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ABSTRACT

The main objective of this paper is to study the local and the global stability of the solutions, the periodic
character and the boundedness of the di¤erence equation

xn+1 = βxn¡l + αxn¡k +
axn¡t

bxn¡t + c
, n = 0, 1, ...,

where the parameters β, α, a, b and c are positive real numbers and the initial conditions x¡s, x¡s+1, ..., x¡1,
x0 are positive real numbers where s = maxfl, k, tg.
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1. INTRODUCTION

The higher-order di¤erence equations are of paramount importance in applications. Such equations also seem
naturally as discrete analogues and as numerical solutions of di¤erential which model various diverse phenomena
in biology, ecology, physiology, physics, engineering, economics and so on [1-9]. The theory of di¤erence equations
gets a central position in applicable analysis. That is, the theory of di¤erence equations will continue to play an
important role in mathematics as a whole. Hence, it is very interesting to study the behavior of solutions of a
di¤erence equations and to discuss the local and global asymptotic stability of their equilibrium points [10-15].
In recent years, the behavior of solutions of various di¤erence equations has been one of the main topics in the
theory of di¤erence equations [16-34].

Abo-Zeid [35] obtained the global asymptotic stability of all solutions of the di¤erence equation

xn+1 = Axn¡2

B+Cxnxn¡1xn¡2
, n = 0, 1, ...,

where A, B, C are positive real numbers and the initial conditions x¡2, x¡1, x0 are real numbers.

Abu-Saris et al. [36] studied the globally asymptotically stability of the equilibrium solution of the rational
di¤erence equation

xn+1 =
a+xnxn¡k

xn+xn¡k
, n = 0, 1, ...,

where k is a nonnegative integer, a ¸ 0, and x¡k, ..., x0 > 0.

You-Hui et al. [37] investigated the global attractivity of the nonlinear di¤erence equation

yn+1 = p+qyn

1+yn+ryn¡k
, n = 0, 1, ...,

where p, q, r 2 [0, 1) , k ¸ 1 is a positive integer and the initial conditions y¡k, . . . , y¡1 are nonnegative real
numbers and y0 is a positive real number.
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Zayed et al. [38] investigated the boundedness character, the periodicity character, the convergence and the
global stability of positive solutions of the di¤erence equation,

xn+1 = α0xn+α1xn¡l+α2xn¡k

β0xn+β1xn¡l+β2xn¡k
, n = 0, 1, ...,

where the coe¢cients αi, βi 2 (0, 1) for i = 0, 1, 2, and l, k are positive integers such that l < k. The
initial conditions x¡k, , ..., x¡l, ..., x¡2, x¡1, x0 are arbitrary positive real numbers.

El-Dessoky [39] investigated some qualitative behavior of the solutions of the di¤erence equation

xn+1 = axn¡l + bxn¡k +
cxn¡s

dxn¡s ¡ e
, n = 0, 1, ...,

where the parameters a, b, c, d and e are positive real numbers and the initial conditions x¡t, x¡t+1, ..., x¡1,
x0 are positive real numbers where t = maxfl, k, sg.

Our goal is to obtain some qualitative behavior of the positive solutions of the di¤erence equation

xn+1 = βxn¡l + αxn¡k + axn¡t

bxn¡t+c
, n = 0, 1, ..., (1)

where the parameters β, α, a, b and c are positive real numbers and the initial conditions x¡s, x¡s+1, ..., x¡1,
x0 are positive real numbers where s = maxfl, k, tg.

2. LOCAL STABILITY

In this section, we study the local stability of the equilibrium point of equation (1).

The equilibrium points of Eq. (1) are given by

x = βx + αx + ax
bx+c ,

b(1 ¡ α¡ β)x2 + c(1 ¡ α¡ β)x = ax.

So, x0 = 0 is forever an equilibrium point of the di¤erence equation (1). If α+β< 1, then the positive equilibrium
point of the Eq. (1) is given by

x1 = a
b(1¡α¡β)

¡ c
b
.

Let f : (0, 1)3 ¡! (0, 1) be a continuous function de…ned by

f(u, v, w) = βu + αv + aw
bw+c

.

