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Abstract

Mathematical models are being used to investigate the dynamics of disease
dissemination, forecast future trends, and access the most effective preventative
measures to minimise the extent of epidemic outbreaks. This study formulates an
eight compartmental epidemiological model to analyze the COVID-19 dynamics.
The stability analysis of infection-free equilibrium is performed. The parameters are
estimated by fitting this model to reported confirmed COVID-19 cases in India for
350 days. Sensitivity analysis is executed to identify the most sensitive parameters
in this model. An optimal control analysis for India is implemented by incorporating
four controls: 1) Public awareness initiatives using the media and civic society
to persuade uninfected people not to interact with infected ones, 2) the effort of
vaccinating susceptible individuals by supposing all of the susceptible people who
got their vaccination are promptly moved to the recovered class 3) encouraging
those who are infected with COVID-19 disease to stay at home or join in quarantine
centres, as well as encouraging the severe cases admit in the hospital. The results
are demonstrated that employing all four control measures significantly reduced the
proportion of COVID-19 infections.

Keywords: : Mathematical model, Stability analysis, Sensitivity analysis, optimal con-
trol.
Subject Classification: 92D30, 37N25, 34D20, 49J15.

1 Introduction

The most current and dangerous virus is COVID-19, a new coronavirus that initially
emerged in early 2020 and is still uncontrolled. Although the first cases are found on
31 December, 2019, in Wuhan, China, the disease’s biological origin has not yet been
fully determined. Later, the WHO designated the novel coronavirus disease as COVID-
19 [1]. On January 30, 2020, the WHO is declared the outbreak a significant global
public concern. The COVID-19 pandemic, which is now the major public health issue
confronting the world after the Second World War, has already reached 767,972,961
infected cases and more than 6,950,655 fatalities as of July 12, 2023 [2]. Numerous
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studies demonstrate that COVID-19 may have been a zoonotic (transmitted from animal
to human). The significant increase in COVID-19 cases also highlights the crucial fact
that secondary dissemination occurs from person to person through direct contact or via
particles of the virus dispersed by an infected person’s coughing or sneezing.

Mathematical models are used to analyze the dissemination dynamics of epidemic
infections with appropriate structures. Among the various models used in the study of
epidemic diseases, compartmental models are widely used for the disease dissemination
dynamics by subdividing into several compartments based on the need of the investiga-
tion [3]. Nowadays researchers prefer the compartmental models for their controllable
and simple nature. An overview of several compartmental models is given in [4]. By
applying a classical SIR (Susceptible, Infected, Recovered) model to various lockdown
situations, Bagal et al. [5] are provided a complete study on COVID-19 spread in lock-
down periods. Anand et al [6] are predicted the COVID-19 dissemination in India using
the SIR model by considering isolation and testing parameters. This study also analyses
the effects of lockdown before and after an rising the COVID-19 cases. At the beginning
of the pandemic, the data shown that some infected populations, who has not show any
symptoms have capable to spread COVID-19. These individuals are corresponding to the
asymptomatic class. The asymptomatic individuals become symptomatic on an average
period of three [7]. Similarly, a mathematical model [8] containing 22 compartments
was introduced which related to susceptible, exposed, asymptomatic, pre-symptomatic,
mildly symptomatic, severely symptomatic, detected, undetected, hospitalized, critical,
recovered, dead compartments, etc. These extended models are accurate in defining the
process of reality but they could not find perfect values for unknown parameters [9]. In
recent years, the researchers are adopted various mathematical modeling approaches us-
ing real incidence datasets (especially in the case of COVID-19) with different parameters
of the outbreak throughout the world. The concept of optimal control [10], transmis-
sible illnesses must be controlled by giving appropriate dosages at the proper times for
preventative measures. In contrast, mathematical modelling of transmissible illnesses
has shown that the combination of vaccination, isolation, hospitalisation, and awareness
campaigns are required to completely eradicate transmissible illnesses. The implemen-
tation of non-pharmaceutical intervention techniques can be a crucial factor in lowering
the prevalence of infected populations. Investigating the dissemination of COVID-19
using the theory of optimum control techniques, Silva et al [11] are demonstrated that
the diseases require optimal doses to be controlled. Mondal et al [12] are examined the
COVID-19 disease dissemination dynamics employing vaccination as a control factor.

