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Abstract In this paper, the fuzzy fractional optimal control problem with both fixed and free final
state conditions has been considered. Our problem is defined in the sense of Riemann-Liouville frac-
tional derivative based on Hukuhara difference, and the dynamic constraint is described by a fractional
differential equation of order less than 1. Using fuzzy variational approach, a necessary conditions
of our problem has been derived. A numerical technique based on Grünwald-Letnikov definition of
fractional derivative and the relation between right Riemann-Liouville fractional derivative and right
Caputo fractional derivative is proposed. Finally, some numerical examples are given to illustrate our
main results.
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1. Introduction

Optimal control is the standard method for solving dynamic optimization problems, which deal with
finding a control law for a given system such that a certain optimality criterion is achieved. It’s playing
an increasingly important role in modern system design, and considered to be a powerful mathematical
tool that can be used to make decisions in real life. On the other hand, accurate modeling of some
real problems in scientific fields and engineering, sometimes lead to a set of fractional differential and
integral equations. Fractional optimal control problem is an optimal control problem whose dynamic
system is described by fractional differential equations. We can define the fractional optimal control
problem in sense of different definitions of fractional derivative, for example Riemann-Liouville fractional
derivative, Caputo fractional derivative and so on.

Due to, uncertainty in the input, output and manner of many dynamical systems, meanwhile,
fuzziness is a way to express an uncertain phenomena in real world. Thus, importing fuzziness in the
optimal control theory, give a better display of the problems with control parameters in real world such
as physical models and dynamical systems.

In the last decade, fuzzy fractional optimal control problems have attracted a great deal of attention
and the interest in the filed of fuzzy fractional optimal control problems has increased. In [1], Fard
and Soolaki, prove the necessary optimality conditions of pontryagin type for a class of fuzzy fractional
optimal control problems with the fuzzy fractional derivative described in the Caputo sense. In [2], Fard
and Salehi studied the constrained and unconstrained fuzzy fractional variational problems containing
the Caputo-type fractional derivatives using the approach of the generalized differentiability. In [3],
Karimyar and Fakharzadeh introduced the solution of fuzzy fractional optimal control problems by
using Mittag-Leffler function.

In this paper, we will study a fixed and free final state fuzzy fractional optimal control problems
with the fuzzy fractional derivative described in Riemann-Liouville type in sense of Hukuhara difference.
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Then, we derive the necessary conditions of that problems based on fuzzy variational approach. A
numerical algorithm is proposed to solve the necessary conditions to find the optimal fuzzy control and
optimal fuzzy state as a solutions of our problems. The definitions of a strong and weak solutions of
our problems are given, to guarantee the optimal solutions are a fuzzy functions.

This paper is organized as follows. In Section 2 we introduce and generalize some basic concepts
and notations that are key to our discussion. In Section 3 we present basic elements of fuzzy fractional
calculus and fuzzy calculus of variations. In Section 4 we establish our main results, Theorem(4.1),
that provides the necessary conditions of fuzzy fractional optimal control problems with both fixed
and free final state conditions. In Section 5 we propose a numerical technique to solve the necessary
conditions. Finally, we discuss the applicability of the main theorem and the numerical algorithm
through an examples.

2. Definitions and preliminaries

Here, we start with basic definitions and lemmas needed in the other sections for a better under-
standing of this work. The details of this concepts are clearly found in [7, 9, 10, 11, 12, 17].
Definition 2.1 A fuzzy set Ã : R → [0, 1] is called a fuzzy number if Ã is normal, convex fuzzy set,

upper semi-continuous and suppA = {x ∈ R|Ã(x) > 0} is compact, where M denotes the closure of M .
In the rest of this paper we use E1 to denote the fuzzy number space.

Where it is α−level set ã[α] = {x ∈ R : ã(x) ≥ α} = [al(α), ar(α)],∀α ∈ (0, 1], and 0−level set

ã[0] is defined as {x ∈ R|ã(x) > 0}. Obviously, the α-level set ã[α] = [al(α), ar(α)] is bounded closed
interval in R for all α ∈ [0, 1], where al(α) and ar(α) denote the left-hand and right-hand end points of
ã[α], respectively. ã is a crisp number with value k if its membership function is defined by,

ã(x) =

{
1 , x = k
0 , x ̸= k

Thus,

0̃(x) =

{
1 , x = 0
0 , x ̸= 0.

Let ũ, ṽ ∈ E1, k ∈ R, we can define the addition and scalar multiplication by using α-level set
respectively as

(ã+ b̃)[α] = ã[α] + b̃[α], (kã)[α] = kã[α],

where ã[α] + b̃[α] means the usual addition of two intervals of R, and kã[α] means the usual product
between a scalar and interval of R. Furthermore, the opposite of the fuzzy number ã is −ã, i.e.,
−ã(x) = ã(−x), it means, −ã[α] = [−ar(α),−al(α)].

The binary operation ”.” in R can be extended to the binary operation ”⊙” of two fuzzy numbers
by using the extension principle. Let ã and b̃ be fuzzy numbers, then

(ã⊙ b̃)(z) = sup
x·y=z

min{ã(x), b̃(x)}.

Using α-level set the product (ã⊙ b̃) is defined by

(ã⊙ b̃)[α] =
[
min{al(α)bl(α), al(α)br(α), ar(α)bl(α), ar(α)br(α)},

max{al(α)bl(α), al(α)br(α), ar(α)bl(α), ar(α)br(α)}
]
.

