√
T + (L1 + L2K1T )||x||L2(0,T ;V ).

Moreover if x1, x2 ∈ L2(0, T ;V ), then

||G(·, x1)−G(·, x2)||L2(0,T ;H) ≤ (L1 + L2K1T )||x1 − x2||L2(0,T ;V ). (2.6)
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Proof. Hence, from (K2), (G2) and the above inequality it is easily seen that

||G(·, x)||L2(0,T ;H) ≤ ||G(·, 0)||+ ||G(·, x)−G(·, 0)||

≤ L0

√
T + L1||x||L2(0,T ;V ) + L2||

∫ ·
0

k(·, s, x(s))ds||L2(0,T ;H)

≤ L0

√
T + L1||x||L2(0,T ;V ) + L2K1T ||x||L2(0,T ;V ) +K0L2

√
T

≤ (L0 +K0L2)
√
T + (L1 + L2K1T )||x||L2(0,T ;V )

Similarly, we can prove (2.6).

In view of Lemma 2.2, we can apply the regularity results of Theorem 3.1 of [10]
to (1.1), and so we obtain the following results.

Proposition 2.1. 1) Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then there exists a
unique solution x of (2.7) belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|x0|+ ||k||L2(0,T ;V ∗)), (2.7)

where C1 is a constant depending on T .

2) If x0 ∈ H and k ∈ L2(0, T ;V ∗), then the mapping

H × L2(0, T ;V ∗) 3 (x0, k) 7→ x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗)

is Lipschitz continuous.

Here, we note that by using interpolation theory, we have that for z ∈ L2(0, T ;V )∩
W 1,2(0, T ;V ∗), there exists a constant C2 > 0 such that

||z||C([0,T ];H) ≤ C2||z||L2(0,T ;V )∩W 1,2(0,T ;V ∗). (2.8)

3 Approximately reachable sets

Let U be a Banach space and the controller operator B is bounded linear operator
from another Banach space U to X.
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Let S(t) be an analytic semigroup generation by A. Then we may assume that there
exists a positive constant C0 such that

||S(t)|| ≤ C0, ||AS(t)|| ≤ C0/t(t > 0). (3.1)

The solution x(t) = x(t;x0, G, u) of initial value problem (1,1) is the following form:

x(t;x0, G, u) = S(t)x0 +

∫ t

0

S(t− s){G(t, x(s)) +Bu(s)}ds, t > 0,

For T > 0, x0 ∈ H and u ∈ L2(0, T ;U) we define reachable sets as follows.

LT (x0) = {x(T ;x0, 0, u) : u ∈ L2(0, T ;U)},
RT (x0) = {x(T ;x0, G, u) : u ∈ L2(0, T ;U)},

L(x0) =
⋃
T>0

LT (x0), R(x0) =
⋃
T>0

RT (x0).

Definition 3.1. (1) System (1.1) is said to be H-approximately controllable for
initial value x0 (resp. in time T ) if R(x0) = H ( resp. RT (x0) = H).
(2) The linear system corresponding (1.1) is said to be H-approximately controllable
for initial value x0 (resp. in time T ) if L(x0) = H ( resp. LT (x0) = H).

Remark 3.1. Since A generate an analytic semigroup, the following (1)-(4) are
equivalent for the linear system (see [2, Theorem 3.10]).

(1) L(x0) = H ∀x0 ∈ H.

(2) L(0) = H.

(3) LT (x0) = H ∀x0 ∈ H.

(4) LT (0) = H.

Theorem 3.1. For any T > 0 we have

RT (0) ⊂ LT (0).

Proof. Let z0 /∈ LT (0). Since LT (0) is a balanced closed convex subspace, we have
αz0 /∈ LT (0) for every α ∈ R, and

inf{||z0 − z|| : z ∈ LT (0)} = d.

By the formula (2.7) we have

||x(·; 0, G, u)||L2(0,T ;V ) ≤ C1||B||||u||L2(0,T ;U), (3.2)
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where C1 is the constant in Proposition 2.1. For every u ∈ L2(0, T ;U), we choose a
constant α > 0 such that

C0{(L0 +K0L2)
√
T + (L1 + L2K1T )C1||B||||u||L2(0,T ;U)} < αd. (3.3)

Hence form (3.2), (3.3) and by using Hölder inequality, it follows that

|x(T ; 0, G, u)− αz0|

≥ |
∫ T

0

S(T − s)Bu(s)ds− αz0| − |
∫ T

0

S(T − s)G(s, x(s))ds|

≥ αd− C0{(L0 +K0L2)
√
T + (L1 + L2K1T )||x||L2(0,T ;V )}

≥ αd− C0{(L0 +K0L2)
√
T + (L1 + L2K1T )C1||B||||u||L2(0,T ;U)} > 0.

