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Abstract. For the classical Hermite-Hadamard inequality of harmonically convex functions, i.e.,
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an upper bound is proved in the framework of the Sugeno integral.
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1. Introduction

One of the most important integral inequalities which is related to harmonically convex functions is classical

Hermite-Hadamard integral inequality. Double inequality

f

(
2ab

a+ b

)
≤ ab

b− a

∫ b

a

f(x)

x2
dx ≤ f(a) + f(b)

2
.

is known as Hermite-Hadamard integral inequality for harmonically convex functions, where f ∈ L([a, b]) [7, 5].

When we are trying to obtain these inequalities in the spirit of monotone measures and non-additive integrals,

we get different results than the classic form.

The concept of the fuzzy integral was introduced and initially examined by Sugeno [17]. Further theoretical

investigations of the integral and its generalizations have been pursued by many researchers [14, 15, 12, 2, 8, 1].

The study of inequalities for the Sugeno integral was initiated by Román-Flores and Chalco-Cano [13]. In this

article, at the first we prove some Hermite-Hadamard type inequalities for harmonically convex functions in the

case of non-additive integrals. Consequently, upper bound for these functions are established. In fact, the main

purpose of this article is to obtain an approximation for non-solvable integral of this type.

This paper is organized as follows. Some necessary preliminaries are presented in Section 2. We address

the essential problems in Sections 3 and upper bound for the Sugeno integral based on a harmonically convex

function is presented. Finally, a conclusion is drawn and a problem for further investigations is given in Section

4.
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2

2. Preliminaries

In this section, we are going to review some well known results from the theory of non-additive measures.

Definition 2.1. [8, 18] Let Σ be a Σ-algebra of subsets of X and let µ : Σ→ [0,∞) be a non-negative, extended

real-valued set function, we say that µ is a monotone measure (or fuzzy measure) iff:

(FM1): µ(∅) = 0;

(FM2): E,F ∈ Σ and E ⊆ F imply µ(E) ≤ µ(F ) (monotonicity);

(FM3): (En) ⊆ Σ, E1 ⊆ E2 ⊆ . . . imply limn→+∞ µ(En) = µ(
∞⋃
i=1

Ei) (continuity from below);

(FM4): (En) ⊆ Σ, E1 ⊇ E2 ⊇ . . . , µ(E1) < ∞ imply limn→+∞ µ(En) = µ(
∞⋂
i=1

Ei) (continuity from

above).

Let (X,Σ, µ) be a monotone measure space and f is a non-negative real-valued function on X. We denote the

set of all non-negative measurable functions f by F+ and Fα denote the set {x ∈ X | f(x) ≥ α}, the α-level of f ,

for α ≥ 0. F0 = {x ∈ X | f(x) > 0} = supp(f) is the support of f. We know that: α ≤ β ⇒ {f ≥ β} ⊆ {f ≥ α}.

Definition 2.2. [17, 8, 18] Let µ be a monotone measure (or fuzzy measure) on (X,Σ). If f ∈ F+ and A ∈ Σ,

then the Sugeno integral (or fuzzy integral) of f on A, with respect to the monotone measure µ is defined by

−
∫
A

fdµ :=
∨
α≥0

(α ∧ µ(A ∩ Fα)),

where ∨, ∧ denotes the operation sup and inf on [0,∞) respectively. In particular if A = X, then

−
∫
X

fdµ := −
∫
fdµ =

∨
α≥0

(α ∧ µ(Fα)).

The following properties of the Sugeno integral are well known and can be found in [18, 19].

Proposition 2.3. Let (X,Σ, µ) be a fuzzy measure space, with A,B ∈ Σ and f, g ∈ F+. We have

1. −
∫
A
fdµ ≤ µ(A);

2. −
∫
A
kdµ ≤ k ∧ µ(A), for k non-negative constant;

3. if f ≤ g on A, then −
∫
A
fdµ ≤ −

∫
A
gdµ;

4. if A ⊂ B, then −
∫
A
fdµ ≤ −

∫
B
fdµ;

5. if µ(A) <∞, then −
∫
A
fdµ ≥ α⇔ µ(A ∩ {f ≥ α}) ≥ α;

6. µ(A ∩ {f ≥ α}) ≤ α⇒ −
∫
A
fdµ ≤ α;

7. −
∫
A
fdµ < α⇔ there exists γ < α such that µ(A ∩ {f ≥ γ}) < α;

8. −
∫
A
fdµ > α⇔ there exists γ > α such that µ(A ∩ {f ≥ γ}) > α.