The metric structure is given by the Hausdorff distance D : E1 × E1 ×R → R+ ∪ {0},

D(ã, b̃) = sup
α∈[0,1]

max{| al(α)− bl(α) |, | ar(α)− br(α) |}.
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A special class of fuzzy numbers is the class of triangular fuzzy numbers. For a1 < a2 < a3 and
a1, a2, a3 ∈ R, the triangular fuzzy number ã is generally denoted by ã = (a1, a2, a3) is determined by
a1, a2, a3 such that al(α) = a1+(a2−a1)α and ar(α) = a3− (a3−a2)α, when α = 0 then ã[0] = [a1, a3]
and when α = 1 then ã[1] = [a2, a2] = a2.

We know that, we can identify a fuzzy number ã ∈ E1 by the left and right hand functions of its
α−level set, the following lemma introduce the properties of this functions.
Lemma 2.1 Suppose that al : [0, 1] → R and ar : [0, 1] → R satisfy the conditions:

C1: al is bounded increasing function,

C2: ar is bounded decreasing function,

C3: al(1) ≤ ar(1),

C4: lim
α→k−

al(α) = al(k) and lim
α→k−

ar(α) = ar(k), for all 0 < k ≤ 1,

C5: lim
α→0+

al(α) = al(0) and lim
α→0+

ar(α) = ar(0).

Then ã : R → [0, 1] defined by ã(x) = sup{α|al(α) ≤ x ≤ ar(α)} is a fuzzy number with ã[α] =
[al(α), ar(α)]. Moreover, if ã : R → [0, 1] is a fuzzy number with ã[α] = [al(α), ar(α)], then the
functions al(α) and ar(α) satisfy conditions C1- C5.

Definition 2.2 (H-difference). Let ã, b̃ ∈ E1, where ã[α] = [al(α), ar(α)] and b̃[α] = [bl(α), br(α)] for
all α ∈ [0, 1], the H-difference is defined by

ã⊖ b̃ = c̃ ⇐⇒ ã = b̃+ c̃.

Obviously, ã⊖ ã = 0̃, and the α-level set of H-difference is

(ã⊖ b̃)[α] = [al(α)− bl(α), ar(α)− br(α)],∀α ∈ [0, 1].

Definition 2.3 (Partial ordering). Let ã, b̃ ∈ E1, we write ã ≼ b̃, if al(α) ≤ bl(α) and ar(α) ≤ br(α)

for all α ∈ [0, 1]. We also write ã ≺ b̃, if ã ≼ b̃ and there exists α0 ∈ [0, 1] such that al(α0) < bl(α0) or

ar(α0) < br(α0). Furthermore, ã = b̃, if ã ≼ b̃ and ã ≽ b̃. In other words, ã = b̃, if ã[α] = b̃[α] for all
α ∈ [0, 1].

In the sequel, we say that ã, b̃ ∈ E1 are comparable if either ã ≼ b̃ or ã ≽ b̃, and non-comparable
otherwise.

From now we consider S as a subset of R.
Definition 2.4 (Fuzzy valued function). The function f̃ : S → E1 is called a fuzzy-valued function

if f̃(t) is assign a fuzzy number for any e ∈ S. We also denote f̃(t)[α] = [f l(t, α), f r(t, α)], where

f l(t, α) = (f̃(t))l(α) = min{f̃(t)[α]} and f r(t, α) = (f̃(t))r(α) = max{f̃(t)[α]}. Therefore any fuzzy-

valued function f̃ may be understood by f l(t, α) and f r(t, α) being respectively a bounded increasing
function of α and a bounded decreasing function of α for α ∈ [0, 1]. And also it holds f l(t, α) ≤ f r(t, α)
for any α ∈ [0, 1].

Definition 2.5 (Continuity of a fuzzy valued function). We say that f̃ : S → E1 is continuous at
t ∈ S, if both f l(t, α) and f r(t, α) are continuous functions at t ∈ S for all α ∈ [0, 1].

If f̃(t) is continuous in the metric D, then its definite integral exists and defined by

b∫
a

f̃(t)[α]dt =

 b∫
a

f l(t, α)dt,

b∫
a

f r(t, α)dt

 .

Definition 2.6 (Distance measure between fuzzy valued functions). Suppose that f̃ , g̃ : S → E1 are

two fuzzy functions. We define the distance measure between f̃ and g̃ by

DE1(f̃(x), g̃(x)) = sup
0≤α≤1

H(f̃(x)[α], g̃(x)[α])

= max{ sup
z∈f̃(x)[α]

d(z, g̃(x)[α]), sup
y∈g̃(x)[α]

d(f̃(x)[α], y)}, ∀x ∈ S.
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Where H is the Hausdorff metric on the family of all nonempty compact subsets of R, and

d(a,B) = inf
b∈B

d(a, b).

Moreover, we can define
∥ f̃(x) ∥2E1= DE1(f̃(x), f̃(x)), ∀x ∈ S,

for any f̃ : S → E1.

3. Elements of fuzzy fractional calculus and fuzzy calculus of variations

Several definitions of a fractional derivative have been studied, such as Riemann-Liouville, Grünwald-
Letnikov, Caputo and so on. In this paper, we deal with the problems defined by Riemann-Liouville
fractional derivative. In this section, we first introduce the definition of fuzzy Riemann-Liouville inte-
grals and derivatives in sense of Hukuhara difference.
Definition 3.1(see [6]) Let f̃(x) be continuous and Lebesgue integrable fuzzy valued function in [a, b] ∈
R and 0 < β ≤ 1, then the fuzzy Riemann-Liouville integral of f̃(x) of order β is defined by

aI
β
x f̃(x) =

1

Γ(β)

∫ x

a
f̃(t)(x− t)β−1dt,

where Γ(β) is the Gamma function and x > a.

