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1 Introduction

In 1965, the fuzzy sets were introduced for the first time by Zadeh in [28]. hundreds of examples
have been supplied where the nature of uncertainty in the behavior of given system processes are fuzzy
rather than stochastic nature. In the last few years, many authors have interested in the study of the
theoretical framework of fuzzy initial value problems. Chang and Zadeh in [6] have introduced the
concept of fuzzy derivative. Kandel and Byatt in [12] have initially presented the concept of the fuzzy
differential equation. Bede and Gal in [4] have studied the concept of strongly generalized differentiable
of fuzzy valued functions, which enlarged the class of differentiable fuzzy valued functions.

In 1695, the fractional calculus was first studied. The subject of fractional calculus has gained im-
portance during the past three decades due mainly to its demonstrated applications in different area of
physics and engineering in [16]. Fuzzy fractional differential equations (FFDE) play an important role
in modelling of science and engineering problems. Padmapriya and Kaliyappan in [22] established ana-
lytical and numerical methods to solve fuzzy fractional differential equations. the concept of differential
of fuzzy function with two variables and fuzzy wave equations studied in [26]. In the last years many
authors have developed and introduced some variant methods for solving fuzzy wave equation. Kermani
in [15] used finite difference method to solve the fuzzy wave equation numerically. Also, Martin and
Radek in [25] used f-transforms to solve the fuzzy wave equation.

Zhou in [29] has presented the concept of the differential transform method (DTM), this method
constructs an analytical solution inform of a polynomial, which is different from the tradition higher
order Taylor formula method. Recently some researchers used differential transform method (DTM) to
solve fuzzy fractional differential equations and fuzzy differential equations in [9, 23, 1, 19, 20].

This paper is structured as follows. In Section 2, we call some definitions on fuzzy numbers,
fuzzy functions and fuzzy Caputo’s derivative. In Section 3, The generalization of Taylor’s formula
is presented. In Section 4, the generalized two-dimensional differential transform method (DTM) for
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the solution of the fuzzy wave equation with space and time-fractional derivatives are developed and
derived. Examples are shown in Section 5. Finely, conclusion is given in section 6.

2 Basic concepts

The results about fuzzy numbers space E1, we recall that E1 = {ũ : R → [0, 1] : u satis-
fies (1)(4) below } (refer to [6])

1. ũ is normal, i.e., there exists x0 ∈ R such that ũ(x0) = 1;

2. ũ is convex, i.e., for all and λ ∈ [0, 1], x, y ∈ R,

ũ(λx+ (1− λ)y) ≥ min{ũ(x), ũ(y)},

holds;

3. ũ is upper semicontinuous, i.e., for any x0 ∈ R,

ũ(x0) ≥ lim
x−→x±

0

ũ(x);

4. supp ũ = {x ∈ R|ũ(x) > 0} is the support of ũ, and its closure cl (supp ũ) is compact.

For 0 < r ≤ 1, denote [ũ]r = {x : ũ(x) ≥ r}. Then from (1)-(4), follows that the r-level set [ũ]r is a
closed and bounded interval for all r ∈ [0, 1].

For ũ, ṽ ∈ E1, k ∈ R, the addition and scalar multiplication are defined using the equations

[ũ+ ṽ]r = [ũ]r + [ṽ]r,

[kũ]r = k[ũ]r,

respectively.
Define D : E1 × E1 → R+ ∪ {0} using the equation

D(ũ, ṽ) = sup
r∈[0,1]

d([ũ]r[ṽ]r),

where d is Hausdorff metric space as

d([ũ]r, [ṽ]r) = inf{ε : [ũ]r ⊂ N([ṽ]r, ε), [ṽ]r ⊂ N([ũ]r, ε)}
= max{|ur − vr|, |ur − vr|},

where N([ũ]r, ε), N([ṽ]r, ε) is the ε-neighborhood of [ũ]r, [ṽ]r, respectively, and ur, vr, ur, vr are end-
points of [ũ]r, [ṽ]r, respectively.
By using the results of [13], we see that

• (E1, D) is complete metric space,

• D(ũ+ w̃, ṽ + w̃) = D(ũ, ṽ) for all ũ, ṽ, w̃ ∈ E1,

• D(kũ, kṽ) = |k|D(ũ, ṽ).

In addition, we can introduce a partial order in E1 by ũ ≤ ṽ if and only if [ũ]r ≤ [ṽ]r, r ∈ [0, 1] if
and only if ur ≤ vr, ur ≤ vr, r ∈ [0, 1]. For applications of the partial order on E1 (refer to [27]).

As the fuzzy number is resolved by using the interval ũr = [ur, ur], see [8] defined another statements,
parametrically, of fuzzy numbers as in following.

Definition 2.1.[31, 32] For arbitrary fuzzy numbers ũ, ṽ ∈ E1, ũ = [ur, ur], ṽ = [vr, vr], the quantity
D(ũ, ṽ) = supr∈[0,1]max{|ur − vr|, |ur − vr|} is the distance between ũ and v and also the following
properties hold:
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• (E1, D) is a complete metric space,

• D(ũ⊕ w̃, ṽ ⊕ w̃) = D(ũ, ṽ),∀ũ, ṽ, w̃ ∈ E1,

• D(ũ⊕ ṽ, w̃ ⊕ ẽ) ≤ D(ũ, w̃) +D(ṽ, ẽ),∀ũ, ṽ, w̃, ẽ ∈ E1,

• D(ũ⊕ ṽ, 0̃) ≤ D(ũ, 0̃) +D(ṽ, 0̃), ∀ũ, ṽ ∈ E1,

• D(k ⊙ ũ, k ⊙ ṽ) = |k|D(ũ, ṽ),∀ũ, ṽ ∈ E1, k ∈ R,

• D(k1 ⊙ ũ, k2 ⊙ ũ) = |k1 − k2|D(ũ, 0̃), ∀ũ ∈ E1, k1, k2 ∈ R, with k1 · k2 ≥ 0.

Let us recall the definition of the Hukuhara difference (H-difference) in [33]. Suppose that ũ, ṽ ∈ E1.
The Hukuhara H-difference has been presented as a set w̃ for which ũ ⊖gH ṽ = w̃ ⇔ ũ = ṽ ⊕ w̃. The
H-difference is unique, but it does not always exist (a necessary condition for ũ⊖gH ṽ to exist is that ũ
contains a translate {c} ⊕ ṽ of ṽ). A generalization of the Hukuhara difference aims to overcome this
situation.