Dupey et al. [32] devised an effective computer technique called the Sumudu residual
power series method for solving fractional Bloch equations arising in NMR flow. Alshehri
et al [33] apply the local fractional natural homotopy perturbation technique to solve
specific local fractional partial differential equations with fractal beginning conditions
that arise in the physical sciences within the fractal domain. Dupey et al. have con-
structed a mathematical model for hepatitis E that incorporates a fractional derivative to
describe the viral dynamics. Dupey et al. [34] are constructed a model to analyzed using
a combination of semi-analytical techniques, including homotopy polynomial equations
as well as the Sumudu transform method. Dupey et al.[35] investigated a fractional order
model of the phytoplankton-toxic phytoplankton-zooplankton system using the Caputo
fractional derivative. They employed three computational methods to investigate this
model: the residual power series method, the homotopy perturbation Sumudu transform
method, and the homotopy analysis Sumudu transform method. Dupey et al. [36] have
created a fractional model that describes the changes in atmospheric CO2 content. They
explored this model using a combination of a semi-analytical homotopy scheme, Sumudu
transform, and homotopy polynomials. Devendra et al. [37] devised a hybrid local frac-
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Figure 1: Flow chart of SEAIJHRD model.

tional method for solving certain local fractional partial differential equations. Fractal
models can be effectively represented by local fractional derivatives in partial differential
equations.

In this study, we are developed a deterministic mathematical model with eight
compartments to analyse the COVID-19 dissemination dynamics in India. This model
extends to optimal control approach incorporating three distinct control strategies to
lower the COVID-19 dissemination. The rest of the article structured as follows: a
full explanation of the model formulation is provided in Section.2 The stability analysis
of the infection equilibrium is performed and the fundamental reproduction number
is determined in Section.3. The model calibration, sensitivity analysis, and effect of
parameters on infected classes are performed in Section.4. The optimal control technique
with four distinct controls and their numerical simulations are discussed in Section.5. The
final section 6 ends with conclusion.

2 Model formulation

In this study we formulate a deterministic mathematical model with eight compart-
ments to analyze the dissemination dynamics of COVID-19. The total population N(t)
in this model divided into Susceptible population (S(t)), Exposed population (E(t)),
Asymptomatic infected population (A(t)), Symptomatic infected population (I(t)), iso-
lated population (J(t)), Hospitalized population (H(t)), Recovered population (R(t))
and Deceased population (D(t)). Then
N (t) = S (t) + E (t) + A (t) + I(t) + J (t) + H (t) + R (t)+D(t).
Dynamics of susceptible population S(t): A susceptible population are those who
is at risk of becoming infected by a virus after moving closed with the infected person.
This population increased by a constant inflow rate π and diminished by a natural mor-
tality rate µ. In this case βζa and βζs denote the dissemination coefficients of susceptible
to asymptomatic and symptomatic populations where ζa and ζs adjustment factors for
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asymptomatic infected and symptomatic infected populations. So the susceptible popu-
lation decreases at the rates βζa and βζs respectively. The rate of change of susceptible
population can be expressed as
dS
dt = π − β(ζaA+ ζsI)

S
N − µS.

Dynamics of exposed population E(t): It is the group of people who have been
exposed to COVID-19 but have not yet exhibited any symptoms. As a result of the
susceptible individuals exposure to infection, this population grows. At a rate of ω, a
portion θ of the exposed population moves to the asymptomatic population (A) and the
remaining portion (1− θ) moves to the symptomatic infected population (I). So the ex-
posed population decreases at rate ω and also it reduces by µ. Hence the rate of change
of exposed population is represented as
dE
dt = β(ζaA+ ζsI)

S
N − (ω + µ)E.