Remark 2.4. Consider the distribution function F associated to f on A, that is, F (α) = µ(A ∩ Fα). Then,

due to (5) and (6) of Proposition 2.3, we have that

F (α) = α⇒ −
∫
A

fdµ = α.
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the Hermite-Hadamard inequality for the Sugeno integral based on harmonically convex functions 3

Thus, from a numerical point of view, the Sugeno integral can be calculated by solving the equation F (α) = α.

The following proposition shows how to transform a Sugeno integral −
∫
A
fdµ, which is defined on a mono-

tone measure space (X,Σ, µ), into another Sugeno integral −
∫
gdm defined on the Lebesgue measure space

([0,∞), B+,m), where B+ is the class of all Borel sets in [0,∞) and m is the Lebesgue measure.

Proposition 2.5. [18] For any A ∈ Σ

−
∫
A

fdµ = −
∫
µ(A ∩ Fα)dm,

where Fα = {x ∈ X | f(x) ≥ α} and m is the Lebesgue measure.

Definition 2.6. [16] A t-norm is a function T : [0, 1]× [0, 1]→ [0, 1] satisfying the following conditions:

(T1): T (x, 1) = T (1, x) = x for any x ∈ [0, 1];

(T2): For any x1, x2, y1, y2 ∈ [0, 1] with x1 ≤ x2 and y1 ≤ y2, T (x1, y1) ≤ T (x2, y2);

(T3): T (x, y) = T (y, x) for any x, y ∈ [0, 1];

(T4): T (T (x, y), z) = T (x, T (y, z)) for any x, y, z ∈ [0, 1].

A function S : [0, 1] × [0, 1] → [0, 1] is called a t-conorm [9] if there is a t-norm T such that S(x, y) =

1− T (1− x, 1− y).

Example 2.7. The following functions are t-norms:

1: TM (x, y) = x ∧ y.

2: TP (x, y) = x.y.

3: TL(x, y) = (x+ y − 1) ∨ 0.

Hereafter, we assume that (X,Σ, µ) is a monotone measure space. To simplify the calculation of the Sugeno

integral, for a given f ∈ F+(X) and A ∈ Σ, we write

Γ = {α : α ≥ 0, µ(A ∩ Fα) > µ(A ∩ Fβ) for any β > α}.

It is easy to see that

−
∫
A

fdµ =
∨
α∈Γ

(α ∧ µ(A ∩ Fα)).

Remark 2.8. A binary operator T on [0, 1] is called a t-seminorm[16] if it satisfies the above condition (T1)

and (T2). Notice that if T is a t-seminorm, for any x, y ∈ [0, 1], we have T (x, y) ≤ T (x, 1) = x and T (x, y) ≤
T (1, y) = y, and consequently, T (x, y) ≤ TM (x, y).

By using the concept of t-seminorm, Garćıa and Álvarez [16] proposed the following family of fuzzy integral.

Definition 2.9. Let T be a t-seminorm. Then the seminormed Sugeno’s fuzzy integral of a function f ∈ F+

over A ∈ Σ with respect to T and the fuzzy measure µ is defined by∫
T,A

fdµ =
∨

α∈[0,1]

T (α, µ(A ∩ Fα)).
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Notice that the Sugeno integral of f ∈ F+ over A ∈ Σ is the seminormed Sugeno’s fuzzy integral of f over

A ∈ Σ with respect to the t-seminorm TM .

Proposition 2.10. (Garćıa and Álvarez [16])Let (X,Σ, µ) be a monotone measure space and T be a t-seminorm.

Then,

1: For any A ∈ Σ and f, g ∈ F+ with f ≤ g, we have∫
T,A

fdµ ≤
∫
T,A

gdµ.

2: For A,B ∈ Σ with A ⊂ B and any f ∈ F+,∫
T,A

fdµ ≤
∫
T,B

fdµ.