Definition 2.2.[33, 31] The generalized Hukuhara difference between two fuzzy numbers ũ, ṽ ∈ E1

is defined as following:

ũ⊖gH ṽ = w̃ ⇔
{

(i) ũ = ṽ ⊕ w̃,

or (ii) ṽ = ũ⊕ (−w̃).
(2.1)

In terms of the r−levels, we get [ũ ⊖gH ṽ] = [min{ur − vr, ur − vr},max{ur − vr, ur − vr}] and if
the H-difference exists, then ũ⊖ ṽ = ũ⊖gH ṽ; the conditions for existence of w̃ = ũ⊖gH ṽ ∈ E1 are

Case (i)

{
wr = ur − vr and wr = ur − vr, ∀r ∈ [0, 1],

with wr increasing, wr decreasing, wr ≤ wr.
(2.2)

Case (ii)

{
wr = ur − vr and wr = ur − vr, ∀r ∈ [0, 1],

with wr increasing, wr decreasing, wr ≤ wr.
(2.3)

It is easy to show that (i) and (ii) are both valid if and only if w̃ is a crisp number. In the case, it
is possible that the gH-difference of two fuzzy numbers does not exist. To address this shortcoming, a
new difference between fuzzy numbers was introduced in [33].

Lemma 2.1.[10, 24] A fuzzy number ũ in parametric form is a pair [ur, ur] of function ur and ur
for any r ∈ [0, 1], which satisfies the following requirements.

• ur is a bounded non-decreasing left continuous function in (0,1];

• ur is a bounded non-increasing left continuous function in (0,1];

• ur ≤ ur.

Some the author of the classified fuzzy numbers into several types of fuzzy membership function. To
the deepest of our study, triangular fuzzy membership function or also often referred to as triangular
fuzzy numbers are the most widely used membership function.

In order to describe the fuzzy numbers and real numbers clearly, in convenience, the fuzzy numbers
and fuzzy-valued functions in the whole paper are added with a tilde sign at the top, while the real-value
function and interval-value functions are written directly.

A fuzzy valued function f̃ of two variables is a rule that assigns to each ordered pair of real numbers,
(x, t), in a set D, a unique fuzzy numbers denoted by f̃(x, t). The set D is the domain of f̃ and its

range is the set of values taken by f , i.e., {f̃(x, t)|(x, t) ∈ D}.
The parametric representation of the fuzzy valued function f : D → E1 is expressed by f(x, t)(r) =

[f(x, t)(r), f(x, t)(r)], for all (x, t) ∈ D and r ∈ [0, 1].

Suppose f : D → E1 be a fuzzy valued function of two variable. Then, we say that the fuzzy limit
of f(x, t) as (x, t) approaches to (a, b) is L ∈ E1, and we write lim(x,t)→(a,b) f(x, t) = L if for every

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.3, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

433 Osman 431-453



Mawia Osman , Zeng-Tai Gong and Altyeb Mohammed: Differential Transform Method for Solving Fuzzy ...

number ε > 0, there is a corresponding number δ > 0 such that if (x, t) ∈ D, ∥ (x, t) − (a, b) ∥< δ ⇒
D(f(x, t), L) < ε, where ∥ · ∥ denotes the Euclidean norm in Rn (ref. to [3])

A fuzzy valued function f : D → E1 is said to be fuzzy continuous at (x0, t0) ∈ D if lim(x,t)→(x0,t0) f(x, t) =
f(x0, t0). We say that f is fuzzy continuous on D if f is fuzzy continuous at every point (x0, t0) in D
(ref. to [3, 30]).

Definition 2.3.[11] Suppose that ũ(x, t) : D → E1 and (x0, t) ∈ D. We say that ũ is strongly
generalized differentiable on (x0, t) if there exists an element ∂ũ

∂x |(x0,t) ∈ E1 such that

i. for all h > 0 sufficiently small, ∃ũ(x0 + h, t)⊖gH ũ(x0, t), ũ(x0, t)⊖gH ũ(x0 − h, t) and the limits
(in the metric D)

lim
h→0+

ũ(x0 + h, t)⊖gH ũ(x0, t)

h
= lim

h→0+
=

(x0, t)⊖gH ũ(x0 − h, t)

h
=

∂ũ

∂x
|(x0,t),

or

ii. for all h > 0 sufficiently small, ∃gH ũ(x0, t)⊖gH ũ(x0+h, t), ũ(x0−h, t)⊖gH ũ(x0, t) and the limits

lim
h→0+

ũ(x0, t)⊖gH ũ(x0 + h, t)

−h
= lim

h→0+

ũ(x0 − h, t)⊖gH ũ(x0, t)

−h
=

∂ũ

∂x
|(x0,t),

or

iii. for all h > 0 sufficiently small, ∃ũ(x0 + h, t)⊖gH ũ(x0, t), ũ(x0 − h, t)⊖gH ũ(x0, t) and the limits

lim
h→0+

ũ(x0 + h, t)⊖gH ũ(x0, t)

h
= lim

h→0+

ũ(x0 − h, t)⊖gH ũ(x0, t)

−h
=

∂ũ

∂x
|(x0,t),

or

iv. for all h > 0 sufficiently small, ∃ũ(x0, t)⊖gH ũ(x0 + h, t), ũ(x0, t)⊖gH ũ(x0 − h, t) and the limits

lim
h→0+

ũ(x0, t)⊖gH ũ(x0 + h, t)

−h
= lim

h→0+

ũ(x0, t)⊖gH ũ(x0 − h, t)

h
=

∂ũ

∂x
|(x0,t).

Definition 2.4.[4] Suppose that ũ(x, t) : D → E1 and (x0, t) ∈ D. We define the n th-order
derivative of ũ as follows: we say that ũ is strongly generalized differentiable of the n th-order at (x0, t)
if there exists an element ∂sũ

∂xs |(x0,t) ∈ E1, ∀s = 1, 2, · · ·, n such that

i. for all h > 0 sufficiently small, ∃ũ(s−1)(x0+h, t)⊖gH ũ(s−1)(x0, t), ũ
(s−1)(x0, t)⊖gH ũ(s−1)(x0−h, t)

and the limits (in the metric D)

lim
h→0+

ũ(s−1)(x0 + h, t)⊖gH ũ(s−1)(x0, t)

h
= lim

h→0+

ũ(s−1)(x0, t)⊖gH ũ(s−1)(x0 − h, t)

h
=

∂sũ

∂xs
|(x0,t),

or

ii. for all h > 0 sufficiently small, ∃ũ(s−1)(x0, t)⊖gH ũ(s−1)(x0+h, t), ũ(s−1)(x0−h, t)⊖gH ũ(s−1)(x0, t)
and the limits

lim
h→0+

ũ(s−1)(x0, t)⊖gH ũ(s−1)(x0 + h, t)

−h
= lim

h→0+

ũ(s−1)(x0 − h, t)⊖gH ũ(s−1)(x0, t)

−h
=

∂sũ

∂xs
|(x0,t),

or
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iii. for all h > 0 sufficiently small, ∃ũ(s−1)(x0+h, t)⊖gH ũ(s−1)(x0, t), ũ
(s−1)(x0−h, t)⊖gH ũ(s−1)(x0, t)

and the limits

lim
h→0+

ũ(s−1)(x0 + h, t)⊖gH ũ(s−1)(x0, t)

h
= lim

h→0+

ũ(s−1)(x0 − h, t)⊖gH ũ(s−1)(x0, t)

−h
=

∂sũ

∂xs
|(x0,t),

or

iv. for all h > 0 sufficiently small, ∃ũ(s−1)(x0, t)⊖gH ũ(s−1)(x0+h, t), ũ(s−1)(x0, t)⊖gH ũ(s−1)(x0−h, t)
and the limits

lim
h→0+

ũ(s−1)(x0, t)⊖gH ũ(s−1)(x0 + h, t)

−h
= lim

h→0+

ũ(s−1)(x0, t)⊖gH ũ(s−1)(x0 − h, t)

h
=

∂sũ

∂xs
|(x0,t).