Theorem 3.1(see [6]) Let f̃(x) be continuous and Lebesgue integrable fuzzy valued function in [a, b] ∈
R. The fuzzy Riemann-Liouville integral of f̃(x) can be expressed as follows

aI
β
x f̃(x) [α] =

[
aI

β
x f

l(x, α),a I
β
x f

r(x, α)
]
, 0 ≤ α ≤ 1,

where

aI
β
x f

l(x, α) =
1

Γ(β)

∫ x

a
f l(t, α)(x− t)β−1dt,

aI
β
x f

r(x, α) =
1

Γ(β)

∫ x

a
f r(t, α)(x− t)β−1dt.

In the next definition, we define the fuzzy Riemann-Liouville fractional derivative of order 0 < β < 1
of a fuzzy valued function f̃(x).

Definition 3.2(see [6]) Let f̃(x) be continuous and Lebesgue integrable fuzzy valued function in [a, b] ∈
R. x0 ∈ (a, b) and then: G(x) = 1

Γ(1−β)

∫ x
a

f̃(t)dt
(x−t)β

. We say that f̃ is Riemann-Liouville H-differentiable

of order 0 < β < 1 at x0, if there exist an element aD
β
x f̃(x0) ∈ E1 such that for h > 0 sufficiently small

(1) aD
β
x f̃(x0) = lim

h→0+

G(x0+h)⊖G(x0)
h = lim

h→0+

G(x0)⊖G(x0−h)
h ,

or

(2) aD
β
x f̃(x0) = lim

h→0+

G(x0)⊖G(x0+h)
−h = lim

h→0+

G(x0−h)⊖G(x0)
−h ,

or

(3) aD
β
x f̃(x0) = lim

h→0+

G(x0+h)⊖G(x0)
h = lim

h→0+

G(x0−h)⊖G(x0)
−h ,

or

(4) aD
β
x f̃(x0) = lim

h→0+

G(x0)⊖G(x0+h)
−h = lim

h→0+

G(x0)⊖G(x0−h)
h .
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For sake of simplicity, we say that the fuzzy valued function f̃(x) is Riemann-Liouville [(i)−β]−differentiable
if it is differentiable as in the Definition(3.2) case(i), i = 1, 2, 3, 4 respectively.

Theorem 3.2(see [6]) Let f̃(x) be continuous and Lebesgue integrable fuzzy valued function in [a, b] ∈
R and f̃(x)[α] = [f l(x, α), f r(x, α)],then for α ∈ [0, 1], x ∈ (a, b) and β ∈ (0, 1)

(i) Let us consider f̃ is Riemann-Liouville [(1)− β]−differentiable fuzzy-valued function, then:

aD
β
x f̃(x0)[α] =

[
aD

β
xf

l(x0, α),aD
β
xf

r(x0, α)
]
.

(ii) Let us consider f̃ is Riemann-Liouville [(2)− β]−differentiable fuzzy-valued function, then:

aD
β
x f̃(x0)[α] =

[
aD

β
xf

r(x0, α),aD
β
xf

l(x0, α)
]
.

Where

aD
β
xf

l(x0, α) =

[
1

Γ(1− β)

d

dx

∫ x

a

f l(t, α)dt

(x− t)β

]∣∣∣∣
x=x0

,

aD
β
xf

r(x0, α) =

[
1

Γ(1− β)

d

dx

∫ x

a

f r(t, α)dt

(x− t)β

]∣∣∣∣
x=x0

.

Theorem 3.3(see [6]) Let f̃(x) be continuous and Lebesgue integrable fuzzy valued function in [a, b]
is a Riemann-Liouville H-differentiable of order 0 < β < 1 on each point x ∈ (a, b) in the sense of

Definition(3.2) case(3) or case(4), then aD
β
x f̃(x) ∈ R for all x ∈ (a, b).

Now we state some elements of fuzzy calculus of variations.
Definition 3.3(Fuzzy increment[10]). Suppose that x̃(.) and x̃(.) + δx̃(.) are fuzzy functions for which
the fuzzy functional J̃ is defined. The increment of J̃ , denoted by ∆J̃ , is

∆J̃ := J̃(x̃+ δx̃)⊖ J̃(x), (3.1)

Where δx̃(.) is the variation of x̃(.).
Because the increment ∆J̃ depends on the fuzzy functions x̃ and δx̃, we denote ∆J̃ by ∆J̃(x̃, δx̃).

Definition 3.4(Differentiability of a fuzzy functional[10, 15]). Suppose that ∆J̃ can be written as

∆J̃(x̃, δx̃) := δJ̃(x̃, δx̃) + j̃(x̃, δx̃)· ∥ δx̃ ∥E1 , (3.2)

Where δJ̃ is linear in δx̃. We say that J̃ is differentiable with respect to x̃ if for any ϵ > 0 ,

DE1(j̃(x̃, δx̃), 0) < ϵ, as ∥ δx̃(.) ∥E1→ 0.

From now C̃[t0, t1] represent the class of all fuzzy continuous functions on [t0, t1].
Definition 3.5(Fuzzy relative minimum[10]) A fuzzy functional J̃ with domain C̃[t0, t1], has a fuzzy
relative minimizer x̃∗ = x̃∗(t), if

J̃(x̃) ≽ J̃(x̃∗), (3.3)

for all fuzzy functions x̃ ∈ C̃[t0, t1].
It is clear that the inequality (3.3) holds iff

J l(x̃, α) ≥ J l(x̃∗, α), and Jr(x̃, α) ≥ Jr(x̃∗, α), (3.4)

for all α ∈ [0, 1] and all x̃ ∈ C̃[t0, t1].
The following theorem is the fundamental theorem of the calculus of variations in fuzzy environment.