Definition 2.11. [7] Let I ⊂ R−{0} is a real interval. A function f : I → R is said to be harmonically convex

on I if the inequality

f

(
ab

ta+ (1− t)b

)
≤ tf(b) + (1− t)f(a) (2.1)

holds, for all a, b ∈ I and t ∈ [0, 1]. If the inequality (2.1) is reversed, then f is said to be harmonically concave.

We note that for t = 1
2 , we have the definition of Jensen type of harmonic convex functions, that is

f

(
2ab

a+ b

)
≤ f(a) + f(b)

2
, ∀a, b ∈ I.

Proposition 2.12. [7] Let I ⊂ R− {0} be a real interval and f : I → R is function, then:

1: if I ⊂ (0,+∞) and f is convex and nondecreasing, then f is harmonically convex.

2: if I ⊂ (0,+∞) and f is harmonically convex and nonincreasing, then f is convex.

3: if I ⊂ (−∞, 0) and f is harmonically convex and nondecreasing, then f is convex.

4: if I ⊂ (−∞, 0) and f is convex and nonincreasing, then f is harmonically convex.

Proposition 2.13. [4] If [a, b] ⊂ I ⊆ (0,∞) and we consider the function g :
[

1
b ,

1
a

]
→ R defined by g(t) = f( 1

t ),

then f is harmonically convex on [a, b] if and only if g is convex in the usual sense on
[

1
b ,

1
a

]
.

Proposition 2.14. [6] A function f : (0,∞)→ R is harmonically convex if and only if xf(x) is convex.

Theorem 2.15. Let f : [a, b] ⊆ (0,∞)→ [0,+∞) be a convex function with f(a) 6= f(b).Then

−
∫ b

a

fdµ ≤
∨
α∈Γ

(
α ∧ µ

(
[a, b] ∩

{
x ≥ α(b− a) + af(b)− bf(a)

f(b)− f(a)

}))
where Γ = [f(a), f(b)) for f(b) > f(a) and Γ = [f(b), f(a)) for f(a) > f(b).

Proof. As f is convex function, for x ∈ [a, b] we have,

f(x) = f

(
(1− x− a

b− a
)a+

x− a
b− a

b

)
≤ (1− x− a

b− a
)f(a) +

x− a
b− a

f(b)
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the Hermite-Hadamard inequality for the Sugeno integral based on harmonically convex functions 5

and so by (3) of Proposition 2.3

−
∫ b

a

fdµ ≤ −
∫ b

a

(
(1− x− a

b− a
)f(a) +

x− a
b− a

f(b)

)
dµ = −

∫ b

a

g(x)dµ.

In order to calculate the integral in the right hard part of the last inequality, we consider the distribution

function F (α) given by

F (α) = µ([a, b] ∩ {g ≥ α}) = µ

(
[a, b] ∩

{
b− x
b− a

f(a) +
x− a
b− a

f(b) ≥ α
})

.

If f(a) < f(b), then

F (α) = µ

(
[a, b] ∩

{
x ≥ α(b− a) + af(b)− bf(a)

f(b)− f(a)

})
= µ

(
[
α(b− a) + af(b)− bf(a)

f(b)− f(a)
, b]

)
.

Thus Γ = [f(a), f(b)) and we only consider α ∈ [f(a), f(b)).

If f(a) > f(b), then

F (α) = µ

(
[a, b] ∩

{
x ≤ α(b− a) + af(b)− bf(a)

f(b)− f(a)

})
= µ

(
[a,

α(b− a) + af(b)− bf(a)

f(b)− f(a)
]

)
.

Thus Γ = [f(b), f(a)) and only need α ∈ [f(b), f(a)).

This completes the proof. �

Remark 2.16. In the case f(a) = f(b) in Theorem 2.15, we have g(x) = f(x) and so

−
∫ b

a

fdµ ≤ −
∫ b

a

gdµ = −
∫ b

a

f(a)dµ = f(a) ∧ µ([a, b]).