2.1 Fuzzy Coputo’s derivative

We denote CF [a, b] as a space of all fuzzy valued functions which are continuous on [a, b], and the
space of all Kaleva integrable fuzzy-valued functions on the bounded interval [a, b] ⊂ R by KF [a, b], we

denote the space of fuzzy value functions f̃(x) which have continuous H-derivative up to order n−1 on

[a, b] such that f̃ (n−1)(x) ∈ ACF ([a, b]) by AC(n)F ([a, b]),where ACF ([a, b]) denote the set of all
fuzzy-valued functions which are absolutely continuous (ref. to [13, 9]).

Definition 2.5.[2] Suppose f̃(x) ∈ CF [a, b]∩KF [a, b], the fuzzy Riemann Liouville integral of fuzzy

valued function f̃ is defined as following:

(Iαa+f̃)(x, r) = [(Iαa+f)(x, r), (I
α
a+f)(x, r)],

where 0 ≤ r ≤ 1

(Iαa+f)(x, r) =
1

Γ(α)

∫ x

a

f(t)(r)dt

(x− t)1−α
, 0 ≤ r ≤ 1,

(Iαa+f)(x, r) =
1

Γ(α)

∫ x

a

f(t)(r)dt

(x− t)1−α
, 0 ≤ r ≤ 1.

Suppose f̃(x) ∈ CF ((0, a]) ∩ KF (0, a), be a given function such that f̃(t, r) = [f(t, r), f(t, r)] for

all t ∈ (0, a] and 0 ≤ r ≤ 1. We define Dα
∗af̃(t; r) the fuzzy fractional Riemann-Liouville derivative of

order 0 < α < 1 of f̃ in the parametric from,

Dα
∗af̃(t; r) =

1

Γ(1− α)

[
d

dt

∫ t

0
(t− s)−αf(s, r)ds,

d

dt

∫ t

0
(t− s)−αf(s, r)ds

]
,

provided that equation defines a fuzzy number Dα
∗af̃(t) ∈ E1. In fact,

Dα
∗af̃(t, r) = [Dα

∗af(t, r), D
α
∗af(t, r)].

Obviously, Dα
∗af̃(t) =

d
dtI

1−αf̃(t) for t ∈ (0, a].

3 Generalized Taylor’s formula

In this section, we present the generalized Taylor’s formula that involves Caputo fractional
derivative.

Theorem 3.1.[21] Let that (Dα
∗a)

jf(x) ∈ C(a, b] for j = 0, 1, ·····, n+1, where 0 < α ≤ 1, that we get

f(x) =
n∑

i=0

(x− a)iα

Γ(iα+ 1)
((Dα

∗a)
if)(a+) +

((Dα
∗a)

n+1f)(ζ)

Γ((n+ 1)α+ 1)
(x− a)(n+1)α, (3.4)
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with a ≤ ζ ≤ x, ∀x ∈ (a, b] and Dα
∗a is the Caputo fractional derivative of order α, where (Dα

∗a)
j =

Dα
∗aD

α
∗a · · · ·Dα

∗a. In case of α = 1, the generalized Taylor’s formula (3.4) reduces to the classical Taylor’s
formula.

Theorem 3.2.[17] Let that (Dα
∗a)

jf(x) ∈ C(a, b] for j = 0, 1, · · · · ·, N + 1, where 0 < α ≤ 1. If
x ∈ [a, b], then

f(x) ≃
N∑
i=0

(x− a)iα

Γ(iα+ 1)
((Dα

∗a)
if)(a+). (3.5)

Furthermore, there is a value ζ with a ≤ ζ ≤ x so that the error term Rα
N (x) has the from

Rα
N (x) =

((Dα
∗a)

N+1f)(ζ)

Γ((N + 1)α+ 1)
(x− a)(N+1)α. (3.6)

The accuracy of Rα
N (x) increases when we choose large N and decreases as value of x moves away

from the center a. Hence, we must choose N large enough so that the error does not exceed a specified
bound. In the following theorem, we find precise condition under which the exponents hold for arbitrary
fractional operators.

Theorem 3.3.[18] Let that f(x) = xλ
∗
g(x), where λ∗ > −1 and g(x) has the generalized power

series expansion g(x) =
∑∞

n=0 an(x− a)nα with radius of convergence R > 0, where 0 < α ≤ 1. Then

Dγ
∗aD

β
∗af(x) = Dγ+β

∗a f(x) (3.7)

for all x ∈ (0, R) if one of the following conditions is satisfied:

1. β < λ∗ + 1, and γ arbitrary,

2. β ≥ λ∗ + 1, γ arbitrary,, and aj = 0 for j = 0, 1, · · · · ·,m− 1, where m− 1 < β ≤ m.

4 Differential transform method and fuzzy fractional wave equation

4.1 Generalized two-dimensional differential transform method

In this section, we will derive the generalized two-dimensional differential transform method
(DTM) that we get developed for the solution of the wave equation with space and time-fractional
derivatives. The proposed method is based on Taylor’s formula. Consider a function of two variables
u(x, t), and Let that it can be represented as a product of two single variable functions, u(x, t) =
f(x)g(t). Based on the properties of generalized two dimensional differential transform method, function
u(x, t) can be represented as.

u(x, t) =
∞∑
j=0

Fα(j) · (x− x0)
jα

∞∑
h=0

Gβ(h) · (t− t0)
hβ =

∞∑
j=0

∞∑
h=0

Uα,β(j, h)(x− x0)
jα(t− t0)

hβ, (4.8)

where 0 < α, β ≤ 1, Uα,β(j, h) = Fα(j)Gβ(h) is called the spectrum of u(x, t). If function u(x, t) is
analytical and differentiated continuously with respect to time t∗ in the domain of interest, then we
define the generalized two-dimensional differential transform method (DTM) of the function u(x, t) as
follows:

Uα,β(j, h) =
1

Γ(αj + 1)Γ(βh+ 1)
[(Dα

x0
)j(Dβ

t0
)hu(x, t)](x0,t0), (4.9)

where (Dα
x0
)j = Dα

x0
·Dα

x0
·····Dα

x0
. In this work, the lowercase u(x, t) represents the original function while

the uppercase Uα,β(j, h) stands for the transformed function. The generalized differential transform
method (DTM) inverse of Uα,β(j, h) is defined as follows

u(x, t) =

∞∑
j=0

∞∑
h=0

Uα,β(j, h) · (x− x0)
jα(t− t0)

hβ (4.10)
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In case of α = 1 and β = 1. then generalized two-dimensional differential transform (DTM) (4.9)
reduces to the classical two-dimensional DTM [5]. From equation (4.9) and (4.10), some basic proper-
ties of the generalized two-dimensional differential transform (DTM) are introduced below (ref. to [17]).