Theorem 3.4 Let x̃, δx̃ ∈ C̃[t0, t1] be two fuzzy functions of t ∈ [t0, t1], and J̃(x̃) differentiable fuzzy
functional of x̃. If x̃∗ is a fuzzy minimizer of J̃ , then the variation of J̃ regardless of any boundary
conditions must vanish on x̃∗, that is,

δJ̃(x̃∗, δx̃) = 0, (3.5)
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for all admissible δx̃ having the property x̃+ δx̃ ∈ C̃[t0, t1].
It is obviously that the equality (3.5) holds if and only if

δJ l(x̃∗(t)[α], δx̃(t)[α], t, α) = 0, (3.6)

δJr(x̃∗(t)[α], δx̃(t)[α], t, α) = 0, (3.7)

for all α ∈ [0, 1], t ∈ [t0, t1] and all admissible δx̃ where,

δx̃(t)[α] = [δxl(t, α), δxr(t, α)].

Proof. See [10]

4. Fuzzy fractional optimal control problem

In this section, we first define fuzzy fractional optimal control problem with fixed and free final
state conditions, and then we derive necessary conditions for optimality by applying fuzzy variational
approaches to our problem.

We define fuzzy fractional optimal control problem as:

min
ũ

J̃(ũ) = ϕ̃(x̃(t1), t1) +

t1∫
t0

f̃(x̃(t), ũ(t), t)dt,

subject to: t0D
β
t x̃ = g̃(x̃(t), ũ(t), t)

x̃(t0) = x̃0.

(4.1)

For fixed final state problem we have additional condition x̃(t1) = x̃1. Where f̃ , g̃ : E1 ×E1 ×R → E1

are assumed to be continuous first and second partial derivatives on t ∈ I = [t0, t1] ⊆ R with respect to
all their arguments and Riemann integrable, the fuzzy state x̃(t) and the fuzzy control ũ(t) are functions
of t ∈ I, and the fuzzy state function x̃(t) is Riemann-Liouville [(1) − β]−differentiable fuzzy-valued
function and satisfies appropriate boundary conditions, and β ∈ (0, 1).
Definition 4.1 We say that an admissible fuzzy curve (x̃∗, ũ∗) is solution of (4.1), if for all admissible
fuzzy curve (x̃, ũ) of (4.1),

J̃(x̃∗, ũ∗) ≼ J̃(x̃, ũ).

Note that, we consider an admissible fuzzy control ũ is not bounded.
Remark 4.1 If we choose β = 1, problem (4.1) is reduced to classical fuzzy optimal control problem.
Definition 4.2(Fuzzy Hamiltonian Function). We define fuzzy Hamiltonian function as,

H̃(x̃(t), ũ(t), λ̃(t), t) = f̃(x̃(t), ũ(t), t) + λ̃(t)g̃(x̃(t), ũ(t), t). (4.2)

It means that,
H̃(x̃(t), ũ(t), λ̃(t), t)[α] = [H l(xl, ul, λl, t, α),Hr(xr, ur, λr, t, α)]. (4.3)

for any α ∈ [0, 1], and where H l(xl, ul, λl, t, α) and Hr(xr, ur, λr, t, α) are classical Hamiltonian func-
tions.
Remark 4.2 In the following theorem, we assume that J l(x̃(t), ũ(t), λ̃(t), t) (or Jr(x̃(t), ũ(t), λ̃(t), t))
is stated in terms containing only xl(t, α), ul(t, α) and λl(t, α) (or only xr(t, α), ur(t, α) and λr(t, α))
in order to simplify the result presentations.
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4.1 Derivation of Necessary Conditions

Now we are in the position to state a fundamental result of this work in the following theorem.
Theorem 4.1(Necessary Conditions) Assume that x̃∗(t) be an admissible fuzzy state and ũ∗(t) be an
admissible fuzzy control. Then the necessary conditions for ũ∗ to be an optimal control for (4.1) and
for all α ∈ [0, 1], t ∈ [t0, t1] are:

t0D
β
t x

∗l(t, α) =
∂H l

∂λl
(x∗

l
(t, α), u∗

l
(t, α), λ∗l(t, α), t, α), (4.4)

t0D
β
t x

∗r(t, α) =
∂Hr

∂λr
(x∗

r
(t, α), u∗

r
(t, α), λ∗r(t, α), t, α), (4.5)

C
t D

β
t1
λ∗l(t, α) =

∂H l

∂xl
(x∗

l
(t, α), u∗

l
(t, α), λ∗l(t, α), t, α), (4.6)

C
t D

β
t1
λ∗r(t, α) =

∂Hr

∂xr
(x∗

r
(t, α), u∗

r
(t, α), λ∗r(t, α), t, α), (4.7)

∂H l

∂ul
(x∗

l
(t, α), u∗

l
(t, α), λ∗l(t, α), t, α) = 0, (4.8)

∂Hr

∂ur
(x∗

r
(t, α), u∗

r
(t, α), λ∗r(t, α), t, α) = 0. (4.9)

with

λl(t1, α) =
∂ϕl

∂xl

∣∣∣∣
t=t1

, (4.10)

λr(t1, α) =
∂ϕr

∂xr

∣∣∣∣
t=t1

. (4.11)

for free final state problems.
Proof. First we adopt fuzzy lagrange multiplier to form an augmented functional incorporating

the constraints, then we modify the performance index as,

J̃a(ũ) =

t1∫
t0

[
f̃(x̃(t), ũ(t), t) +

dϕ̃

dt
+ λ̃

(
g̃(x̃(t), ũ(t), t)⊖t0 D

β
t x̃
)]

dt, (4.12)

It means that,

[
J l
a(u

l, α), Jr
a(u

r, α)
]
=

 t1∫
t0

[
f l(xl, ul, t, α) +

dϕl

dt
+ λl(t, α)

(
gl(xl, ul, t, α)− t0D

β
t x

l
)]

dt,

t1∫
t0

[
f r(xr, ur, t, α) +

dϕr

dt
+ λr

(
gr(xr, ur, t, α)− t0D

β
t x

r
)]

dt

 .