Therefore, it follows that

∂f(u, v, w)
∂u = β, ∂f(u, v, w)

∂v = α, ∂f(u, v, w)
∂w = ac

(bw+c)2
. (2)

Theorem 2.1. The zero equilibrium x0 of the di¤erence equation (1) is locally asymptotically stable if

c (α+ β) + a < c. (3)

Proof: So, we can write Eq. (2) at zero equilibrium point x0 = 0 in the form

∂f(x0, x0, x0)
∂u = β= p1,

∂f(x0, x0, x0)
∂v = α= p2 and ∂f(x0, x0, x0)

∂w = a
c = p3.

Then the linearized equation of Eq. (1) about x0 is

yn+1 ¡ p1yn¡k ¡ p2yn¡l ¡ p3yn¡s = 0,
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According to Theorem 1.6 page 7 in [1], then Eq. (1) is asymptotically stable if and only if

jp1j + jp2j + jp3j < 1.

Thus,
jβj + jαj +

¯̄
a
c

¯̄
< 1,

and so
c (α+ β) + a < c.

The proof is complete.

Example 1. Consider l = 2, k = 1, t = 3, β = 0.3, α = 0.2, a = 0.5, b = 0.7 and c = 6 and the initial
conditions x¡3 = 0.2, x¡2 = 0.4, x¡1 = 0.6 and x0 = 0.1, the zero solution of the di¤erence equation (1) is local
stability (see Fig. 1).
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Figure 1. Plot the behavior of zero solution of Eq. (1) is local stable.

Theorem 2.2. The positive equilibrium x1 of the di¤erence equation (1) is locally asymptotically stable if

c (1 ¡ α¡ β) < a. (4)

Proof: So, we can write Eq. (2) at the positive equilibrium point x1 = a
b(1¡α¡β) ¡ c

b

∂f(x1, x1, x1)
∂u = β= p1,

∂f(x1, x1, x1)
∂v = α= p2 and ∂f(x1, x1, x1)

∂w = c(1¡α¡β)2

a = p3.

Then the linearized equation of Eq. (1) about x1 is

yn+1 ¡ p1yn¡k ¡ p2yn¡l ¡ p3yn¡s = 0,

According to Theorem 1.6 page 7 in [1], then Eq. (1) is asymptotically stable if and only if

jp1j + jp2j + jp3j < 1.

Thus,
jβj + jαj +

¯̄̄
c(1¡α¡β)2

a

¯̄̄
< 1,

and so
c(1¡α¡β)2

a
< 1 ¡ a ¡ b,

if α+ β< 1, then
c (1 ¡ α¡ β) < a.
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The proof is complete.

Example 2. Figure (2) shows the solution of the di¤erence equation (1) is local stability if l = 2, k = 1,
t = 3, β = 0.3, α = 0.2, a = 3, b = 0.7 and c = 0.6 and the initial conditions x¡3 = 0.2, x¡2 = 0.4, x¡1 = 0.6
and x0 = 0.1.
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Figure 2. Draw the behavior of the positve solution of Eq. (1) is local stable.

Example 3. The solution of the di¤erence equation (1) is unstable if l = 2, k = 1, t = 3, β= 0.9, α = 0.2,
a = 3, b = 0.7 and c = 0.6 and the initial conditions x¡3 = 0.2, x¡2 = 0.4, x¡1 = 0.6 and x0 = 0.1. (See Fig. 3).
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Figure 3. Sketch the behavior of the solution of Eq. (1) is unstable.

3. GLOBAL STABILITY

In this section, the global asymptotic stability of equation (1) is studied.

Theorem 3.1. The equilibrium point x0 is a global attractor of di¤erence equation (1) if

α+ β+
a

c
< 1. (5)

Proof: Suppose that ζand ηare real numbers and assume that F : [ζ,η]3 ¡! [ζ,η] is a function de…ned by

F (x, y, z) = βx + αy + az
bz+c .

Then
∂F (x, y, z)

∂x
= β, ∂F (x, y, z)

∂y
= α and ∂F (x, y, z)

∂z
= ac

(bz+c)2
.
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Now, we can see that the function F (x, y, z) increasing in x, y and z. Then·
βx + αx +

ax

bx + c
¡ x

¸
(x ¡ x0)

·
h
¡ (1 ¡ α¡ β)x +

ax

bx
+

ax

c

i
(x ¡ 0) · ¡

³
1 ¡ α¡ β¡ a

c

´
x2 < 0

If α+ β+ a
c < 1, then F (x, y, z) satis…es the negative feedback property

[F (x, x, x) ¡ x] (x ¡ x0) < 0, for x0 = 0.

According to Theorem 1.10 page 15 in [1], then x1 is a global attractor of Eq. (1). This completes the proof.