Corollary 2.17. Let f : [a, b] ⊆ (0,∞) → (0,∞) be a convex function and Σ be the Borel field and µ be the

Lebesgue measure on X = R, then

−
∫ b

a

fdµ ≤



∨
α∈[f(a),f(b))

(
α ∧ (b− α(b−a)+af(b)−bf(a)

f(b)−f(a) )
)

, f(a) < f(b)

f(a) ∧ (b− a) , f(a) = f(b)

∨
α∈[f(b),f(a))

(
α ∧ (α(b−a)+af(b)−bf(a)

f(b)−f(a) − a)
)

, f(a) > f(b)

So

−
∫ b

a

fdµ ≤



(b−a)f(b)
f(b)−f(a)+(b−a) ∧ (b− a) , f(a) < f(b)

f(a) ∧ (b− a) , f(a) = f(b)

(b−a)f(a)
f(a)−f(b)+(b−a) ∧ (b− a) , f(a) > f(b).

Proof. In the case where f(a) < f(b), we have∨
α∈[f(a),f(b))

(
α ∧ (b− α(b− a) + af(b)− bf(a)

f(b)− f(a)
)

)
=

(b− a)f(b)

f(b)− f(a) + (b− a)
.
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In fact, α = (b−a)f(b)
f(b)−f(a)+(b−a) is as the solution of the equation F (α) = α, where F is the distribution function.

So taking into account (1) of Proposition 2.3 (−
∫ b
a
fdµ ≤ µ([a, b]) = b− a) and Remark 2.4 we have

−
∫ b

a

fdµ ≤ (b− a)f(b)

f(b)− f(a) + (b− a)
∧ (b− a).

Proofs the other cases is analogous. �

Note that Corollary 2.17 is the same as the Sadarangani Theorem [3].

3. Main Results

Let I ⊂ R− {0} be a harmonically convex function and a, b ∈ I with a < b and f ∈ L([a, b]). The following

inequalities

f

(
2ab

a+ b

)
≤ ab

b− a

∫ b

a

f(x)

x2
dx ≤ f(a) + f(b)

2
. (3.1)

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality for harmoni-

cally convex functions.

Unfortunately, as we will see in the following example, in general, the Hermite-Hadamard inequality is not

valid in the fuzzy context.

Example 3.1. Let µ be the usual Lebesgue measure on R and the function f(x) = 3
7x

2 on X = [ 1
2 , 1].

Obviously, this function is convex and nondecreasing as a result f is harmonically convex function on [1
2 , 1].

With the above inequality we have

−
∫ 1

1
2

f(x)

x2
dx = −

∫ 1

1
2

3

7
dx =

3

7
∧ µ([

1

2
, 1] =

3

7
' 0.42.

on the other hand,
f( 1

2 )+f(1)

2 = 15
56 ' 0.26.

This proves that the right-hand side of inequality (3.1) is not satisfied for the Sugeno integrals.

The aim of this work is to show a the Hermite-Hadamard type inequality for the Sugeno integral in the case

where f is a harmonically convex function.

Lemma 3.2. Let f : [a, b] ⊆ (0,∞)→ (0,∞) be a harmonically convex function which is not concave, then

−
∫ b

a

fdµ ≤



∨
α∈[f(a),f(b))

(
α ∧ µ[α(b−a)+af(b)−bf(a)

f(b)−f(a) , b]
)

, f(a) < f(b)

f(a) ∧ µ([a, b]) , f(a) = f(b)

∨
α∈[f(b),f(a))

(
α ∧ µ[a, α(b−a)+af(b)−bf(a)

f(b)−f(a) ]
)

, f(a) > f(b).

Proof. Since f : [a, b] ⊆ (0,∞)→ (0,∞) is harmonically convex function on the interval [a, b], then by Proposi-

tion 2.13 the function g : [ 1
b ,

1
a ]→ R, g(s) = f( 1

s ) is convex on [ 1
b ,

1
a ]. Obviously for any x ∈ [a, b], f(x) = g( 1

x ),
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the Hermite-Hadamard inequality for the Sugeno integral based on harmonically convex functions 7

and therefor applying Theorem 2.15 to g, we have

−
∫ b

a

f(x)dµ = −
∫ b

a

g(
1

x
)dµ ≤



∨
α∈[g( 1

a ),g( 1
b ))

(
α ∧ µ[

α(b−a)+ag( 1
b )−bg( 1

a )

g( 1
b )−g( 1

a )
, b]
)