In the remaining of the proof we will ignore the similar arguments and only we consider the left hand
of all functions of its α-level set.

J l
a(u

l, α) =

t1∫
t0

[
f l(xl(t), ul(t), t, α) + λl(t, α)gl(xl(t), ul(t), t, α)− λl(t, α)t0D

β
t x

l(t, α) +
dϕl

dt

]
dt.

(4.13)
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Using the definition of fuzzy Hamiltonian function, then we can rewrite equation (4.13) as,

J l
a(u

l, α) =

t1∫
t0

[
H l(xl(t), ul(t), λl(t), t, α) +

dϕl

dt
− λl(t, α)t0D

β
t x

l(t, α)

]
. (4.14)

Taking variation of equation (4.14), we obtain

δJ l
a(u

l, α) =

t1∫
t0

∂H l

∂xl
δxl +

∂H l

∂ul
δul +

∂H l

∂λl
δλl +

∂ϕl

∂xl
δxl − δλl

t0D
β
t x

l − λlδt0D
β
t x

l, (4.15)

where δxl, δλl and δul are the variations of xl, λl and ul respectively.
Using the formula for fractional integration by parts, integrate the last term on the RHS of (4.15),

then we obtain

δJ l
a(u

l, α) =

t1∫
t0

(
∂H l

∂xl
−C

t Dβ
t1
λl

)
δxl +

∂H l

∂ul
δul +

(
∂H l

∂λl
− t0D

β
t x

l

)
δλldt+

(
∂ϕl

∂xl
− λl

)∣∣∣∣
t=t1

δxl(t1).

(4.16)

where C
t D

β
t1

represent the classical right Caputo fractional derivative.

u∗
l
is an extremal if the variation of J l

a is zero, that is, for all α ∈ [0, 1] we require

t1∫
t0

(
∂H l

∂xl
−C

t Dβ
t1
λl

)
δxl +

∂H l

∂ul
δul +

(
∂H l

∂λl
− t0D

β
t x

l

)
δλldt+

(
∂ϕl

∂xl
− λl

)∣∣∣∣
t=t1

δxl(t1) = 0. (4.17)

It is convenient to choose the coefficients of δxl, δul, and δλl in (4.17) to be zero. This leads to

t0D
β
t x

∗l(t, α) =
∂H l

∂λl
(x∗

l
(t, α), u∗

l
(t, α), λ∗l(t, α), t, α), (4.18)

C
t D

β
t1
λ∗l(t, α) =

∂H l

∂xl
(x∗

l
(t, α), u∗

l
(t, α), λ∗l(t, α), t, α), (4.19)

∂H l

∂ul
(x∗

l
(t, α), u∗

l
(t, α), λ∗l(t, α), t, α) = 0, (4.20)

Finally, we have (
∂ϕl

∂xl
− λl

)∣∣∣∣
t=t1

δxl(t1) = 0, (4.21)

1. For the fixed final state problem
δxl(t1) = 0, (4.22)

2. For the free final state problem (
∂ϕl

∂xl
− λl

)∣∣∣∣
t=t1

= 0. (4.23)

Equations (4.18)−(4.20) represents the necessary conditions for u∗
l
to be an optimal with the condition

(4.22) for the fixed final state problem and (4.23) for the free final state problem.
By following the same steps(using the right hand of all functions of its α-level set ) for δJr

a(u
∗r , α) =

0, for all α ∈ [0, 1] and t ∈ [0, 1], we will obtain

t0D
β
t x

∗l(t, α) =
∂Hr

∂λr
(x∗

r
(t, α), u∗

r
(t, α), λ∗r(t, α), t, α), (4.24)
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C
t D

β
t1
λ∗r(t, α) =

∂H l

∂xr
(x∗

r
(t, α), u∗

r
(t, α), λ∗l(t, α), t, α), (4.25)

∂Hr

∂ur
(x∗

r
(t, α), u∗

r
(t, α), λ∗r(t, α), t, α) = 0. (4.26)

Equations (4.24) − (4.26) represents the necessary conditions for u∗
r
to be an extremal with the con-

ditions δxr(t1) = 0 for the fixed final state problem and
(
∂ϕr

∂xr − λl
)∣∣∣

t=t1
= 0 for the free final state

problem.
The above equations form a set of necessary conditions that the left and right hand functions of its

α−level set of the fuzzy optimal control ũ∗ and fuzzy optimal state x̃∗ must satisfy. 2

We know that, ũ∗(t) and x̃∗(t) are a fuzzy numbers with ũ∗(t)[α] =
[
u∗

l
(t, α), u∗

r
(t, α)

]
and

x̃∗(t)[α] =
[
x∗

l
(t, α), x∗

r
(t, α)

]
if u∗

l
(t, α), u∗

r
(t, α), x∗

l
(t, α) and x∗

r
(t, α) satisfy are related proper-

ties in C1-C5 of Lemma(2.1). In the following definition, based on the conditions C1 and C2 of
Lemma(2.1), we introduce the definition of strong and weak solutions of our problem.
Definition 4.3(Strong and Weak Solutions).