Thus, we have αz0 /∈ RT (0).

Lemma 3.1. Suppose that k ∈ L2(0, T ;H) and x(t) =
∫ t
0
S(t − s)k(s)ds for 0 ≤

t ≤ T . Then there exists a constant C3 such that

||x||L2(0,T ;D(A)) ≤ C1||k||L2(0,T ;H), (3.4)

||x||L2(0,T ;H) ≤ C3T ||k||L2(0,T ;H), (3.5)

and
||x||L2(0,T ;V ) ≤ C3

√
T ||k||L2(0,T ;H). (3.6)

Proof. The assertion (3.4) is immediately obtained by (2.7). Since

||x||2L2(0,T ;H) =
∫ T
0
|
∫ t
0
S(t− s)k(s)ds|2dt ≤ C0

∫ T
0

(
∫ t
0
|k(s)|ds)2dt

≤ C0

∫ T
0
t
∫ t
0
|k(s)|2dsdt ≤ C0

T 2

2

∫ T
0
|k(s)|2ds

it follows that
||x||L2(0,T ;H) ≤ T

√
C0/2||k||L2(0,T ;H).

From (2.4), (3.4), and (3.5) it holds that

||x||L2(0,T ;V ) ≤ C
√
C1T (M/2)1/4||k||L2(0,T ;H).

So, if we take a constant C3 > 0 such that

C3 = max{
√
C0/2, C

√
C1(C0/2)1/4},

the proof is complete.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.3, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

563 Hyun-Hee Roh 557-569



Theorem 3.2. Under Assumptions (K) and (G), for any x0 ∈ H we have

LT (x0) ⊂ RT (x0).

.

Proof. Let u ∈ L2(0, T ;U) be arbitrary fixed. Then by (2.7) we have

||xu||L2(0,T ;V ) ≤ C1(|x0|+ ||B||||u||L2(0,T ;U)),

where xu is the solution of (1.1) corresponding to the control u. For any ε > 0, we
can choose a constant δ > 0 satisfying

min{
√
δ, δ} < min

[{
7C3(L1 + L2K1T ))

}−1
, (3.7)

ε
{
C3(L0 +K0L2

√
T )
}−1

,

ε
{
C3(L1 + L2K1T )(C1C2||xu||L2(0,T ;V )∩W 1,2(0,T ;V ∗) + ε)

}−1
,

ε
{
C3(C0||xu||L2(0,T ;V )∩W 1,2(0,T ;V ∗) + ε)(L1 + L2K1T )

}−1
,

ε
{

(C2
3(L0 +K0L2)

√
T + ε)(L1 + L2K1T )

}−1]
/6.

Set

x1 := x(T − δ;x0, G, u) = S(T − δ)x0+

+

∫ T−δ

0

S(T − δ − s)G(s, xu(s))ds+

∫ T−δ

0

S(T − δ − s)Bu(s)ds,

where xu(t) = x(t;x0, G, u) for 0 < t ≤ T . Consider the following problem:{
y
′
(t) = Ay(t) +Bu(t), δ < t ≤ T,

y(T − δ) = x1, y(s) = 0 − h ≤ s ≤ 0.
(3.8)

The solution of (3.8) with respect to the control w ∈ L2(T − δ, T ;U) is denoted by

yw(T ) = S(δ)x1 +

∫ T

T−δ
S(T − s)Bw(s)ds (3.9)

= S(T )x0 + S(δ)

∫ T−δ

0

S(T − δ − s)G(s, xu(s))ds

+ S(δ)

∫ T−δ

0

S(T − δ − s)Bu(s)ds+

∫ T

T−δ
S(T − s)Bw(s)ds.
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Then since z ∈ LT (x0), and LT (x0) = L(0) is independent of the time T and initial
data x0(see Remark 2.1), there exists w1 ∈ L2(T − δ, T ;U) such that

sup
T−δ≤t≤T

|yw1(t)− z| <
ε

6
, (3.10)

and hence, by (3.9),

|
∫ t

T−δ
S(T − s)Bw1(s)ds| ≤ C0||xu||L2(0,T−δ;V ) +

ε

6
, t− δ ≤ t ≤ T. (3.11)

Now, we set

v(s) =

{
u if 0 ≤ s ≤ T − δ,
w1(s) if T − δ < s < T.