Theorem 4.1 If u(x, t) = v(x, t)± w(x, t), then Uα,β(j, h) = Vα,β(j, h)±Wα,β(j, h).

Theorem 4.2 If u(x, t) = cv(x, t), then Uα,β(j, h) = cVα,β(j, h).

Theorem 4.3 If u(x, t) = v(x, t)w(x, t), then

Uα,β(j, h) =

j∑
r=0

h∑
s=0

Vα,β(r, h− s)Wα,β(j − r, s). (4.11)

Theorem 4.4 If u(x, t) = Dα
x0
v(x, t) and 0 < α ≤ 1, then we get

Uα,β(j, h) =
Γ(α(j + 1) + 1)

Γ(αj + 1)
Vα,β(j + 1, h). (4.12)

Theorem 4.5 If u(x, t) = Dα
x0
Dβ

t0
v(x, t) and 0 < α, β ≤ 1, then we get

Uα,β(j, h) =
Γ(α(j + 1) + 1)Γ(β(h+ 1) + 1)

Γ(αj + 1)Γ(βh+ 1)
Vα,β(j + 1, h+ 1). (4.13)

Theorem 4.6 If u(x, t) = (x− x0)
nα(t− t0)

mα, then Uα,β(j, h) = δ(j − n)(h−m).

Theorem 4.7 If u(x, t) = Dγ
x0v(x, t),m − 1 < γ ≤ m and v(x, t) = f(x)g(t), where f(x) satisfies

the conditions in Theorem 3.3, then

Uα,β(j, h) =
Γ(αj + γ + 1)

Γ(αj + 1)
Uα,β(j + γ/α, h). (4.14)

Theorem 4.8 If u(x, t) = Dγ
x0D

η
t0
v(x, t), wherem−1 < γ ≤ m,n−1 < η ≤ n and v(x, t) = f(x)g(t),

where the functions f(x) and g(x) satisfy the conditions given in Theorem 3.3, then

Uα,β(j, h) =
Γ(αj + γ + 1)

Γ(αj + 1)

Γ(βh+ η + 1)

Γ(βh+ 1)
Uα,β(j + γ/α, h+ η/β). (4.15)

4.2 Fuzzy fractional wave equation

Consider the fuzzy fractional wave equation with the indicated initial conditions and boundary
conditions.

∂αũ

∂tα
= c2 ⊙ ∂2ũ

∂x2
, 0 < α ≤ 2, 0 < x < L, t > 0, (4.16)

subject to the boundary conditions

ũ(0, t) = 0, and ũ(L, t) = 0, (4.17)

and initial conditions.

ũ(x, 0) = f̃(x), and ũt(x, 0) = g̃(x). (4.18)

We note that the case (i) of Definition 2.3 is coincident with the Hukuhara derivative [14]. We say
that a function is (i) differentiable if it is differentiable as in (i) of Definition 2.3, a function is (ii)
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differentiable if it is differentiable as in (ii) of Definition 2.3. In this paper we consider the two cases
(i) and (ii). In Ref. [4] the authors consider four cases: the case (i) in [14] is coincident with (i); the
case (iii) of Definition 2.1 is equivalent to (ii); in the other cases, the derivative is trivial because it is
reduced to crisp element. For details see Theorem 7 in [4]. Thus, we only consider the cases (i) and
(ii).

Lemma 4.2. [7]. Let ũ(x, t) : D → E1. Then the following statements hold.
(i) If ũ(x, t) is (i)-partial differentiable for x (i.e. ũ is partial differentiable for x under the meaning of
Definition 2.1 (i), similarly to t), then[

∂ũ

∂x

]
r

=

[
∂u(x, t)(r)

∂x
,
∂ū(x, t)(r)

∂x

]
; (4.19)

(ii) If ũ(x, t) is (ii)-partial differentiable for x (i.e. ũ is partial differentiable for x under the meaning
of Definition 2.1 (ii), similarly to t), then[

∂ũ

∂x

]
r

=

[
∂ū(x, t)(r)

∂x
,
∂u(x, t)(r)

∂x

]
. (4.20)

Remark 4.1. For ũ(x, t) : D → E1, the following results hold.[
∂2ũ

∂x2

]
r

=

[
∂2u(x, t)(r)

∂x2
,
∂2ū(x, t)(r)

∂x2

]
, (4.21)

in cases for that (i, i), (ii, ii)-∂
2ũ

∂x2 exist;[
∂2ũ

∂x2

]
r

=

[
∂2ū(x, t)(r)

∂x2
,
∂2u(x, t)(r)

∂x2

]
. (4.22)

in cases for that (i, ii), (ii, i)-∂
2ũ

∂t2
exist.

Remark 4.2. In this paper, we only consider that the cases of (i− ii)n-∂
nũ

∂tn such that[
∂nũ

∂xn

]
r

=

[
∂nu(x, t)(r)

∂xn
,
∂nū(x, t)(r)

∂xn

]
, (4.23)

where (i− ii)n-∂
nũ

∂tn stands for n time derivative in the cases (i) or (ii).

5 Examples

Example 5.1. Consider the following fuzzy fractional wave equation

(A)
∂2ũ

∂t2
= 4⊙ ∂2ũ

∂x2
0 ≤ x ≤ 1, 0 < t, (5.24)

subject to the boundary conditions

ũ(0, t) = ũ(1, t) = 0, 0 < t, (5.25)

and initial conditions

ũ(x, 0) = f̃(x) = k̃n ⊙ sin(πx), 0 ≤ x ≤ 1,

∂ũ(x, 0)

∂t
= g̃(x) = 0, 0 ≤ x ≤ 1. (5.26)
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where k̃n ∈ E1, n=1,2,3,... fuzzy number is defined by

k̃(s) =


s, s ∈ [0, 1],

2− s s ∈ (1, 2],

0 s /∈ [0, 2],

(5.27)

and [k̃n](r) = rn, [k̃n](r) = (2− r)n.
The parametric form of (5.24) is

∂2u

∂t2
= 4

∂2u

∂x2
0 ≤ x ≤ 1, 0 < t, (5.28)

∂2u

∂t2
= 4

∂2u

∂x2
, 0 ≤ x ≤ 1, 0 < t, (5.29)

for r ∈ [0, 1], and where u stands for u(x, t)(r), similar to u.
Taking the differential transform of equations (5.28) and (5.29), we get

(j + 2)(j + 1)U(i, j + 2)(r) = 4(i+ 2)(i+ 1)U(i+ 2, j)(r), (5.30)

(j + 2)(j + 1)U(i, j + 2)(r) = 4(i+ 2)(i+ 1)U(i+ 2, j)(r). (5.31)

From the initial given by equation (5.26), we get

u(x, 0)(r) =
∞∑
i=0

U(i, 0)(r)xi = k(r) sin(πx) = rn
∞∑

i=1,3,....