1. (Strong Solution). We say that ũ∗(t)[α] and x̃∗(t)[α] are strong solutions of (4.1) if ul
∗
(t, α), ur

∗
(t, α)

,xl
∗
(t, α) and xr

∗
(t, α) obtained from (4.4)− (4.11) satisfy the conditions C1-C2 of Lemma(2.1),

for all t ∈ [t0, t1] and α ∈ [0, 1].

2. (Weak Solution). We say that ũ∗(t)[α] and x̃∗(t)[α] are weak solutions of (4.1) if ul
∗
(t, α), ur

∗
(t, α)

,xl
∗
(t, α) and xr

∗
(t, α) obtained from (4.4) − (4.11) do not satisfy the conditions C1-C2 of

Lemma(2.1), then we define ũ∗(t)[α] and x̃∗(t)[α] as:

ũ∗(t)[α] =
[2ur

∗
(t, 1)− ul

∗
(t, α), ur

∗
(t, α)], if ul

∗
, ur

∗
are decreasing functions of α,

[ul
∗
(t, α), 2ul

∗
(t, 1)− ur

∗
(t, α)], if ul

∗
, ur

∗
are increasing functions of α,

[ur
∗
(t, α), ul

∗
(t, α)], if ul

∗
is decreasing and ur

∗
is increasing of α

and,

x̃∗(t)[α] =
[2xr

∗
(t, 1)− xl

∗
(t, α), xr

∗
(t, α)], if xl

∗
, xr

∗
are decreasing functions of α,

[xl
∗
(t, α), 2xl

∗
(t, 1)− xr

∗
(t, α)], if xl

∗
, xr

∗
are increasing functions of α,

[xr
∗
(t, α), xl

∗
(t, α)], if xl

∗
is decreasing and xr

∗
is increasing of α

for all t ∈ [t0, t1] and α ∈ [0, 1].
Now, we consider fixed and free final state problems with a quadratic performance index.

4.2 Fixed Final State Problem

We can define fuzzy fractional optimal control problem with fixed final state as

min
ũ

J̃(ũ) =
1

2

t1∫
t0

[
q(t)x̃2 + r(t)ũ2

]
dt,

subject to: 0D
β
t x̃ = a(t)x̃+ b(t)ũ,

x̃(t0) = x̃0, x̃(t1) = x̃1.

(4.27)

where q(t) ≥ 0 and r(t) > 0.
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Theorem(4.1), give the necessary conditions for u∗
l
to be an optimal as

t0D
β
t x

l = a(t)xl + b(t)ul, (4.28)

C
t D

β
t1
λl = q(t)xl + a(t)λl, (4.29)

r(t)ul + b(t)λl = 0. (4.30)

Equations (4.28) and (4.30) gives

t0D
β
t x

l = a(t)xl − r−1(t)b2(t)λl. (4.31)

We will obtain xl(t, α) and ul(t, α) by solving Equations (4.29)− (4.31) with the boundary conditions
xl(t0) = xl0 and xl(t1) = xl1.

Similarly Theorem(4.1), give the necessary conditions for u∗
r
to be an optimal as

t0D
β
t x

r = a(t)xr + b(t)ur, (4.32)

C
t D

β
t1
λr = q(t)xr + a(t)λr, (4.33)

r(t)ur + b(t)λr = 0. (4.34)

Equations (4.32) and (4.34) gives

t0D
β
t x

r = a(t)xr − r−1(t)b2(t)λr. (4.35)

We will obtain xr(t, α) and ur(t, α) by solving Equations (4.33)− (4.35) with the boundary conditions
xr(t0) = xr0 and xr(t1) = xr1.

4.3 Free Final State Problem

We can define fuzzy fractional optimal control problem with free final state as

min
ũ

J̃(ũ) = ϕ̃(x̃(t1), t1) +
1

2

t1∫
t0

[
q(t)x̃2 + r(t)ũ2

]
dt,

subject to: t0D
β
t x̃ = a(t)x̃+ b(t)ũ,

x̃(t0) = x̃0.

(4.36)

where q(t) ≥ 0 and r(t) > 0.
Following the same steps, we will obtain xl(t, α) and ul(t, α) by solving Equations (4.29) − (4.31)

with respect to the conditions

xl(t0) = xl0 and λl(t1, α) =

(
∂ϕl

∂xl

)∣∣∣∣
t=t1

. (4.37)

Also we will obtain xr(t, α) and ur(t, α) by solving Equations (4.33) − (4.35) with respect to the
conditions

xr(t0) = xr0 and λr(t1, α) =

(
∂ϕr

∂xr

)∣∣∣∣
t=t1

. (4.38)

In the next section we propose an algorithm used to find the solution of both cases numerically, the
details of this algorithm in [4, 5].
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5. Numerical technique

Considering the both cases of fixed and free final state problems defined above, in order to find
the solution of our problems, we use the Grünwald-Letnikov(GL-for short) approximation of the left
Riemann-Liouville fractional derivative and using the relation between right Riemann-Liouville fraction-
al derivative and right Caputo fractional derivative and then use GL-approximation, we can approximate
(4.31) and (4.29) as

m∑
j=0

h−βw
(β)
j xlm−j = a(mh)xlm − r−1(mh)b2(mh)λl

m, (5.1)

for m = 1, 2, ..., N , and

m∑
j=0

h−βw
(β)
j λl

m+j = q(mh)xlm + a(mh)λl
m +

λl
N (t1 −mh)−β

γ(1− β)
, (5.2)

for m = N−1, N−2, ..., 0, respectively. Where N is the number of equal divisions of the interval [0, t1],
the nodes are labeled as 0, 1, ..., N . The size of each division is given as h = t1

N , and tj = jh represent
the time at node j. The coefficients are defined as

wβ
j = (−1)j

(
β

j

)
. (5.3)

Where xli and λl
i represent the numerical approximations of xl(t, α) and λl(t, α) at node i.