, g( 1
a ) < g( 1

b )

g( 1
a ) ∧ µ([a, b]) , g( 1

a ) = g( 1
b )

∨
α∈[g( 1

b ),g( 1
a ))

(
α ∧ µ[a,

α(b−a)+ag( 1
b )−bg( 1

a )

g( 1
b )−g( 1

a )
]
)

, g( 1
a ) > g( 1

b )

=



∨
α∈[f(a),f(b))

(
α ∧ µ[α(b−a)+af(b)−bf(a)

f(b)−f(a) , b]
)

, f(a) < f(b)

f(a) ∧ µ([a, b]) , f(a) = f(b)

∨
α∈[f(b),f(a))

(
α ∧ µ[a, α(b−a)+af(b)−bf(a)

f(b)−f(a) ]
)

, f(a) > f(b).

�

Corollary 3.3. Let f : [a, b] ⊆ (0,∞)→ (0,∞) be a harmonically convex function which is not concave, Σ be

the Borel field and µ be the Lebesgue measure on X = R, then

−
∫ b

a

fdµ ≤



(b−a)f(b)
f(b)−f(a)+b−a ∧ (b− a) , f(a) < f(b)

f(a) ∧ (b− a) , f(a) = f(b)

(b−a)f(a)
f(a)−f(b)+b−a ∧ (b− a) , f(a) > f(b).

Remark 3.4. If [a, b] ⊆ (0,∞) and f is harmonically convex and nonincreasing, then taking into account (2)

of Proposition 2.12 the function f is convex and hance the upper bound for the Sugeno integral of f mentioned

in article ”Hermite-Hadamard inequality for fuzzy integral”, were written by K. sadarangani is established.

Remark 3.5. If [a, b] ⊆ (−∞, 0) and f is harmonically convex and nondecreasing, then taking into account

(3) of Proposition 2.12 the function f is convex and hance the upper bound for the Sugeno integral of f is

established.
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Example 3.6. Let µ be a Lebesgue measure and consider function f(x) = e−
1
x on [1

3 ,
3
4 ]. Obviously, this

function is non-negative and harmonically convex but neither convex, nor concave. we have,

−
∫ 3

4

1
3

fdµ =
∨
α≥0

(
α ∧ µ

(
[
1

3
,

3

4
] ∩
{
e−

1
x ≥ α

}))

=
∨
α≥0

(
α ∧ µ

(
[
1

3
,

3

4
] ∩
{
− 1

x
≥ lnα

}))

=
∨
α≥0

(
α ∧ µ

(
[
1

3
,

3

4
] ∩ {−1 ≥ xlnα}

))

=
∨
α≥0

(
α ∧ µ

(
[
1

3
,

3

4
] ∩
{
x ≥ −1

lnα

}))
.

As result with the solution of the equation

1

lnα
+

3

4
= α

we conclude that α ' 0/175. Then −
∫ 3

4
1
3

fdµ ' 0/175.

On the other hand, since f( 3
4 ) = 1

e
4
3

and f( 1
3 ) = 1

e3 . By Corollary 3.3, we have

−
∫ 3

4

1
3

fdµ ≤
f( 3

4 )( 3
4 −

1
3 )

f( 3
4 )− f( 1

3 ) + ( 3
4 −

1
3 )
∧ (

3

4
− 1

3
)

' 0/234 ∧ 5

12
= 0/234 ∧ 0/416 = 0/234

that is a logical inequality.

Example 3.7. The function f(x) = x − ln(x + 1) is nondecreasing and harmonic convex function on [1
2 , 1].

f(1) = 1− ln 2 and f( 1
2 ) = 1

2 − ln( 3
2 ). As f(1) > f( 1

2 ), Corollary 3.3 gives us,

−
∫ 1

1
2

fdµ ≤
(1− 1

2 )f(1)

f(1)− f( 1
2 ) + 1

2

∧ (
1

2
) ' 0.718 ∧ 1

2
=

1

2
.

Thus, we find an upper bound for the Sugeno integral of this function on [1
2 , 1].