(−1)
(i−1)

2

i!
πixi, (5.32)

u(x, 0)(r) =
∞∑
i=0

U(i, 0)(r)xi = k(r) sin(πx) = (2− r)n
∞∑

i=1,3,....

(−1)
(i−1)

2

i!
πixi. (5.33)

The corresponding spectra can be obtained as follows,

U(i, 0)(r) =


0, for i is even,

(−1)
(i−1)

2

i!
rnπi, for i is odd

(5.34)

U(i, 0)(r) =


0, for i is even,

(−1)
(i−1)

2

i!
(2− r)nπi, for i is odd

(5.35)

and from equation (5.26) it can be obtained that,

∂u(x, 0)(r)

∂t
=

∞∑
i=0

U(i, 1)(r)xi = 0, (5.36)

∂u(x, 0)(r)

∂t
=

∞∑
i=0

U(i, 1)(r)xi = 0. (5.37)

Hence,

u(i, 1)(r) = 0, (5.38)

u(i, 1)(r) = 0. (5.39)
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Substituting equations (5.34) -(5.39) to equations (5.30) and (5.31), all spectra can be found as,

U(i, j)(r) =


0, for i is even or j is odd

2j(−1)
(i+j−1)

2

i!j!
rnπi+j , for i is odd or j is even

(5.40)

U(i, j)(r) =


0, for i is even or j is odd

2j(−1)
(i+j−1)

2

i!j!
(2− r)nπi+j , for i is odd or j is even

(5.41)

So, the closed from of the solution can be easily written as

u(x, t)(r) = kn
∞∑
i=0

∞∑
j=0

U(i, j)(r)xitj = rn
∞∑
i=0

∞∑
j=0

2j

j!i!
(−1)

(i+j−1)
2 πi+jxitj

= rn

 ∞∑
i=1,3,...

1

i!
(−1)

(i−1)
2 (πx)i

 ∞∑
j=0,2,...

1

j!
(−1)

j
2 (2πt)j


= rn sin(πx) cos(2πt), (5.42)

u(x, t)(r) = k
n

∞∑
i=0

∞∑
j=0

U(i, j)(r)xitj = (2− r)n
∞∑
i=0

∞∑
j=0

2j

j!i!
(−1)

(i+j−1)
2 πi+jxitj

= (2− r)n

 ∞∑
i=1,3,...

1

i!
(−1)

(i−1)
2 (πx)i

 ∞∑
j=0,2,...

1

j!
(−1)

j
2 (2πt)j


= (2− r)n sin(πx) cos(2πt). (5.43)

(B) Consider the following fuzzy fractional wave equation (5.24) with the boundary conditions:

ũ(0, t) = ũ(1, t) = 0, 0 < t, (5.44)

and initial conditions

ũ(x, 0) = f̃(x) = k̃n ⊕ sin(πx), 0 ≤ x ≤ 1,

∂ũ(x, 0)

∂t
= g̃(x) = 0, 0 ≤ x ≤ 1. (5.45)

By following the same steps, we will find that the solution. So, the closed from of the solution
can be easily written as

u(x, t)(r) = kn +
∞∑
i=0

∞∑
j=0

U(i, j)(r)xitj = rn +
∞∑
i=0

∞∑
j=0

2j

j!i!
(−1)

(i+j−1)
2 πi+jxitj

= rn +

 ∞∑
i=1,3,...

1

i!
(−1)

(i−1)
2 (πx)i

 ∞∑
j=0,2,...

1

j!
(−1)

j
2 (2πt)j


= rn + (sin(πx) cos(2πt)), (5.46)

u(x, t)(r) = k
n
+

∞∑
i=0

∞∑
j=0

U(i, j)(r)xitj = (2− r)n +

∞∑
i=0

∞∑
j=0

2j

j!i!
(−1)

(i+j−1)
2 πi+jxitj

= (2− r)n +

 ∞∑
i=1,3,...

1

i!
(−1)

(i−1)
2 (πx)i

 ∞∑
j=0,2,...

1

j!
(−1)

j
2 (2πt)j


= (2− r)n + (sin(πx) cos(2πt)). (5.47)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.3, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

440 Osman 431-453



Mawia Osman , Zeng-Tai Gong and Altyeb Mohammed: Differential Transform Method for Solving Fuzzy ...

(C) Consider the following fuzzy fractional wave equation (5.24) with the boundary conditions:

ũ(0, t) = ũ(1, t) = 0, 0 < t, (5.48)

and initial conditions

ũ(x, 0) = f̃(x) = k̃n ⊖gH sin(πx), 0 ≤ x ≤ 1,

∂ũ(x, 0)

∂t
= g̃(x) = 0, 0 ≤ x ≤ 1. (5.49)

where k̃n ∈ E1, n=1,2,3,... , fuzzy number is defined by

k̃(s) =


2(s− 0.5), s ∈ [0.5, 1],

2(1.5− s), s ∈ (1, 1.5],

0 s /∈ [0.5, 1.5],

(5.50)

and{k̃n}(r) = (0.5 + 0.5r)n, {k̃n}(r) = (1.5− 0.5r)n.
By following the same steps, we will find that the solution. So, the closed from of the solution
can be easily written as

u(x, t)(r) = kn −
∞∑
i=0

∞∑
j=0

U(i, j)(r)xitj = (0.5 + 0.5r)n −
∞∑
i=0

∞∑
j=0

2j

j!i!
(−1)

(i+j−1)
2 πi+jxitj

= (0.5 + 0.5r)n −

 ∞∑
i=1,3,...

1

i!
(−1)

(i−1)
2 (πx)i

 ∞∑
j=0,2,...

1

j!
(−1)

j
2 (2πt)j


= (0.5 + 0.5r)n − (sin(πx) cos(2πt)) , (5.51)

u(x, t)(r) = k
n −

∞∑
i=0

∞∑
j=0

U(i, j)(r)xitj = (1.5− 0.5r)n −
∞∑
i=0

∞∑
j=0

2j

j!i!
(−1)

(i+j−1)
2 πi+jxitj

= (1.5− 0.5r)n −

 ∞∑
i=1,3,...