Example 4. Consider l = 2, k = 1, t = 3, β = 0.03, α = 0.02, a = 0.5, b = 0.7 and c = 4 and the initial
conditions x¡3 = 0.5, x¡2 = 0.7, x¡1 = 0.6 and x0 = 1.1, the zero solution of the di¤erence equation (1) is
global stability (see Fig. 4).
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Figure 4. Plot the behavior of the zero solution of Eq. (1) is global stability.

Theorem 3.2. The equilibrium point x1 is a global attractor of di¤erence equation (1) if

β+ α< 1. (6)

Proof: Suppose that ζand ηare real numbers and assume that g : [ζ, η]3 ¡! [ζ,η] is a function de…ned by

g(u, v, w) = βu + αv + aw
bw+c .

Then
∂g(u, v, w)

∂u = β, ∂g(u, v, w)
∂v = α and ∂g(u, v, w)

∂w = ac
(bw+c)2

.

Now, we can see that the function g(u, v, w) increasing in u, v and w.

Let (m,M) be a solution of the system M = g(M, M, M) and m = g(m, m, m). Then from Eq. (1), we
see that

M = βM + αM +
aM

bM + c
, m = βm + αm +

am

bm + c
,

thus

b(1α¡ β)M2 ¡ c(1 ¡ α¡ β)M = aM,

b(1α¡ β)m2 ¡ c(1 ¡ α¡ β)m = am.
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Subtracting we obtain

b(1 ¡ α¡ β)(M2 ¡ m2) ¡ (a + c(1 ¡ α¡ β)) (M ¡ m) = 0,

(M ¡ m)fb(1 ¡ α¡ β)(M + m) ¡ a ¡ c(1 ¡ α¡ β)g = 0

under the condition 0 6= b(1 ¡ α¡ β), we see that

M = m.

According to Theorem 1.15 page 18 in [1], then x1 is a global attractor of Eq. (1). This completes the proof.

Example 5. The solution of the di¤erence equation (1) is global stability when l = 2, k = 1, t = 3, β= 0.1,
α= 0.2, a = 2, b = 1 and c = 0.01 and the initial conditions x¡3 = 0.2, x¡2 = 0.4, x¡1 = 0.6 and x0 = 0.1. (See
Fig. 5).
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Figure 5. Plot the behavior of the solution of Eq. (1) is global stability.

4. PERIODIC SOLUTIONS

Theorem 4.1. Let l, k and t are both odd positive integers then for all β, α, a, b and c are positive real
numbers, then Eq. (1) has a prime period two solution if

α+ β< 1 and c (1 ¡ α¡ β) < a. (7)

Proof: First, suppose that there exists distinct nonnegative solution P and Q, such that

...P, Q, P, Q, ...,

is a prime period two solution of Eq.(1).

We see from Eq. (1) when l, k and t are both odd, then xn+1 = xn¡l = xn¡k = xn¡t = P. It follows Eq. (1)
that

P = βP + αP + aP
bP+c and Q = βQ + αQ + aQ

bQ+c .

Therefore,
b (1 ¡ α¡ β) P 2 + (c (1 ¡ α¡ β) ¡ a)P = 0, (8)

b (1 ¡ α¡ β)Q2 + (c (1 ¡ α¡ β) ¡ a)Q = 0, (9)

Subtracting (9) from (8) gives
P + Q = a¡c(1¡α¡β)

b(1¡α¡β) (10)
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Again, adding (8) and (9) yields
PQ = 0. (11)

where a > c (1 ¡ α¡ β) and 1 > α + β. Let P and Q are the two distinct nonnegative real roots of the
quadratic

b (1 ¡ α¡ β) t2 ¡ (a ¡ c (1 ¡ α¡ β))t = 0, (12)

and so
a ¡ c (1 ¡ α¡ β) > 0 and 1 ¡ α¡ β> 0, (13)

from Inequality (13), we obtain Inequality (7).

Second suppose that Inequality (7) is true. We will show that Eq. (1) has a prime period two solution.

Therefore P and Q are distinct nonnegative real numbers.

Set
x¡l = P, x¡k = P, x¡t = P, , ..., x¡3 = P, x¡2 = Q, x¡1 = P, x0 = Q.

We would like to show that

x1 = x¡1 = P = a¡c(1¡α¡β)
b(1¡α¡β)

and x2 = x0 = Q = 0.