Example 3.8. The function f(x) = ex
2+x is nondecreasing and harmonic convex function on [1, 2] and f(1) = e2

and f(2) = e5. As follows we find an upper bound for the Sugeno integral of this function,

−
∫ 2

1

ex
2+xdµ ≤ e5

e5 − e2 + 1
∧ (1) ' 1.0449 ∧ 1 = 1.

Remark 3.9. f(x) = log(x) is a harmonically convex function but not convex, that is why in the Corollary

3.3, does not apply because it is concave. For concave function, we use the Sadarangani paper.
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the Hermite-Hadamard inequality for the Sugeno integral based on harmonically convex functions 9

Corollary 3.10. Let f : [a, b] ⊆ (0,∞) → R be a harmonically convex function which is not concave and

g : R→ R is a linear function, then f ◦ g is harmonically convex[10] and so,

−
∫ b

a

(f ◦ g)dµ ≤



∨
α∈[f(g(a)),f(g(b)))

(
α ∧ µ[α(b−a)+af(g(b))−bf(g(a))

f(g(b))−f(g(a)) , b]
)

, f(g(a)) < f(g(b))

f(g(a)) ∧ µ([a, b]) , f(g(a)) = f(g(b))

∨
α∈[f(g(b)),f(g(a)))

(
α ∧ µ[a, α(b−a)+af(g(b))−bf(g(a))

af(g(b))−bf(g(a)) ]
)

, f(g(a)) > f(g(b)).

Corollary 3.11. Let f : [a, b] ⊆ (0,∞) → R be a harmonically convex function which is not concave and

g : R → R is a linear function, Σ be the Borel field and µ be the Lebesgue measure on X = R, then f ◦ g is

harmonic convex function[10] and so,

−
∫ b

a

(f ◦ g)dµ ≤



(b−a)f(g(b))
f(g(b))−f(g(a))+b−a ∧ (b− a) , f(g(a)) < f(g(b))

f(g(a)) ∧ (b− a) , f(g(a)) = f(g(b))

(b−a)f(g(a))
f(g(a))−f(g(b))+b−a ∧ (b− a) , f(g(a)) > f(g(b)).

Remark 3.12. In the case g be harmonic convex function and f be relative convex function, we know that

f ◦ g is harmonically convex function [11]. Thus similar results of Corollary 3.10 and Corollary 3.11 hold.

Corollary 3.13. Let f : [a, b] ⊆ (0,∞) → (0,∞) be a harmonically convex function which is not concave

function, Σ be the Borel field and µ be the Lebesgue measure on X = R, then

∫
TP ,[a,b]

fdµ ≤



(b−a)2f(b)
f(b)−f(a)+b−a , f(a) < f(b)

(b− a)f(a) , f(a) = f(b)

(b−a)2f(a)
f(a)−f(b)+b−a , f(a) > f(b).

Proof. For harmonically convex function f : [a, b] ⊆ (0,∞)→ (0,∞) with f(a) 6= f(b) according to Proposition

2.10 and Corollary 3.3 with t-norm Tp, we have

∫
TP ,[a,b]

fdµ ≤



(b−a)f(b)
f(b)−f(a)+b−a .(b− a) , f(a) < f(b)

f(a).(b− a) , f(a) = f(b)

(b−a)f(a)
f(a)−f(b)+b−a .(b− a) , f(a) > f(b)

=



(b−a)2f(b)
f(b)−f(a)+b−a , f(a) < f(b)

(b− a)f(a) , f(a) = f(b)

(b−a)2f(a)
f(a)−f(b)+b−a , f(a) > f(b).
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Example 3.14. Let µ be the Lebesgue measure on R. Consider the function f(x) = 1
x2 on X = [1, 3].

Obviously, this function is harmonically convex and positive on X = [1, 3]. As f(1) = 1 and f(3) = 1
9 , using

Corollary 3.13, we can get the following estimate:∫
TP ,[1,3]

1

x2
dµ ≤ (3− 1)2f(1)

f(1)− f(3) + (3− 1)
=

18

13
.

Now, let’s introduce the most important theorem of this article. With the help of it, an upper bound in the

framework of the Sugeno integral for Hermite-Hadamard inequality of harmonically convex functions can be

established.