Similarly, we can approximate (4.35) and (4.33) as

m∑
j=0

h−βw
(β)
j xrm−j = a(mh)xrm − r−1(mh)b2(mh)λr

m, (5.4)

for m = 1, 2, ..., N , and

m∑
j=0

h−βw
(β)
j λr

m+j = q(mh)xrm + a(mh)λl
m +

λr
N (t1 −mh)−β

γ(1− β)
, (5.5)

for m = N − 1, N − 2, ..., 0, respectively.
Also xri and λr

i represent the numerical approximations of xr(t, α) and λr(t, α) at node i. In
general, Equations (5.1) and (5.2) or Equations (5.4) and (5.5) give a set of 2N equations in terms of
2N variables, i.e., Ax = b, it means that, we can use any linear equation solver to find the solution.
Regardless the left and right bounds of the fuzzy numbers x̃ and λ̃, the vector x is constructed as
follows

• For fixed final state problem

x = [x1 x2 ... xN−1 λ0 λ1 ... λN ]T .

• For free final state problem

x = [x1 x2 ... xN λ0 λ1 ... λN−1]
T .

In the next section, we will give four examples can serve to illustrate our main results.
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6. Numerical examples

Example 6.1 Find the fuzzy control that minimize

J̃(ũ(t)) =
1

2

1∫
0

[
x̃2 + ũ2

]
dt

subject to:

0D
β
t x̃ = tx̃+ ũ,

x̃(0) = (0, 1, 2), x̃(1) = (−2,−1, 1).

Solution.We have,
q(t) = r(t) = b(t) = t1 = 1, and a(t) = t,

Then for the left bound of state and control Theorem(4.1) gives,

0D
β
t x

l = txl − λl, (6.1)

C
t D

β
1λ

l = xl + tλl, (6.2)

ul + λl = 0. (6.3)

and the boundary conditions

xl(0, α) = α,

xl(1, α) = −2 + α.

For the right bound of state and control, Theorem(4.1) gives,

0D
β
t x

r = txr − λr, (6.4)

C
t D

β
1λ

r = xr + tλr, (6.5)

ur + λr = 0. (6.6)

and the boundary conditions

xr(0, α) = 2− α,

xr(1, α) = 1− 2α.

Now, we use the numerical method to solve the above equations with the related boundary conditions,
then we obtain the following results.

Figure(1(a)) show that the state x̃∗(t) as a function of α, we observe that xl
∗
(t, α) is an increasing

function of α, xr
∗
(t, α) is a decreasing function of α and xl

∗
(t, 1) = xr

∗
(t, 1), thus, xl

∗
(t, α) and xr

∗
(t, α)

satisfy the conditions of Lemma(2.1).
Figure(1(b)) show that the control ũ∗(t) as a function of α, we find that ul

∗
(t, α) is an increasing

function of α, ur
∗
(t, α) is a decreasing function of α and xl

∗
(t, 1) = xr

∗
(t, 1), it means that ul

∗
(t, α) and

ur
∗
(t, α) satisfy the conditions of Lemma(2.1), furthermore, x̃∗(t) and ũ∗(t) represent a strong fuzzy

solution of this problem.
Example 6.2 Find the fuzzy control that minimize

J̃(ũ(t)) =
1

2

2∫
1

ũ2dt
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subject to:

0D
β
t x̃ = (2t− 1)x̃⊖ sin(t)ũ,

x̃(1) = (0, 1, 2), x̃(2) = (−2,−1, 1).

Solution.We have, q(t) = 0, r(t) = t0 = 1, b(t) = − sin(t), and a(t) = (2t− 1), then for the left bound
of the state and control, Theorem(4.1) gives,

1D
β
t x

l = (2t− 1)xl − sin2(t)λl, (6.7)

C
t D

β
2λ

l = (2t− 1)λl, (6.8)

ul − sin(t)λl = 0. (6.9)

and the boundary conditions

xl(0, α) = α,

xl(1, α) = −2 + α.

For the right bound of state and control Theorem(4.1) gives,

1D
β
t x

r = (2t− 1)xr − sin2(t)λr, (6.10)

C
t D

β
2λ

r = (2t− 1)λr, (6.11)

ur − sin(t)λr = 0. (6.12)

and the boundary conditions

xr(0, α) = 2− α,

xr(1, α) = 1− 2α.

Now, we use the numerical method to solve the above equations with the related boundary conditions,
then we obtain the following results.

Figure(2(a)) show that the state x̃∗(t) as a function of α, we observe that xl
∗
(t, α) is an increasing

function of α, xr
∗
(t, α) is a decreasing function of α and xl

∗
(t, 1) = xr

∗
(t, 1), thus, xl

∗
(t, α) and xr

∗
(t, α)

satisfy the conditions of Lemma(2.1).
Figure(2(b)) show that the control ũ∗(t) as a function of α, we find that ul

∗
(t, α) is a decreasing

function of α, ur
∗
(t, α) is an increasing function of α and xl

∗
(t, 1) = xr

∗
(t, 1), it means that ul

∗
(t, α)

and ur
∗
(t, α) do not satisfy the conditions C1-C2 of Lemma(2.1), then we use the definition(4.3) of

weak solution, we find that

ũ∗(t)[α] =
[
ur

∗
(t, α), ul

∗
(t, α)

]
.