Then v ∈ L2(0, T ;U). Observing that

xv(t;G, v) = S(t)x0 +

∫ t

0

S(t− τ){G(τ, xv(τ)) +Bv(τ)}dτ,

from (3.9) and (3.10) we obtain that

|x(T ;x0, G, v)− z| ≤ |yw1(T )− z|+ |x(T ;x0, G, v)− yw1(T )| (3.12)

≤ |yw1(T )− z|

+
∣∣ ∫ T

0

S(T − s)G(s, xv(s))ds− S(δ)

∫ T−δ

0

S(T − δ − s)G(s, xu(s))ds
∣∣

+
∣∣ ∫ T

0

S(T − s)Bv(s)ds− S(δ)

∫ T−δ

0

S(T − δ − s)Bu(s)ds

−
∫ T

T−δ
S(T − s)Bw1(s)ds

∣∣
≤ ε

6
+
∣∣ ∫ T

T−δ
S(T − s)G(s, xw1(s))ds

∣∣
≤ ε

6
+ II.

Here, we remind that the xw1 is represented by

xw1(t) =S(t)x(T − δ;x0, G, u)

+

∫ t

T−δ
S(T − s)G(s, xw1(s))ds+

∫ t

T−δ
S(T − s)Bw1(s))ds
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for T − δ < t ≤ T . Here, by (2.7) we have

||S(·)x(T − δ;x0, G, u)||L2(0,T ;V ) ≤ C1|x(T − δ;x0, G, u)| (3.13)

≤ C1C2||xu||L2(0,T ;V )∩W 1,2(0,T ;V ∗).

Put

p(t) =

∫ t

T−δ
S(t− s)G(s, xw1(s))ds, T − δ < t ≤ T,

and

q(t) :=

∫ T

t−δ
S(t− s)Bw1(s)ds T − δ < t ≤ T.

Then with aid of (3.6) of Lemma 3.1 and Lemma 2.2, we have

||p||L2(T−δ,T ;V ) ≤ C3

√
δ||G(·, xw1)||L2(T−δ,T ;V ) (3.14)

≤ C3

√
δ{(L0 +K0L2)

√
T + (L1 + L2K1T )||xw1||L2(T−δ,T ;V )},

and by (3.11),

||q||L2(T−δ,T ;V ) ≤
√
δ(C0||xu||L2(0,T−δ;V ) +

ε

6
). (3.15)

Since C3

√
δ(L1 + L2K1T )) < 1 by virtue of (3.7), by (3.13)-(3.15), we get

||xw1 ||L2(T−δ,T ;V ) ≤{C1C2||xu||L2(0,T ;V )∩W 1,2(0,T ;V ∗) (3.16)

+
√
δ(C0||xu||L2(0,T−δ;V ) +

ε

6
)

+ C3

√
δT (L0 +K0L2)}{1− C3

√
δ(L1 + L2K1T ))}−1.

Hence, with aid of (3.6), (3.7), (3.16), and by using the Hölder inequality, we have

II =
∣∣ ∫ T

T−δ
S(T − s)G(s, xw1(s))ds

∣∣ (3.17)

≤ C3

√
δT{(L0 +K0L2) + (L1 + L2K1T )||xw1||L2(T−δ,T ;V )}

≤ C3

√
δT (L0 +K0L2) + C3

√
δ(L1 + L2K1T )

{
C1C2||xu||L2(0,T ;V )∩W 1,2(0,T ;V ∗)

+
√
δ(C0||xu||L2(0,T−δ;V ) +

ε

6
)

+ C3

√
δT (L0 +K0L2)

}{
1− C3

√
δ(L1 + L2K1T ))

}−1
<

5ε

6
.

Therefore, by (3.12) and (3.17), we have

||x(T ;x0, G, v)− z||H < ε,

that is, z ∈ RT (x0) and the proof is complete.
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Remark 3.2. Noting that H([0, T ];U) is dense in L2(0, T ;U), we can obtain the
same results of Theorem 3.2 corresponding to (1.1) with control space

H([0, T ];U) = {w : [0, T ]→ U : |w(t)− w(s)| ≤ H0|t− s|θ, 0 < θ < 1, H0 > 0}

instead of L2(0, T ;U)

From Theorems 3.1-2, we obtain the following control results of (1.1).

Corollary 3.1. Under Assumptions (K) and (G), for T > 0 we have

LT (x0) = H ⇐⇒ RT (x0) = H.

Therefore, the approximate controllability of linear system (1.1) with g = 0 is equiv-
alent to the condition for the approximate controllability of the nonlinear system
(1.1).
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