Dynamics of asymptomatic infected population A(t): Asymptomatic infected
individuals are those who exposed to the virus but does not shows any symptoms. Since
the exposed population transition to the asymptomatic population at the rate ω by a
constant proportion θ, this population grows at a portion θω. Since some individuals of
the asymptomatic population are recovered themselves at rate γa while others become
symptomatic at rate ϵ by exhibiting symptoms, this population reduces at rates γa and
ϵ. This population also diminishes by natural death rate µ. So the rate of change of
asymptomatic population is defined by
dA
dt = θωE − (ϵ+ γa + µ)A.
Dynamics of symptomatic infected population I(t): Symptomatic infected indi-
viduals are those who exposed to COVID-19 virus and are able to spread the disease are
considered to be symptomatic. This population grows at the rate (1 − θ) because the
constant portion (1− θ)ω of exposed population exhibits symptomatic at rate ω. Due to
some of this population being isolation at a rate λs of and some other population being
hospitalised at a rate ηs because of severe illness, this symptomatic population decreases
by λs and ηs rates. Since some of asymptomatic populations exhibits symptoms at the
rate ϵ, the symptomatic individuals decreases at rate ϵ. Also this population diminishes
by both symptomatic individuals death rate µs and natural death rate µ. As results the
rate of change of symptomatic population is stated as
dI
dt = (1− θ)ωE + ϵA− (λs + ηs + µs + µ)I.
Dynamics of isolated population J(t): Infected population who are join in isolation
centers or placed in self-isolation comprise the isolated population. Since some of symp-
tomatic infected individuals are joined in isolation centers at a rate λs, this population
increases by the rate λs. As some of these isolated individuals recovered at a rate γj and
some are joined in hospitals at the rate ηj due to severe illness, this population decreases
at the rates γj and ηj . This population also decreases by natural mortality rate µ. So
that, the rate of change in the isolated population can be represented by
dJ
dt = λsI − (ηj + γj + µ)J .
Dynamics of hospitalization population H(t): The hospitalized individuals are
those who have developed COVID-19 clinical symptoms and are admitted to the hos-
pital for treatment. Due to severity of illness some of symptomatic infected population
and some of isolation population are hospitalized at the rates ηs and ηj . So that this
population enhanced by the rates ηs and ηj . Since some of this population recovered
at the rate γh while other some of this population died at the rate µh, this population
decreases by the rates γh and µh.The rate of natural death µ also diminished their pop-
ulation. Hence the rate of change of hospitalized population can be articulated as
dH
dt = ηsI + ηjJ − (γh + µh + µ)H.
Dynamics of recovered population R(t): These are the individuals who have cured
from the asymptomatic infected, isolated, and hospitalized populations. Since some of
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the individuals from asymptomatic infected, isolation, and hospitalized populations are
recovered from COVID-19 at the rates γa, γj and γh, this population grows by the rates
γa, γj and γh. This population also reduces by natural mortality rate µ. Thus the rate
of change of recovered population can be represented as
dR
dt = γaA+ γjJ + γhH − µR.
Dynamics of deceased population D(t): These are the individuals who died at
severeness of COVID-19 disease. This population increases at the mortality rate µs of
symptomatic infected individuals and at the mortality rate µh of hospitalised individu-
als. Hence the rate of change of deceased population is defined as
dD
dt = µsI + µhH.

Using all of the aforementioned biological hypotheses, we provide a graphical depic-
tion of the proposed model in Figure 1 and then the model is governed by the following
eight nonlinear system of differential equations as follows :

dS

dt
= π − β(ζaA+ ζsI)

S

N
− µS,

dE

dt
= β(ζaA+ ζsI)

S

N
− (ω + µ)E,

dA

dt
= θωE − (ϵ+ γa + µ)A,

dI

dt
= (1− θ)ωE + ϵA− (λs + ηs + µs + µ)I,

dJ

dt
= λsI − (ηj + γj + µ)J,

dH

dt
= ηsI + ηjJ − (γh + µh + µ)H,

dR

dt
= γaA+ γjJ + γhH − µR,

dD

dt
= µsI + µhH.

(1)

with the primary conditions

S(0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0, J(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0,&D(0) ≥ 0. (2)

The information of the various parameters used in the proposed model are listed in
Table 1.

3 SEAIJHRD model analysis

3.1 Positivity and boundedness

Theorem 1. For t ≥ 0, all the solutions (S(t), E(t), A(t), I(t), J(t), H(t), R(t), D(t)) ∈
R8

+ of the system (1) with primary conditions (2) are non-negative and uniformly bounded
in the specified region Ω.

Proof. Let (S(t), E(t), A(t), I(t), J(t), H(t), R(t), D(t)) ∈ R8
+ be a solution of system (1)

for t ∈ [0, t0], where t0 ≥ 0.
From the first equation of (1), we get
dS
dt = π − (ζaA+ ζsI)

S
N − µS = π − Φ(t)S, where Φ(t) = β(ζaA+ ζsI)

1
N + µ.
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Table 1: Complete depiction of model parameters of the SEAIJHRD model.

Parameter Description Value Source
π Net inflow of susceptible population varies -
θ Proportion of exposed population 0.7 [13, 14]
ω Conversion rate from exposed to infected population 0.4 [14, 15]
ζa, Adjustment factor for asymptomatic infected population 0.3 [16]
ζs Adjustment factor for symptomatic infected population 0.4 [17]
β Infection dissemination rate 0.5313 Estimated
ϵ The transition rate of asymptomatic infected individuals 0.0168 [18]

to symptomatic infected individuals
λs Isolation rate from symptomatic infected population 0.0828 [19]
ηs Hospitalization rate of symptomatic infected population 0.0094 Estimated
ηj Hospitalization rate of isolated population 0.1125 Estimated
γa Recovery rate of asymptomatic population 0.1302 [20]
γj Recovery rate of isolated population 0.017 [21]
γh Recovery rate of hospitalized population 0.07048 [22]
µs Mortality rate of symptomatic infected population 0.00001945 [23]
µh Mortality rate of hospitalization population 0.00001945 [23]
µ Natural death rate 0.0000391 [24]

Following integration, we obtain

S(t) = S0 exp
(
−
∫ t

0
Φ(s) ds

)
+ π exp

(
−
∫ t

0
Φ(s) ds

) ∫ t

0
e
∫ s
0
Φ(u) du ds > 0.