Theorem 3.15. Let f : [a, b] ⊆ (0,∞)→ (0,∞) be a harmonically convex function which is not concave, then

−
∫ b

a

m0
f(x)

x2
dµ ≤ −

∫ b

a

fdµ ≤



∨
α∈[f(a),f(b))

(
α ∧ µ[α(b−a)+af(b)−bf(a)

f(b)−f(a) , b]
)

, f(a) < f(b)

f(a) ∧ µ([a, b]) , f(a) = f(b)

∨
α∈[f(b),f(a))

(
α ∧ µ[a, α(b−a)+af(b)−bf(a)

f(b)−f(a) ]
)

, f(a) > f(b)

where m0 = min{a2, b2}.

Proof. Let f be a harmonically convex function which is not concave and m0 = min{a2, b2}. By Proposition

2.5 we have,

−
∫ b

a

m0
f(x)

x2
dµ = −

∫ b

a

µ([a, b] ∩ Fα)dm (3.2)

where m is the Lebesgue measure and

Fα = {x ∈ X : m0
f(x)

x2
≥ α}.

Obviously, (
[a, b] ∩

{
f(x) ≥ x2

m0
α

})
⊆ ([a, b] ∩ {f(x) ≥ α}) .

By monotonicity µ, we deduce

µ

(
[a, b] ∩

{
f(x) ≥ x2

m0
α

})
≤ µ ([a, b] ∩ {f(x) ≥ α}) .

Now, by Proposition 2.3 and Proposition 2.5, we obtain

−
∫ b

a

µ

(
[a, b] ∩ {f ≥ x2

m0
α}
)

dm ≤ −
∫ b

a

µ ([a, b] ∩ {f ≥ α}) dm = −
∫ b

a

fdµ. (3.3)

Combining ( 3.2 , 3.3), we have

−
∫ b

a

m0
f(x)

x2
dµ ≤ −

∫ b

a

fdµ.

The last inequality follows from Lemma 3.2. �
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Corollary 3.16. If f : [a, b] ⊆ (0,∞)→ (0,∞) be a harmonically convex function which is not concave then,

−
∫ b

a

xf(x)dµ ≤



∨
α∈[af(a),bf(b))

(
α ∧ µ[α(b−a)+abf(b)−baf(a)

bf(b)−af(a) , b]
)

, af(a) < bf(b)

af(a) ∧ µ([a, b]) , af(a) = bf(b)

∨
α∈[bf(b),af(a))

(
α ∧ µ[a, α(b−a)+abf(b)−baf(a)

bf(b)−af(a) ]
)

, af(a) > bf(b).

Proof. f is harmonically convex function.Therefore, according to the Proposition 2.14 xf(x) is convex. Finally,

the proof is complete by using Theorem 2.15. �

Corollary 3.17. If f : [a, b] ⊆ (0,∞)→ (0,∞) be a harmonically convex function which is not concave, Σ be

Borel field and µ be a Lebesgue measure on X = R, then

−
∫ b

a

xf(x)dµ ≤



(b−a)bf(b)
bf(b)−af(a)+b−a ∧ (b− a) , af(a) < bf(b)

af(a) ∧ (b− a) , af(a) = bf(b)

(b−a)af(a)
af(a)−bf(b)+b−a ∧ (b− a) , af(a) > bf(b).

Example 3.18. Let µ be the usual Lebesgue measure on X and the function f(x) = 3
5x

2 on X = [1, 2].

Obviously, this function is convex and nondecreasing. So by (1) of Proposition 2.12 f is harmonically convex on

[1, 2]. With use the Corollary 3.17 we have

−
∫ 2

1

xf(x)dx ≤ (2− 1)2f(2)

2f(2)− f(1) + (2− 1)
∧ (2− 1) ' 0.923.

On the other hand, −
∫ 2

1
xf(x)dx ' 0.87. This show that the Corollary 3.17 is valid.

4. Conclusion

In this paper, we have researched the Hermite-Hadamard inequality for the Sugeno integral based on har-

monically convex functions. For further investigations we propose to consider the Hermite-Hadamard inequality

for the Choquet integral, and also for some other non-additive integrals. In the future research, we will continue

to explore other integral inequalities for non-additive measures and integrals based on harmonically convex

function.

References
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