It follows from Eq. (1) that

x1 = βP + αP + aP
bP+c

= (β+ α)P +
a

(
a¡c(1¡α¡β)

b(1¡α¡β)

)
b

(
a¡c(1¡α¡β)

b(1¡α¡β)

)
+c

,

= (β+ α)
³

a¡c(1¡α¡β)
b(1¡α¡β)

´
+ a(a¡c(1¡α¡β))

b(a¡c(1¡α¡β))+cb(1¡α¡β) = (β+ α)
³

a¡c(1¡α¡β)
b(1¡α¡β)

´
+ a(a¡c(1¡α¡β))

ab ,

= (β+α)(a¡c(1¡α¡β))+(1¡α¡β)(a¡c(1¡α¡β))
b(1¡α¡β) = (a¡c(1¡α¡β))(β+α+1¡α¡β)

b(1¡α¡β) = a¡c(1¡α¡β)
b(1¡α¡β) = P.

and
x2 = βQ + αQ + aQ

bQ+c = 0 = Q,

Then by induction we get

x2n = Q and x2n+1 = P for all n ¸ ¡2.

Thus Eq. (1) has the prime period two solution

..., P , Q, P , Q, ...,

where P and Q are the distinct nonnegative roots of the quadratic Eq. (12) and the proof is complete.

Theorem 4.2. Let l, k and t are both even positive integers then for all β, α, a, b and c are positive real
numbers, then Eq. (1) has no positive prime period two solution.

Proof: Let that there exists distinct positive solution P and Q, such that

...P, Q, P, Q, ...,

is a prime period two solution of Eq.(1).

We see from Eq. (1) when l, k and t are both even, then xn+1 = P and xn¡l = xn¡k = xn¡t = Q. It follows
Eq. (1) that

P = βQ + αQ + aQ
bQ+c and Q = βP + αP + aP

bP+c .
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Therefore,
bPQ + cP = b(β+ α)Q2 + (a + c(β+ α))Q, (14)

bPQ + cQ = b(β+ α)P 2 + (a + c(β+ α))P, (15)

Subtracting (15) from (14) gives
P + Q = ¡a+c(1+β+α)

b(β+α) (16)

Again, adding (14) and (15) yields
PQ = c(a+c(1+β+α))

b2(β+α)(1+β+α) . (17)

From (16) and (17), we have

(P + Q)PQ = ¡c(a+c(1+β+α)+c)2

b3(β+α)2(1+β+α) < 0

This contradicts the hypothesis that both P and Q are positive. Thus, the proof is now completed.

Theorem 4.3. Let l, k are even and t is odd positive integers then for all β, α, a, b and c are positive real
numbers, then Eq. (1) has no positive prime period two solution.

Proof: Let that there exists distinct positive solution P and Q, such that

...P, Q, P, Q, ...,

is a prime period two solution of Eq.(1).

We see from Eq. (1) when l, k are even and t is odd, then xn+1 = xn¡t = P and xn¡l = xn¡k = Q. It follows
Eq. (1) that

P = βQ + αQ + aP
bP+c

and Q = βP + αP + aQ
bQ+c

.

Therefore,
bP 2 + cP = b (α+ β)PQ + c (α+ β)Q + aP, (18)

bQ2 + cQ = b (α+ β)PQ + c (α+ β)P + aQ, (19)

By subtracting (18) from (19), we deduce

P + Q = a¡c(1+α+β)
b (20)

Again, by adding (18) and (19), we get

PQ = ¡
³

c(α+β)(a¡c(1+α+β))
b2(α+β+1)

´
. (21)

If a > c (1 + α+ β) , then PQ is negative. But P, Q are both positive, and we have a contradiction. Therefor,
the proof is completed.

Theorem 4.4. If l, t are even and k is odd positive integers then Eq. (1) has no positive prime period two
solution.

Proof: Let there exists distinct positive solution P and Q, such that

...P, Q, P, Q, ...,
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is a prime period two solution of Eq.(1).

We see from Eq. (1) when l, t are even and k is odd, then xn+1 = xn¡k = P and xn¡l = xn¡t = Q. It follows
Eq. (1) that

P = βQ + αP + aQ
bQ+c and Q = βP + αQ + aP

bP+c .