From the second equation of (1), we have
dE
dt = (ζaA+ ζsI)

S
N − (ω + µ)E ≥ −(ω + µ)E,

which leads to E(t) = E0 exp(−
∫ t

0
(ω + µ) ds) ≥ 0.

The third equation of (1) gives
dA
dt = θωE − (γa + ϵ+ µ)A ≥ −(γa + ϵ+ µ)A,

which implies to A(t) = A0 exp(−
∫ t

0
(γa + ϵ+ µ) ds) ≥ 0.

Similarly we can prove that from remaining equations of (1), I(t) ≥ 0, J(t) ≥ 0,H(t) ≥ 0,
R(t) ≥ 0 and D(t) ≥ 0.
We now establish the system (1) solutions’ boundedness.
consider the total populationN = S + E +A+ I + J +H +R+D.
Taking the differentiation of above equation and using (1), we get dN

dt = π − µN ,
which leads to N(t) = N(0)e−µt + π

µ (1− e−µt).

Hence N(t) ≤ π
µ if N(0) ≤ π

µ .

Consequently if N(0) > π
µ then N(t) approaches to π

µ and the amount of infections in E,
A, I, J and H shall be zero as t → ∞.
Therefore S + E +A+ I + J +H +R+D ≤ π

µ .

Hence all solution trajectories (S,E,A, I, J,H,R,D) are uniformly bounded in the region
Ω = {(S,E,A, I, J,H,R,D) ∈ R8

+ : S + E +A+ I + J +H +R+D ≤ π
µ}.

3.2 Infection-free equilibrium and fundamental reproduction
number

The first seven equations in system (1) are independent of the final equation, so it can
be eliminated. By equating the right-hand side of the system of equations (1) to zero
and then using E = A = I = J = H = 0, the infection-free equilibrium (E0) of the
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model system (1) is obtained. Therefore E0 = (πµ , 0, 0, 0, 0, 0, 0).
One of the most important measures in contagious diseases is the fundamental

reproduction number R0. It is defined as the average number of secondary cases that
would be generated by a primary infected individual in an entire susceptible population.
The total number of infected cases will rise if R0 > 1, as it would at the beginning of
an epidemic. Where R0 = 1, the illness is endemic, and if R0 < 1, the total number of
cases will decrease. Through the next generation matrix method [25, 26], we determine
the fundamental reproduction number R0 as follows:

F =

βζa + βζs
0
0

 and V =

 (ω + µ)E
−θωE + (ϵ+ γa + µ)A

−(1− θ)ωE + ϵA− (λs + ηs + µs + µ)


The Jacobian matrices of F and V at E0 are expressed as

F =

0 βζa βζs
0 0 0
0 0 0

 & V =

 ω + µ 0 0
−θω ϵ+ γa + µ 0

−(1− θ)ω −ϵ λs + ηs + µs + µ

 .

The fundamental reproduction number, the largest eigen value of the matrix FV −1 is

R0 = θωβζa
(ϵ+γa+µ)(ω+µ) +

βζs[(ϵ+γa+µ)(1−θ)ω+θωϵ]
(ϵ+γa+µ)(λs+ηs+µs+µ)(ω+µ)

Theorem 2. If R0 < 1 then the infection-free equilibrium E0 = (πµ , 0, 0, 0, 0, 0, 0) is

locally asymptotically stable (LAS).

Proof. The variation matrix corresponding to the system (1) at E0 is
J(E0) =

−µ 0 −βζa −βζs 0 0 0
0 ω + µ βζa βζs 0 0 0
0 0 −(ϵ+ γa + µ) 0 0 0 0
0 θω ϵ −(λs + ηs + µs + µ) 0 0 0
0 (1− θ)ω 0 λs −(ηj + γj + µ) 0 0
0 0 0 ηs ηj −(γh + µh + µ) 0
0 0 γa 0 γj γh −µ


The characteristic equation | JE0 − λI |= 0 is represented by
(λ+ (ηj + γj + µ))(λ+ (γh + µh + µ))(λ+ µ)2(λ3 + a1λ

2 + a2λ+ a3) = 0,
where a1 = (ϵ+ γa + µ) + (λs + ηs + µs + µ) + (ω + µ),
a2 = ((ϵ+γa+µ)+(λs+ηs+µs+µ))(ω+µ)+(ϵ+γa+µ)(λs+ηs+µs+µ)− (θωβζa+
(1− θ)ωβζs), and
a3 = (ϵ+ γa + µ)(λs + ηs + µs + µ)(ω + µ)(1−R0).
There are seven eigenvalues, among that the first four values are −µ, -µ, -(ηj + γj + µ),
-(γh + µh + µ) and the remaining three eigen values are cube roots of an equation
(λ3 + a1λ