1

i!
(−1)

(i−1)
2 (πx)i

 ∞∑
j=0,2,...

1

j!
(−1)

j
2 (2πt)j


= (1.5− 0.5r)n − (sin(πx) cos(2πt)) . (5.52)

Example 5.2. Consider the following fuzzy time-fractional wave equation.

(A)
∂1.5ũ

∂t1.5
=

∂2ũ

∂x2
, t > 0, (5.53)

subject to the initial conditions

ũ(x, 0) = f̃(x) = k̃n ⊙ sin(x),
∂ũ(x, 0)

∂t
= g̃(x) = k̃n ⊙ (− sin(x)). (5.54)

where k̃n ∈ E1, n=1,2,3,..., fuzzy number is defined by

k̃(s) =


2(s− 0.5), s ∈ [0.5, 1],

2(1.5− s), s ∈ (1, 1.5],

0 s /∈ [0.5, 1.5],

(5.55)
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and{k̃n}(r) = (0.5 + 0.5r)n, {k̃n}(r) = (1.5− 0.5r)n.
The parametric form of (5.53) is

∂1.5u

∂t1.5
=

∂2u

∂x2
, t > 0, (5.56)

∂1.5u

∂t1.5
=

∂2u

∂x2
, t > 0. (5.57)

for r ∈ [0, 1], and where u stands for u(x, t)(r), similar to u.

Let the solution u(x, t) = f(x)g(t) where the function g(t) satisfies the conditions given in Theo-
rem 3.3. Then selecting α = 0.5, β = 1 and applying the generalized two-dimensional differential
transform method (DTM) to both sides of equations (5.56) and (5.57) by Theorem 4.7, equations
(5.56) and (5.57) Transforms to

U0.5,1(j, h+ 3)(r) =
(j + 1)(j + 2)Γ(h2 + 1)

Γ(h2 + 5
2)

U0.5,1(j + 2, h)(r), (5.58)

U0.5,1(j, h+ 3)(r) =
(j + 1)(j + 2)Γ(h2 + 1)

Γ(h2 + 5
2)

U0.5,1(j + 2, h)(r). (5.59)

The generalized two-dimensional differential transform of the initial conditions (5.54) are given
by

U0.5,1(j, 0)(r) = (0.5 + 0.5r)n
1

j!
sin(

πj

2
), (5.60)

U0.5,1(j, 1)(r) = 0, (5.61)

U0.5,1(j, 2)(r) = (0.5 + 0.5r)n
−1

j!
sin(

πj

2
), (5.62)

U0.5,1(j, 0)(r) = (1.5− 0.5r)n
1

j!
sin(

πj

2
), (5.63)

U0.5,1(j, 1)(r) = 0, (5.64)

U0.5,1(j, 2)(r) = (1.5− 0.5r)n
−1

j!
sin(

πj

2
). (5.65)

Utilizing the recurrence relation (5.58), (5.59) and the transformed initial conditions (5.60) -(5.65),
the first few components of U0.5,1(j, h) can be calculated.
So, the solution u(x, t) of equations (5.56) and (5.57) is obtained

u(x, t)(r) = (0.5 + 0.5r)n

(
1− t− 1

Γ(52)
t
3
2 +

1

Γ(72)
t
5
2 +

1

Γ(4)
t3 + .....

)
x

+ (0.5 + 0.5r)n

(
− 1

3!
+

1

3!
t+

1

3!Γ(52)
t
3
2 − 1

3!Γ(72)
t
5
2 − 1

3!Γ(4)
t3 + ....

)
x3

+ (0.5 + 0.5r)n

(
1

5!
− 1

5!
t− 1

5!Γ(52)
t
3
2 +

1

5!Γ(72)
t
5
2 +

1

5!Γ(4)
t3 − ...

)
x5

u(x, t)(r) = (0.5 + 0.5r)n

 ∞∑
j=0

(−1)jt
3j
2

Γ(3j2 + 1)
sin(x)−

∞∑
j=0

(−1)jt
3j
2
+1

Γ(3j2 + 2)
sin(x)

 ,

= (0.5 + 0.5r)n
(
E 3

2
,1(−t

3
2 ) sin(x)− tE 3

2
,2(−t

3
2 ) sin(x)

)
, (5.66)
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u(x, t)(r) = (1.5− 0.5r)n

(
1− t− 1

Γ(52)
t
3
2 +

1

Γ(72)
t
5
2 +

1

Γ(4)
t3 + .....

)
· x

+ (1.5− 0.5r)n

(
− 1

3!
+

1

3!
t+

1

3!Γ(52)
t
3
2 − 1

3!Γ(72)
t
5
2 − 1

3!Γ(4)
t3 + ....

)
· x3

+ (1.5− 0.5r)n

(
1

5!
− 1

5!
t− 1

5!Γ(52)
t
3
2 +

1

5!Γ(72)
t
5
2 +

1

5!Γ(4)
t3 − ...

)
· x5

u(x, t)(r) = (1.5− 0.5r)n

 ∞∑
j=0

(−1)jt
3j
2

Γ(3j2 + 1)
sin(x)−

∞∑
j=0

(−1)jt
3j
2
+1

Γ(3j2 + 2)
sin(x)

 ,

= (1.5− 0.5r)n
(
E 3

2
,1(−t

3
2 ) sin(x)− tE 3

2
,2(−t

3
2 ) sin(x)

)
. (5.67)

Which is the exact solution of the fuzzy time fractional wave equations (5.56) and (5.57) where
Eα,β(z) is the two parameters mittag-Leffer function defined by

Eα,β(z) = k̃n ⊙
∞∑
n=0

zn

Γ(αn+ β)
. (5.68)

(B) Consider the following fuzzy time-fractional wave equation (5.53) with the initial conditions:

ũ(x, 0) = f̃(x) = k̃n ⊕ sin(x),
∂ũ(x, 0)

∂t
= g̃(x) = k̃n ⊕ (− sin(x)). (5.69)

By following the same steps, we will find that the solution. Utilizing the recurrence relation
(5.58), (5.59) and the transformed initial conditions (5.60) -(5.65), the first few components of
U0.5,1(j, h) can be calculated.
So, the solution u(x, t) of equations (5.56) and (5.57) is obtained

u(x, t)(r) = (0.5 + 0.5r)n +

(
1− t− 1

Γ(52)
t
3
2 +

1

Γ(72)
t
5
2 +

1

Γ(4)
t3 + .....

)
x

+ (0.5 + 0.5r)n +

(
− 1

3!
+

1

3!
t+

1

3!Γ(52)
t
3
2 − 1

3!Γ(72)
t
5
2 − 1

3!Γ(4)
t3 + ....