Therefore,
b (1 ¡ α)PQ + c (1 ¡ α) P = bβQ2 + (cβ+ a)Q, (22)

b (1 ¡ α)PQ + c (1 ¡ α)Q = bβP 2 + (cβ+ a)P, (23)

By subtracting (23) from (22), we get

P + Q = ¡
³

a+c(1¡α+β)
bβ

´
(24)

While, by adding (22) and (23), we deduce

PQ = c(1¡α)(a+c(1¡α+β))
b2β(1¡α+β) . (25)

If α < 1 and α< 1 + β then from (24) and (25), we have

PQ (P + Q) = ¡c(1¡α)(a+c(1¡α+β))2

b3β2(1¡α+β)
< 0

This contradicts the hypothesis that both P, Q are positive. Thus, the proof is now completed.

Theorem 4.5. Suppose that k, t are even and l is odd positive integers, then Eq. (1) has no positive prime
period two solution.

Proof: Assume that there exists distinct positive solution P and Q, such that

...P, Q, P, Q, ...,

is a prime period two solution of Eq.(1).

We see from Eq. (1) when k, t are even and l is odd, then xn+1 = xn¡l = P and xn¡k = xn¡t = Q. It follows
Eq. (1) that

P = βP + αQ + aQ
bQ+c and Q = βQ + αP + aP

bP+c .

Therefore,
b (1 ¡ β)PQ + c (1 ¡ β)P = bαQ2 + (cα+ a)Q, (26)

b (1 ¡ β)PQ + c (1 ¡ β)Q = bαP 2 + (cα+ a)P, (27)

By subtracting (27) from (26), we have

P + Q = ¡
³

a+c(1+α¡β)
bα

´
(28)

Again, by adding (26) and (27),we deduce

PQ = c(1¡β)(a+c(1+α¡β))
b2α(1+α¡β) . (29)
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If β< 1 and β< 1 + α then from (28) and (29), we have

PQ (P + Q) = ¡c(1¡β)(a+c(1+α¡β))2

b2α2(1+α¡β) < 0

This contradicts the hypothesis that both P, Q are positive. Thus, the proof is now completed.

Theorem 4.6. Let k is even and l, t are odd positive integers then for all β, α, a, b and c are positive real
numbers, then Eq. (1) has no positive prime period two solution.

Proof: Assume that there exists distinct positive solution P and Q, such that

...P, Q, P, Q, ...,

is a prime period two solution of Eq.(1).

We see from Eq. (1) when k is even and l, t are odd, then xn+1 = xn¡l = xn¡t = P and xn¡k = Q. It follows
Eq. (1) that

P = βP + αQ + aP
bP+c and Q = βQ + αP + aQ

bQ+c .

Therefore,
b (1 ¡ β)P 2 + c (1 ¡ β)P = bαPQ + cαQ + aP, (30)

b (1 ¡ β)Q2 + c (1 ¡ β)Q = bαPQ + cαP + aQ, (31)

By subtracting (31) from (30), we get

P + Q = a¡c(1+α¡β)
b(1¡β) (32)

Again, by adding (30) and (31), we have

PQ = ¡cα(a¡c(1+α¡β))
b2(1¡β)(1+α¡β)

. (33)

where β< 1, β< 1 + α and c (1 + α¡ β) < a, then PQ is negative. But P, Q are both positive, and we have a
contradiction. Therefor, the proof is completed.

Theorem 4.7. If l is even and k, t are odd positive integers, then Eq. (1) has no positive prime period two
solution.

Proof: Assume that there exists distinct positive solution P and Q, such that

...P, Q, P, Q, ...,

is a prime period two solution of Eq.(1).

We see from Eq. (1) when l is even and k, t are odd, then xn+1 = xn¡k = xn¡t = P and xn¡l = Q. It follows
Eq. (1) that

P = βQ + αP + aP
bP+c

and Q = βP + αQ + aQ
bQ+c

.

Therefore,
b (1 ¡ α)P 2 + c (1 ¡ α)P = bβPQ + cβQ + aP, (31)

b (1 ¡ α)Q2 + c (1 ¡ α)Q = bβPQ + cβP + aQ, (32)

Subtracting (32) from (31) gives
P + Q = a¡c(1+β¡α)

b(1¡α)
(33)
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Again, adding (31) and (32) yields
PQ = ¡ cβ(a¡c(1+β¡α))

b2(1¡α)(1+β¡α) . (34)

If α < 1, α < 1 + β and c (1 + β¡ α) < a, then PQ is negative. But P, Q are both positive, and we have a
contradiction. Thus, the proof is completed.