2 + a2λ+ a3) = 0.
Routh–Hurwitz Criteria asserts that theE0 is LAS if a1 > 0, a2 > 0, a3 > 0 and a1a2 >
a3.
Clearly a1 > 0 and a2 > 0.
a3 = (ϵ+ γa + µ)(λs + ηs + µs + µ)(ω + µ)(1−R0) > 0 and
a1a2−a3 = (ϵ+γa+µ)+(λs+ηs+µs+µ)+(ω+µ)((ϵ+γa+µ)+(λs+ηs+µs+µ))(ω+µ)
+ (ϵ+ γa + µ)(λs + ηs + µs + µ)− (θωβζa + (1− θ)ωβζs)− (ϵ+ γa + µ)(λs + ηs + µs +
µ)(ω + µ)(1−R0) > 0 if R0 < 1.
Hence E0 is LAS if R0 < 1.
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Theorem 3. The infection free equilibrium E0 = (πµ , 0, 0, 0, 0, 0, 0) of system (1) is

globally asymptotic stable (GAS) if R0 < 1.

Proof. Based on equation (1), it is evident that S and R represent classes that are free
from infection, while E, A, I, J, and H represent classes that are infected. Therefore (1)
can be expressed as
dX
dt = U(X,Y ),
dY
dt = V (X,Y ), V (X, 0) = 0,
where X = (S,R) ∈ R2

+ denotes the disinfected population and Y = (E,A, I, J,H) ∈ R5
+

represents the infected population.
Thus E0 = (X∗, 0) identified as the infection free equilibrium of system (1).
For the model (1), U(X, Y ) and V(X, Y ) are described as follows:

U(X, Y ) =

(
π − β(ζaA+ ζsI)

S
N − µS

γaA+ γjJ + γhH − µR

)
&V(X, Y ) =


β(ζaA+ ζsI)

S
N − (ω + µ)E

θωE − (ϵ+ γa + µ)A
(1− θ)ωE + ϵA− (λs + ηs + µs + µ)I

λsI − (ηj + γj + µ)J
ηsI + ηjJ − (γh + µh + µ)H


From the expression V(X, Y), easily show that V(X, 0) = 0

To prove that E0 is GAS, we verify the following two conditions
(I). dX

dt = U(X, 0) where X∗ is GAS.
(II). V (X,Y ) = KY − V̄ (X,Y ), V̄ (X,Y ) ≥ 0, for (X,Y ) ∈ Ω
where K = DY V (X∗, 0) is M- Matrix in the region Ω.
The deterministic model system (1) stated in (I) can be expressed as

d
dt

(
S
R

)
=

(
π − µS
−µR

)
,

⇒ S(t) = π
µ + (S(0)− π

µ )e
−µt and R(t) = R(0)e−µt

As t → ∞, S(t) = π
µ and R(0) = 0.

Thus X∗ is GAS for dX
dt = U(X, 0) and hence the first condition (I) is satisfied for

system (1).
Now the matrices K and V̄ (X,Y ) of model system (1) can be expressed as K =
−(ω + µ) βζa βζs 0 0

θω −(ϵ+ γa + µa + µ) 0 0 0
(1− θ)ω ϵ −(λs + ηs + µs + µ) 0 0

0 0 λs −(ηj + γj + µ) 0
0 0 ηs ηj −(γh + µh + µ)



& V̄ (X,Y ) =


β(ζaA(1− S

N ) + ζsI(1− S
N )

0
0
0
0

 .

Since all non-diagonal elements of matrix K are non-negative, K is M- matrix and as
S(t) ≤ N(t), V̄ (X,Y ) ≥ 0 for all (X,Y ) ∈ Ω.
Thus the (II) condition is satisfied.
Hence E0 is GAS for R0 < 1.
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Figure 2: Model fitting based on reported data.

4 Numerical simulation

4.1 Model calibration

In this section, the model (1) fits to confirmed COVID -19 cases for all over India
acquired from official site COVID-19 India API (Application Programming Interface)
[27] in time period between January 30, 2020, and January 12, 2021. The parameter
values β, ηs and ηj are estimated by minimizing the sum of squared error (SSE) method
(lsqnonlin function) in MATLAB. We minimize the sum of squared error (SSE) as SSE =∑n

t=1((Z(t)− ¯Z(t))2.
where Z(t) denotes the reported COVID-19 confirmed cases while ¯Z(t) signifies the model
(1) output respectively. The estimated parameter values and other fixed parameter values
obtained from the literature are listed in Table 1. Figure 2 illustrates that the model fit
with the daily COVID-19 confirmed cases in India. The model solution is represented
by red circles, while the reported data is shown by a blue dotted line.