)
x3

+ (0.5 + 0.5r)n +

(
1

5!
− 1

5!
t− 1

5!Γ(52)
t
3
2 +

1

5!Γ(72)
t
5
2 +

1

5!Γ(4)
t3 − ...

)
x5

u(x, t)(r) = (0.5 + 0.5r)n +

 ∞∑
j=0

(−1)jt
3j
2

Γ(3j2 + 1)
sin(x)−

∞∑
j=0

(−1)jt
3j
2
+1

Γ(3j2 + 2)
sin(x)

 ,

= (0.5 + 0.5r)n +
(
E 3

2
,1(−t

3
2 ) sin(x)− tE 3

2
,2(−t

3
2 ) sin(x)

)
, (5.70)
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u(x, t)(r) = (1.5− 0.5r)n +

(
1− t− 1

Γ(52)
t
3
2 +

1

Γ(72)
t
5
2 +

1

Γ(4)
t3 + .....

)
· x

+ (1.5− 0.5r)n +

(
− 1

3!
+

1

3!
t+

1

3!Γ(52)
t
3
2 − 1

3!Γ(72)
t
5
2 − 1

3!Γ(4)
t3 + ....

)
· x3

+ (1.5− 0.5r)n +

(
1

5!
− 1

5!
t− 1

5!Γ(52)
t
3
2 +

1

5!Γ(72)
t
5
2 +

1

5!Γ(4)
t3 − ...

)
· x5

u(x, t)(r) = (1.5− 0.5r)n +

 ∞∑
j=0

(−1)jt
3j
2

Γ(3j2 + 1)
sin(x)−

∞∑
j=0

(−1)jt
3j
2
+1

Γ(3j2 + 2)
sin(x)

 ,

= (1.5− 0.5r)n +
(
E 3

2
,1(−t

3
2 ) sin(x)− tE 3

2
,2(−t

3
2 ) sin(x)

)
. (5.71)

Which is the exact solution of the fuzzy time fractional wave equations (5.56) and (5.57) where
Eα,β(z) is the two parameters mittag-Leffer function defined by

Eα,β(z) = k̃n ⊕
∞∑
n=0

zn

Γ(αn+ β)
. (5.72)

(C) Consider the following fuzzy time fractional wave equation (5.53) with initial conditions:

ũ(x, 0) = f̃(x) = k̃n ⊖gH sin(x),
∂ũ(x, 0)

∂t
= g̃(x) = k̃n ⊖gH (− sin(x)). (5.73)

By following the same steps, we will find that the solution. Utilizing the recurrence relation
(5.58), (5.59) and the transformed initial conditions (5.60) -(5.65), the first few components of
U0.5,1(j, h) can be calculated.
So, the solution u(x, t) of equations (5.56) and (5.57) is obtained

u(x, t)(r) = (0.5 + 0.5r)n −

(
1− t− 1

Γ(52)
t
3
2 +

1

Γ(72)
t
5
2 +

1

Γ(4)
t3 + .....

)
x

+ (0.5 + 0.5r)n −

(
− 1

3!
+

1

3!
t+

1

3!Γ(52)
t
3
2 − 1

3!Γ(72)
t
5
2 − 1

3!Γ(4)
t3 + ....

)
x3

+ (0.5 + 0.5r)n −

(
1

5!
− 1

5!
t− 1

5!Γ(52)
t
3
2 +

1

5!Γ(72)
t
5
2 +

1

5!Γ(4)
t3 − ...

)
x5

u(x, t)(r) = (0.5 + 0.5r)n −

 ∞∑
j=0

(−1)jt
3j
2

Γ(3j2 + 1)
sin(x)−

∞∑
j=0

(−1)jt
3j
2
+1

Γ(3j2 + 2)
sin(x)

 ,

= (0.5 + 0.5r)n −
(
E 3

2
,1(−t

3
2 ) sin(x)− tE 3

2
,2(−t

3
2 ) sin(x)

)
, (5.74)
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u(x, t)(r) = (1.5− 0.5r)n −

(
1− t− 1

Γ(52)
t
3
2 +

1

Γ(72)
t
5
2 +

1

Γ(4)
t3 + .....

)
· x

+ (1.5− 0.5r)n −

(
− 1

3!
+

1

3!
t+

1

3!Γ(52)
t
3
2 − 1

3!Γ(72)
t
5
2 − 1

3!Γ(4)
t3 + ....

)
· x3

+ (1.5− 0.5r)n −

(
1

5!
− 1

5!
t− 1

5!Γ(52)
t
3
2 +

1

5!Γ(72)
t
5
2 +

1

5!Γ(4)
t3 − ...

)
· x5

u(x, t)(r) = (1.5− 0.5r)n −

 ∞∑
j=0

(−1)jt
3j
2

Γ(3j2 + 1)
sin(x)−

∞∑
j=0

(−1)jt
3j
2
+1

Γ(3j2 + 2)
sin(x)

 ,

= (1.5− 0.5r)n −
(
E 3

2
,1(−t

3
2 ) sin(x)− tE 3

2
,2(−t

3
2 ) sin(x)

)
. (5.75)

Which is the exact solution of the fuzzy time fractional wave equations (5.56) and (5.57) where
Eα,β(z) is the two parameters mittag-Leffer function defined by

Eα,β(z) = k̃n ⊖gH

∞∑
n=0

zn

Γ(αn+ β)
. (5.76)

Example 5.3. Consider the following fuzzy linear space time fractional wave equation

(A)
∂1.5ũ

∂t1.5
=

1

2
x2 ⊙ ∂1.25ũ

∂x1.25
x > 0, t > 0, (5.77)

subject to the initial conditions

ũ(x, 0) = f̃(x) = k̃n ⊙
∞∑
n=0

anx
n,

∂ũ(x, 0)

∂t
= g̃(x) = k̃n ⊙

∞∑
n=0

bnx
n. (5.78)

where k̃n ∈ E1, n=1,2,3,... fuzzy number is defined by

k̃(s) =


s, s ∈ [0, 1],

2− s s ∈ (1, 2],

0 s /∈ [0, 2],

(5.79)

and [k̃n](r) = rn, [k̃n](r) = (2− r)n.
The parametric form of (5.77) is

∂1.5u

∂t1.5
=

1

2
x2

∂1.25u

∂x1.25
x > 0, t > 0 (5.80)

∂1.5u

∂t1.5
=

1

2
x2

∂1.25u

∂x1.25
x > 0, t > 0 (5.81)

for r ∈ [0, 1], and where u stands for u(x, t)(r), similar to u.