Theorem 4.8. Let t is even and l, k are odd positive integers. If

c (1 ¡ α¡ β) + a 6= 0,

then Eq. (1) has no prime period two solution.

Proof: Assume that there exists distinct positive solution P and Q, such that

...P, Q, P, Q, ...,

is a prime period two solution of Eq.(1).

We see from Eq. (1) when t is even and l, k are odd, then xn+1 = xn¡k = xn¡l = P and xn¡t = Q. It follows
Eq. (1) that

P = βP + αP + aQ
bQ+c

and Q = βQ + αQ + aP
bP+c

.

Therefore,
b (1 ¡ α¡ β)PQ + c (1 ¡ α¡ β)P = aQ, (35)

b (1 ¡ α¡ β)PQ + c (1 ¡ α¡ β)Q = aP, (36)

Subtracting (47) from (46) gives

(c (1 ¡ α¡ β) + a) (P ¡ Q) = 0

Since c (1 ¡ α¡ β) + a 6= 0, then P = Q. This is a contradiction. Thus, the proof is completed.

Example 6. Figure (6) shows the Eq. (1) has a period two solution when l = 1, k = 3, t = 5, β= 0.1, α= 0.2,
a = 0.5, b = 0.07 and c = 0.05 and the initial conditions x¡5 = P, x¡4 = Q, x¡3 = P, x¡2 = Q, x¡1 = P

and x0 = Q where P = a¡c(1+β¡α)
b(1¡α)

and Q = 0.
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Figure 6. Sketch the solution of Eq. (1) has a period two solution.

Example 7. Consider l = 5, k = 2, t = 4, β = 0.6, α = 0.2, a = 0.4, b = 0.7 and c = 0.5 and the initial
conditions x¡5 = 1.2, x¡4 = 1.4, x¡3 = 0.6, x¡2 = 1.1, x¡1 = 0.3 and x0 = 0.8 the solution of Eq. (1) has no
period two solution (See Fig. 7).
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Figure 7. Draw the solution of Eq. (1) has no periodic.

5. BOUNDEDNESS OF THE SOLUTIONS

In this section, we investigate the boundedness nature of the positive solutions of equation (1).

Theorem 5.1. Every solution of di¤erence equation (1) is bounded if β+ α < 1.

Proof: Let fxng1
n=¡s be a solution of Eq. (1). It follows from Eq. (1) that

xn+1 = βxn¡l + αxn¡k + axn¡t

bxn¡t+c ,

6 βxn¡l + αxn¡k + axn¡t

bxn¡t
= βxn¡l + αxn¡k + a

b for all n ¸ 1.

By using a comparison, we can right hand side as follows

tn+1 = βtn¡l + αtn¡k + a
b
.

and this equation is locally asymptotically stable if β+ α < 1, and converges to the equilibrium point t =
a

b(1¡β¡α)
.Therefore

lim
n!1 supxn 6 a

b(1¡β¡α) .

Thus the solution is bounded.

Theorem 5.2. Every solution of di¤erence equation (1) is unbounded if β> 1or α> 1.

Proof: Let fxng1
n=¡s be a solution of Equation (1).Then from Equation (1) we see that

xn+1 = βxn¡l + αxn¡k + axn¡t

bxn¡t+c > βxn¡l for all n ¸ 1.

We see that the right hand side can be written as follows

tn+1 = βtn¡l.

then
tln+i = βntl+i + const., i = 0, 1, ..., l,

and this equation is unstable because β> 1, and lim
n!1tn = 1.Then by using ratio test fxng1

n=¡s is unbounded

from above.

Similarly from Equation (1) we see that

xn+1 = βxn¡l + αxn¡k + axn¡t

bxn¡t+c
> αxn¡k for all n ¸ 1.

We see that the right hand side can be written as follows

tn+1 = αtn¡k.
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then
tkn+i = αntk+i + const., i = 0, 1, ..., k,

and this equation is unstable because α> 1, and lim
n!1tn = 1.Then by using ratio test fxng1

n=¡s is unbounded

from above. Thus, the proof is now completed.

Example 8. We assume l = 2, k = 1, t = 3, β = 0.4, α = 1.2, a = 3, b = 0.7 and c = 0.6 and the
initial conditions x¡3 = 0.2, x¡2 = 0.4, x¡1 = 0.6 and x0 = 0.1, the solution of the di¤erence equation (1) is
unbounded (see Fig. 8).
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Figure 8. Plot the behavior of the solution of Eq. (1) is unbounded.
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