4.2 Sensitivity analysis

Sensitivity analysis performance is very important in detecting the influence of dif-
ferent parameters in the spreading of the coronavirus. This method is very useful for
discerning the increase and decrease in the R0 value with respect to different parame-
ters. A complete report of dengue fever sensitivity is executed in [28]. The sensitivity
of parameters defines whether the contagious diseases will spread throughout the popu-
lation or not. Through sensitive analysis, we analyze the influence of parameters on the
model. Whenever parameters are determined, different techniques can be carried out for
attaining excellent results. Through the normalized forward sensitivity technique [29] a
for R0, normalized forward sensitivity index of significant parameter p is determined as
ΓR0
p = ∂R0

∂p × p
R0

.
The parameter on R0 that has a greater magnitude index is more sensitive. If

the sensitivity index is positive, R0 grows as the parameter p grows. Similarly if the
sensitivity index has a negative sign, in which case R0 falls as p grows. Thus, our
sensitivity analysis yields the parameters ζa, ζs, ω and β have positive effect on R0 while
the parameters θ, λs, ηs, γa, µs and µ are the negative effect on R0. Among these
parameters ζa, ω and β are more effective on rise of R0 whereas λs and ηs are more
efficient on fall of R0.

Figure 4(a) indicates the contour Plot of R0 in relation to virus dissemination rate
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Figure 4: Contour plots of R0 with respect to parameters (a)(β, ηs) and (b)(β, λs).
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Figure 5: Variations in infected population with respect to parameters (a) (λs, ηj) and
(b) ( λs, ηs).

(β) and hospitalization rate (ηs) from symptomatic infected population. This plot is
revealed that whenever the contact rate(β) decreases and the hospitalization rate(ηs)
increases, the basic reproduction number decreases. Figure 4(b) indicates the contour
Plot of R0 in relation to virus dissemination rate (β) and quarantine rate (λs) from
symptomatic infected populations. This plot is demonstrated that whenever the contact
rate (β) decreases and quarantine rate (λs) increases, the R0 value decreases so that the
spreading of virus decreases.

4.3 COVID-19 Prevalence changes with significant parameters

In this section, we analyse the effect of parameters on infected population. Figure 5 is
demonstrated that the infected population reduces when the isolation rate (λs) of symp-
tomatic infected population and hospitalization rate (ηj) of isolated population risen.
Similarly the disease dissemination will be decreased if both isolation and hospitaliza-
tion rates of symptomatic infected population increased.

5 Optimal control

5.1 Optimal control model

In the fields of engineering, sciences, and economics, optimal control has major signifi-
cance. Optimal control is used in detecting parameters that can control definite variables
to yield the optimum result. By implementing the most effective intervention measures,
we aim to reduce the number of infected, isolated, and hospitalised individuals. The
system (1) is extended to optimal control model by including four control variables u, v,
w1 and w2. The control u involves awareness campaigns in the media and in civil society
to encourage people to use face masks, sanitation and keep their distance from infected
people to diminish the spread of disease. The second control v represents the effort of
vaccinating susceptible individuals by supposing all of the susceptible people who got
their vaccination are promptly moved to the recovered class. The last two controls w1

and w2 represent encouraging the asymptomatic infected individuals to join isolation
and symptomatic infected individuals to join either hospitals or isolated. As a result, w1

and w2 are evaluated in comparison to improved medical facilities, such as an increase
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in beds, ventilators, mobile isolation centres, etc. Therefore the set of four controls is
defined as

U = {u, v, w1, w2 : Lebesgue integral and 0 ≤ u, v, w1, w2 ≤ 1, t ∈ [0, T ]}.

Taking into account all of the aforementioned presumptions, the formulated optimal
control model is

dS

dt
= π − (1− u(t))β(ζaA+ ζsI)

S

N
− µS − v(t)S,

dE

dt
= (1− u(t))β(ζaA+ ζsI)

S

N
− (ω + µ)E,

dA

dt
= θωE − (ϵ+ γa + µ)A− w1(t)A,

dI

dt
= (1− θ)ωE + ϵA− (λs + ηs + µs + µ)I − w2(t)I,

dJ

dt
= w1(t)A+ λsI − (ηj + γj + µ)J + ρw2(t)I,

dH

dt
= ηsI + ηjJ − (γh + µh + µ)H + (1− ρ)w2(t)I,

dR

dt
= γaA+ γjJ + γhH − µR+ v(t)S,

dD

dt
= µsI + µhH.

(3)

For the fixed T, the objective functional is presented by

J =

∫ T

0

(C1A+ C2I + C3J + C4H +
1

2
(C5u

2 + C6v
2 + C7w

2
1 + C8w

2
2) dt.

(4)

Here C1, C2, C3, C4, C5, C6, C7 and C8 are non negative weight constants.
The objective is to determine the control variables u∗, v∗, w∗

1 and w∗
2 such that

J (u∗, v∗, w∗
1 , w

∗
2) = min

u,v,w1,w2∈U
J (u, v, w1, w2).