Furthermore, x̃∗(t) and ũ∗(t) represent a weak fuzzy solution of this problem.
Example 6.3 Find the fuzzy control that minimize

J̃(ũ(t)) =
1

2

1∫
0

[
x̃2 + ũ2

]
dt

subject to:

0D
β
t x̃ = −(0, 1, 3)x̃+ ũ,

x̃(0) = (1, 1, 1), x̃(1) = (0, 0, 0).
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Solution.We know that, [
0D

β
t x

l,0D
β
t x

r
]
=
[
−(3− 2α)xl + ul,−αxr + ur

]
,

then we have,
q(t) = r(t) = b(t) = x0 = t1 = 1,

a(t) = −(3− 2α) and a(t) = −α for the left and right derivatives respectively, then for the left bound
of the state and control Theorem(4.1) gives,

0D
β
t x

l = −(3− 2α)xl − λl, (6.13)

C
t D

β
1λ

l = xl − (3− 2α)λl, (6.14)

ul + λl = 0. (6.15)

and the boundary conditions

xl(0, α) = 1,

xl(1, α) = 0.

For the right bound of the state and control Theorem(4.1) gives,

1D
β
t x

r = −αxr − λr, (6.16)

C
t D

β
2λ

r = xr − αλr, (6.17)

ur + λr = 0. (6.18)

and the boundary conditions

xr(0, α) = 1,

xr(1, α) = 0.

Now, we use the numerical method to solve the above equations with the related boundary conditions,
then we obtain the following results.

Figure(3(a)) show that the state x̃∗(t) as a function of α, we observe that xl
∗
(t, α) is an increasing

function of α, xr
∗
(t, α) is a decreasing function of α and xl

∗
(t, 1) = xr

∗
(t, 1), thus, xl

∗
(t, α) and xr

∗
(t, α)

satisfy the conditions of Lemma(2.1).
Figure(3(b)) show that the control ũ∗(t) as a function of α, we find that ul

∗
(t, α) is a decreasing

function of α, ur
∗
(t, α) is an increasing function of α and xl

∗
(t, 1) = xr

∗
(t, 1), it means that ul

∗
(t, α)

and ur
∗
(t, α) do not satisfy the conditions C1-C2 of Lemma(2.1), then we use the definition(4.3) of

weak solution, we find that

ũ∗(t)[α] =
[
ur

∗
(t, α), ul

∗
(t, α)

]
.

Furthermore, x̃∗(t) and ũ∗(t) represent a weak fuzzy solution of this problem.
Example 6.4 Find the fuzzy control that minimize

J̃(ũ(t)) =
1

2
x̃2(1) +

1

2

1∫
0

[
x̃2 + ũ2

]
dt

subject to:

0D
β
t x̃ = −(0, 1, 3)x̃+ ũ,

x̃(0) = (1, 1, 1).
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Solution.We have,
q(t) = r(t) = b(t) = x0 = t1 = 1,

a(t) = −(3−2α) and a(t) = −α for the left and right derivatives respectively, then Theorem(4.1) gives,

t0D
β
t x

l = −(3− 2α)xl − λl, (6.19)

C
t D

β
t1
λl = xl − (3− 2α)λl, (6.20)

ul + λl = 0. (6.21)

and the boundary conditions

xl(0, α) = 1,

λl(0, α) = xl(1, α).

For the right bound of the state and control Theorem(4.1) gives,

1D
β
t x

r = −αxr − λr, (6.22)

C
t D

β
2λ

r = xr − αλr, (6.23)

ur + λr = 0. (6.24)

and the boundary conditions

xr(0, α) = 1,

λr(0, α) = xr(1, α).

Now, we use the numerical method to solve the above equations with the related boundary conditions,
then we obtain the following results.

Figure(4(a)) show that the state x̃∗(t) as a function of α, we observe that xl
∗
(t, α) is an increasing

function of α, xr
∗
(t, α) is a decreasing function of α and xl

∗
(t, 1) = xr

∗
(t, 1), thus, xl

∗
(t, α) and xr

∗
(t, α)

satisfy the conditions of Lemma(2.1).
Figure(4(b)) show that the control ũ∗(t) as a function of α, we find that ul

∗
(t, α) is a decreasing

function of α, ur
∗
(t, α) is an increasing function of α and xl

∗
(t, 1) = xr

∗
(t, 1), it means that ul

∗
(t, α)

and ur
∗
(t, α) do not satisfy the conditions C1-C2 of Lemma(2.1), then we use the definition(4.3) of

weak solution, we find that

ũ∗(t)[α] =
[
ur

∗
(t, α), ul

∗
(t, α)

]
.

Furthermore, x̃∗(t) and ũ∗(t) represent a weak fuzzy solution of this problem.

7. Conclusion

In this paper, the necessary conditions of fuzzy fractional optimal control problem with both fixed
and free final state conditions at the final time has been derived using fuzzy variational approach. Our
problems is defined in the sense of Riemann-Liouville fractional derivative based on Hukuhara difference.
A numerical technique is proposed based on Grünwald-Letnikov definition of fractional derivative. The
concepts of strong and weak solutions of our problems are given. lastly, four examples are provided to
show the effectiveness of Theorem(4.1) and the numerical algorithm.
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(a) (b)

Figure 1: Example(6.1) (a) the state at t = 0.1, β = 0.77 (b) the control at t = 0.1, β = 0.77.

(a) (b)

Figure 2: Example(6.2) (a) the state at t = 0.1, β = 0.77 (b) the control at t = 0.1, β = 0.77.
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(a) (b)

Figure 3: Example(6.3) (a) the state at t = 0.1, β = 0.77 (b) the control at t = 0.1, β = 0.77.

(a) (b)

Figure 4: Example(6.4) (a) the state at t = 0.1, β = 0.77 (b) the control t = 0.1, β = 0.77.
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