Let the solution u(x, t) can be represented as a product of single-valued functions, u(x, t) =
f(x)g(t) where the functions f(x) and g(t) satisfy the conditions given in Theorem 3.3. Selecting
α = 0.5, β = 0.25 and applying the generalized two-dimensional differential transform to both
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sides of equations (5.80) and (5.81), the fuzzy linear space-time fractional wave equations (5.80)
and (5.81) transform to

U1/2,1/4(j, h+ 3)(r) =


1

2

Γ(h/2 + 1)Γ(j/4 + 7/4)

Γ(h/2 + 5/2)Γ(j/4 + 2/4)
U1/2,1/4(j + 3, h)(r), j ≥ 2

0, j < 2.

(5.82)

U1/2,1/4(j, h+ 3)(r) =


1

2

Γ(h/2 + 1)Γ(j/4 + 7/4)

Γ(h/2 + 5/2)Γ(j/4 + 2/4)
U1/2,1/4(j + 3, h)(r), j ≥ 2

0, j < 2.

(5.83)

The generalized two-dimensional transforms of the initial conditions (5.78) are given by

U1/2,1/4(j, 0)(r) = rnaj , (5.84)

U1/2,1/4(j, 1)(r) = 0, (5.85)

U1/2,1/4(j, 2)(r) = rnbj , (5.86)

U1/2,1/4(j, 0)(r) = (2− r)naj , (5.87)

U1/2,1/4(j, 1)(r) = 0, (5.88)

U1/2,1/4(j, 2)(r) = (2− r)nbj . (5.89)

Utilizing the recurrence relation (5.82), (5.83) and the transformed initial conditions (5.84) -(5.89),
the first few components of U1/2,1/4(j, h) are calculated. So, from equation (4.8), the approximate
solution of the fuzzy linear space-time-fractional wave equations (5.80) and (5.81) can be derived
as

u(x, t)(r) = rn
(
a0 + b0t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a3t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b3t

5/2

)
+ rn

(
a1 + b1t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a4t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b4t

5/2

)
· x1/4

+ rn
(
a2 + b2t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a5t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b5t

5/2

)
· x2/4

+ rn
(
a3 + b3t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a6t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b6t

5/2

)
· x3/4

+ rn
(
a4 + b4t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a7t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b7t

5/2

)
· x+ · · ·, (5.90)

u(x, t)(r) = (2− r)n
(
a0 + b0t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a3t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b3t

5/2

)
+ (2− r)n

(
a1 + b1t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a4t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b4t

5/2

)
· x1/4

+ (2− r)n
(
a2 + b2t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a5t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b5t

5/2

)
· x2/4

+ (2− r)n
(
a3 + b3t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a6t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b6t

5/2

)
· x3/4

+ (2− r)n
(
a4 + b4t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a7t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b7t

5/2

)
· x+ · · ·. (5.91)
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(B) Consider the following fuzzy linear-space-time-fractional wave equation (5.77) with the initial
conditions:

ũ(x, 0) = f̃(x) = k̃n ⊕
∞∑
n=0

anx
n,

∂ũ(x, 0)

∂t
= g̃(x) = k̃n ⊕

∞∑
n=0

bnx
n. (5.92)

By following the same steps, we will find that the solution. Utilizing the recurrence relation
(5.82), (5.83) and the transformed initial conditions (5.84) -(5.89), the first few components of
U1/2,1/4(j, h) are calculated. So, from equation (4.8), the approximate solution of the fuzzy linear
space-time-fractional wave equations (5.80) and (5.81) can be derived as

u(x, t)(r) = rn +

(
a0 + b0t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a3t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b3t

5/2

)
+ rn +

(
a1 + b1t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a4t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b4t

5/2

)
· x1/4

+ rn +

(
a2 + b2t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a5t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b5t

5/2

)
· x2/4

+ rn +

(
a3 + b3t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a6t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b6t

5/2

)
· x3/4

+ rn +

(
a4 + b4t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a7t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b7t

5/2

)
· x+ · · ·, (5.93)

u(x, t)(r) = (2− r)n +

(
a0 + b0t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a3t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b3t

5/2

)
+ (2− r)n +

(
a1 + b1t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a4t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b4t

5/2

)
· x1/4

+ (2− r)n +

(
a2 + b2t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a5t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b5t

5/2

)
· x2/4

+ (2− r)n +

(
a3 + b3t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a6t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b6t

5/2

)
· x3/4

+ (2− r)n +

(
a4 + b4t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a7t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b7t

5/2

)
· x+ · · ·. (5.94)

(C) Consider the following fuzzy linear space-time-fractional wave equation (5.77) with the initial
conditions:

ũ(x, 0) = f̃(x) = k̃n ⊖gH

∞∑
n=0

anx
n,

∂ũ(x, 0)

∂t
= g̃(x) = k̃n ⊖gH

∞∑
n=0

bnx
n. (5.95)

By following the same steps, we will find that the solution. Utilizing the recurrence relation
(5.82), (5.83) and the transformed initial conditions (5.84) -(5.89), the first few components of
U1/2,1/4(j, h) are calculated. So, from equation (4.8), the approximate solution of the fuzzy linear
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space-time-fractional wave equations (5.80) and (5.81) can be derived as

u(x, t)(r) = rn −
(
a0 + b0t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a3t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b3t

5/2

)
+ rn −

(
a1 + b1t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a4t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b4t

5/2

)
· x1/4

+ rn −
(
a2 + b2t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a5t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b5t

5/2

)
· x2/4

+ rn −
(
a3 + b3t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a6t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b6t

5/2

)
· x3/4

+ rn −
(
a4 + b4t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a7t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b7t

5/2

)
· x+ · · ·, (5.96)

u(x, t)(r) = (2− r)n −
(
a0 + b0t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a3t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b3t

5/2

)
+ (2− r)n −

(
a1 + b1t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a4t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b4t

5/2

)
· x1/4

+ (2− r)n −
(
a2 + b2t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a5t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b5t

5/2

)
· x2/4

+ (2− r)n −
(
a3 + b3t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a6t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b6t

5/2

)
· x3/4

+ (2− r)n −
(
a4 + b4t+

Γ(7/4)

Γ(5/2)Γ(2/4)
a7t

3/2 +
Γ(7/4)

Γ(7/2)Γ(2/4)
b7t

5/2

)
· x+ · · ·. (5.97)

6 Conclusions

In this paper, the differential transform method (DTM) has been successfully applied for solving
fuzzy fractional wave equation. The proposed method is also illustrated by three examples. The new
method is investigated based on the two-dimensional differential transform method, generalized Tay-
lor’s formula and fuzzy Caputo,s derivative. The results reveal that DTM is a highly effective scheme
for obtaining analytical solutions of the fuzzy fractional wave equation.
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Figure 1: Example (5.1), Case (A), t = 0.000001, x = 0.1, n = 1.
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Figure 2: Example (5.1), Case (B), t = 0.03, x = 0.1, n = 2.
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Figure 3: Example (5.1), Case (C), t = 0.0001, x = 0.001, n = 3.
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