The Lagrangian of this model (3) is
L(S,E,A, I, J,H,R,D, u(t), v(t), w1(t), w2(t)) = C1A + C2I + C3J + C4H + 1

2 (C5u
2 +

C6v
2 + C7w

2
1 + C8w

2
2).

For this problem, the Hamiltonian function H is defined as
H = C1A+C2I+C3J+C4H+ 1

2 (C5u
2+C6v

2+C7w
2
1+C8w

2
2)+λ1

dS
dt +λ2

dE
dt +λ3

dA
dt +

λ4
dI
dt + λ5

dJ
dt + λ6

dH
dt + λ7

dR
dt + λ8

dD
dt .

where λi for i = 1,2,3,...8 are the adjoint variables.

Theorem 4. If the couple (S∗, E∗, A∗, I∗, J∗, H∗, R∗, D∗) is solutions of the system
(3) that minimizes the objective functional (4) with relation to optimal controls u∗(t),
v∗(t), w∗

1, w∗
2 ∈ U , then there are adjoint variables λi for i =1,2,3,...8 satisfies the
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canonical equations:

λ′
1 = −∂H

∂S
= (λ1 − λ2)β(1− u)(ζaA+ ζsI)

1

N
+ (λ1 − λ7)v + λ1µ,

λ′
2 = −∂H

∂E
= (λ2 − λ4)ω + (λ4 − λ3)θω + λ2µ,

λ′
3 = −∂H

∂A
= −C1 + (λ1 − λ2)β(1− u)

ζaS

N
+ (λ3 − λ4)ϵ+ (λ3 − λ5)w1 + (λ3 − λ7)γa + λ3µ,

λ′
4 = −∂H

∂I
= −C2 + (λ1 − λ2)β(1− u)

ζsS

N
+ (λ4 − λ5)λs + (λ4 − λ6)(ηs + w2)

+(λ6 − λ5)ρw2 + (λ4 − λ7)µs + λ4µ,

λ′
5 = −∂H

∂J
= −C3 + (λ5 − λ6)ηj + (λ5 − λ7)γj + µλ5,

λ′
6 = −∂H

∂H
= −C4 + (λ6 − λ7)γh + (λ6 − λ8)µh + µλ6,

λ′
7 = −∂H

∂R
= µλ7,

λ′
8 = −∂H

∂D
= 0.

with the transversality conditions at time T: λi(T ) = 0, for all i=1,2,3,...,8. Furthermore
the corresponding optimal controls u∗(t), v∗(t), w∗

1(t) and w∗
2(t) are given by

u∗(t) = min{1,max(0, 1
NC5

(λ1 − λ2)βS(ζaA+ ζsI))},
v∗(t) = min{1,max(0, 1

C6
((λ1 − λ7)S))},

w∗
1(t) = min{1,max(0, 1

C7
((λ3 − λ5)A))}, and

w∗
2(t) = min{1,max(0, 1

C8
((λ4 − λ6) + ρ(λ6 − λ5))I)}.

Proof. We examine the necessary criteria for the control variables using the maximum
principle of Pontryagin for the system (3). To achieve this, for all t ∈ [0, T ], we define
the Hamiltonian H as

H = C1A + C2I + C3J + C4H + 1
2 (C5u

2 + C6v
2 + C7w

2
1 + C8w

2
2) + λ1(π − (1 −

u(t))β(ζaA+ ζsI)
S
N −µS−v(t)S)+λ2((1−u(t))β(ζaA+ ζsI)

S
N − (ω+µ)E)+λ3(θωE−

(ϵ+γa+µ)A−w1(t)A)+λ4((1−θ)ωE+ϵA−(λs+ηs+µs+µ)I−w2(t)I)+λ5(w1(t)A+
λsI − (ηj + γj + µ)J + ρw2(t)I) + λ6(ηsI + ηjJ − (γh + µh + µ)H + (1 − ρ)w2(t)I) +
λ7(γaA+ γjJ + γhH − µR+ v(t)S) + λ8(µsI + µhH).
Because of maximum principle of Pontryagin [30], there are co-states λ′

1, λ
′
2, λ

′
3,...,λ

′
8

that satisfying the following canonical equations
λ′
1 = −∂H

∂S , λ′
2 = −∂H

∂E , λ′
3 = −∂H

∂A , λ′
4 = −∂H

∂I ,...,+ λ′
8 = −∂H

∂D .
with transversality conditions λi(T ) = 0, for all i=1,2,3,...,8.
Now we get the optimal controls by using the optimal condition, ∂H

∂u = 0, ∂H
∂v = 0,

∂H
∂w1

= 0 and ∂H
∂w2

= 0.
∂H
∂u = C5u+ βλ1(ζaA+ ζsI)

S
N − λ2(ζaA+ ζsI)

S
N = 0.

Then u = βS(ζaA+ζsI)
NC5

(λ1 − λ2) at u = u∗.
∂H
∂v = C6v − λ1S + λ7)S = 0.
Then v = 1

C6
(λ1 − λ7)S at v = v∗.

∂H
∂w1

= C7w1 − λ3A+ λ5A = 0.

Then w1 = 1
C7

(λ3 − λ5)A at w1 = w∗
1 .

∂H
∂w2

= C8w2 − (λ4 − λ6)I − (λ5 − λ6)ρI = 0.

Then w2 = 1
C8

((λ4 − λ6) + ρ(λ6 − λ5))I at w1 = w∗
2 .

By taking the bounds for u(t), v(t), w1(t) and w2(t), we characterize the optimal controls:
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u∗(t) = min{1,max(0, 1
NC5

(λ1 − λ2)βS(ζaA+ ζsI))},
v∗(t) = min{1,max(0, 1

C6
((λ1 − λ7)S))},

w∗
1(t) = min{1,max(0, 1

C7
((λ3 − λ5)A))} and

w∗
2(t) = min{1,max(0, 1

C8
((λ4 − λ6) + ρ(λ6 − λ5))I)}.

5.2 Optimal control model simulation

The model simulation is carried out in MATLAB during the time interval [0,400] using
the model parameters listed in Table 1. The optimality system is solved by an iterative
method. The extended system (3) is computed by using forward difference approximation
[31] and then the adjoint system is calculated by using backward difference approxima-
tion. Choose C1 = 1, C2 = 1, C3 = 1, C4 = 1, C5 = 40, C6 = 50, C7 = 55 and C8 = 55
with the initial conditions S(0) = 1217378052, E(0) = 13000, A(0) = 5, I(0) = 2, J(0) =
1, H(0) = 1, R(0) = 0 and D(0) = 0. Figure 6 displays that variations in susceptible,
exposed, asymptomatic infected, symptomatic infected, isolated, hospitalized, recovered
and deceased populations within and without controls. This Figure is illustrated that
the infected populations with controls swiftly decreased in comparison to the populations
without controls, whereas the disinfected populations with controls rapidly increased in
comparison to the disinfected population without controls. The optimal control variable
profiles of u(t), v(t), w1(t) and w2(t) are shown in Figure 7. From this Figure, it can
be observed that, in comparison to w1(t) and w2(t) controls, the controls u(t) and v(t)
which related to awareness campaigns and vaccinating of susceptible population must
be kept at 1 over a longer period of time. Figure 8 illustrates the variations in control
profile related cost for each control increases. This Figure is demonstrated that the time
needed to maintain these controls at 1 decreases if the cost of each control variables is
risen.
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Figure 6: Variations in infected and disinfected populations with and without controls.

15

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

104 Rao et al 90-108



0 100 200 300 400

Time(days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 u
(t

)

0 100 200 300 400

Time(days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 v
(t

)

0 100 200 300 400

Time(years)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 w
1
(t

)

0 100 200 300 400

Time(years)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 w
2
(t

)

Figure 7: Optimal control variable profiles u(t), v(t), w1(t) and w2(t).
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Figure 8: Variations in control variables with respect to relative costs.
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6 Conclusion

When precise diagnostic tests or medical facilities were unavailable, compartmental
epidemiological models helped us understand how epidemic diseases spread and devise
preventative measures. In this paper, SEAIJHRD model was formulated to observe the
dissemination dynamics of COVID-19 spread in India. We first established the model’s
positivity and boundedness, and then, R0 value was determined to be 1.682. The in-
fection free equilibrium was both LAS and GAS for R0 < 1. By fitting the model to
reported COVID-19 data, the infection dissemination rate, hospitalization rates of symp-
tomatic infected and isolated populations were estimated. The sensitive analysis of R0

determined that both isolation rate (λs) and hospitalization rate (ηs) of symptomatic
individuals were more effective in reducing R0. In addition, the proposed model was
expanded to an optimal control problem by integrating four controls: 1) awareness pro-
grams through media and civil society that the susceptible population do not interact
with infected ones 2) vaccination process for susceptible population, and 3) urging the
infected population to go into isolation or join hospitals. The combination of four con-
trols had greater impact on reducing the number of infected individuals. Our model
concludes that vaccination for susceptible individuals, isolation of the infected popula-
tion, severe disinfection safeguards using, and social distance maintenance were effective
roles in controlling virus spread in a community and may even eradicate the corona virus
disease. In future, there will be possible to develop an epidemic model to examine the
impact of COVID-19 on HIV/AIDS or TB infected individuals.
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