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Abstract

The major objective of this article is to determine and formulate the analytical
solutions of the following systems of rational recursive equations:

xn+1 =
xn−1yn−3

yn−1 (±1∓ xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (∓1± yn−1xn−3)
, n = 0, 1, ...,

where the initial conditions x−3, x−2, x−1, x0, y−3, y−2, y−1 and y0 are required to
be arbitrary non-zero real numbers. We also introduce some graphs describing these
exact solutions under a suitable choice of some initial conditions.
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global stability.
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1 Introduction

The global interest in exploring the qualitative behaviours of discrete systems of recursive
equations has been recently emerged due to the significance of difference equations in mod-
elling a considerable number of discrete phenomena. More specifically, recursive equations
are utilized in describing some real life problems that originate in genetics in biology, queuing
problems, enegineering, physics, etc. Some experts put effort to analyse dynamical systems
of difference equations. Take, for instance, the following ones. Almatrafi et al. [1] studied
the local stability, global attractivity, periodicity and solutions for a special case for the
difference equation

xn+1 = axn−1 −
bxn−1

cxn−1 − dxn−3

.

Clark and Kulenovic [6] investigated the global attractivity of the system

xn+1 =
xn

a+ cyn
, yn+1 =

yn
b+ dxn

.
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The author in [8] explored the equilibrium points and the stability of a discrete Lotka-Volterra
model shown as follows:

xn+1 =
αxn − βxnyn

1 + γxn
, yn+1 =

δyn + εxnyn
1 + ηyn

.

The positive solutions of the system

un+1 =
αun−1

β + γvpnv
q
n−2

, vn+1 =
α1vn−1

β1 + γ1u
p1
n u

q1
n−2

.

were obtained in [14] by Gűműş and Őcalan. Moreover, Kurbanli et al. [18] solved the
dynamical systems of recursive equations given by

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1

xnyn−1 − 1
, zn+1 =

xn
ynzn−1

.

In [19] Mansour et al. presented the analytical solutions of the system

xn+1 =
xn−1

α− xn−1yn
, yn+1 =

yn−1

β + γyn−1xn
.

Finally, the author in [23] demonstrated the dynamics of the system

xn+1 =
xn−2

B + ynyn−1yn−2

, yn+1 =
yn−2

A+ xnxn−1xn−2

.

To attain more information on the qualitative behaviours of dynamical difference equations,
one can refer to refs [1–5, 7, 9–13, 15–17, 20–22]

In this paper, the rational solutions of the following discrete systems of difference equa-
tions will be discovered and given in four different theorems:

xn+1 =
xn−1yn−3

yn−1 (±1∓ xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (∓1± yn−1xn−3)
, n = 0, 1, ...,

where the initial values are as described previously.

2 Main Results

2.1 First System xn+1 = xn−1yn−3

yn−1(1−xn−1yn−3)
, yn+1 = yn−1xn−3

xn−1(1−yn−1xn−3)

This subsection concentrates on obtaining the solutions of a dynamical system of fourth
order difference equations given by the form:

xn+1 =
xn−1yn−3

yn−1 (1− xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (1− yn−1xn−3)
, n = 0, 1, ... , (1)

where the initial values are as shown previously. The following fundamental theorem presents
the solutions of system (1).
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Theorem 1 Assume that {xn, yn} is a solution to system (1) and let x−3 = α, x−2 =
β, x−1 = γ, x0 = δ, y−3 = ε, y−2 = η, y−1 = µ and y0 = ω.Then, for n = 0, 1, ... we have

x4n−3 =
γnεn

n−1

Π
i=0

[(2i)αµ− 1]

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

, x4n−2 =
δnηn

n−1

Π
i=0

[(2i) βω − 1]

βn−1ωn
n−1

Π
i=0

[(2i+ 1) δη − 1]

,

x4n−1 =
γn+1εn

n−1

Π
i=0

[(2i+ 1)αµ− 1]

αnµn
n−1

Π
i=0

[(2i+ 2) γε− 1]

, x4n =
δn+1ηn

n−1

Π
i=0

[(2i+ 1) βω − 1]

βnωn
n−1

Π
i=0

[(2i+ 2) δη − 1]

.

And

y4n−3 =
αnµn

n−1

Π
i=0

[(2i) γε− 1]

γnεn−1
n−1

Π
i=0

[(2i+ 1)αµ− 1]

, y4n−2 =
βnωn

n−1

Π
i=0

[(2i) δη − 1]

δnηn−1
n−1

Π
i=0

[(2i+ 1) βω − 1]

,

y4n−1 =
αnµn+1

n−1

Π
i=0

[(2i+ 1) γε− 1]

γnεn
n−1

Π
i=0

[(2i+ 2)αµ− 1]

, y4n =
βnωn+1

n−1

Π
i=0

[(2i+ 1) δη − 1]

δnηn
n−1

Π
i=0

[(2i+ 2) βω − 1]

.

Proof. For n = 0, our results hold. Next, let n > 1 and suppose that the relations hold for
n− 1. That is

x4n−7 =
γn−1εn−1

n−2

Π
i=0

[(2i)αµ− 1]

αn−2µn−1
n−2

Π
i=0

[(2i+ 1) γε− 1]

, x4n−6 =
δn−1ηn−1

n−2

Π
i=0

[(2i) βω − 1]

βn−2ωn−1
n−2

Π
i=0

[(2i+ 1) δη − 1]

,

x4n−5 =
γnεn−1

n−2

Π
i=0

[(2i+ 1)αµ− 1]

αn−1µn−1
n−2

Π
i=0

[(2i+ 2) γε− 1]

, x4n−4 =
δnηn−1

n−2

Π
i=0

[(2i+ 1) βω − 1]

βn−1ωn−1
n−2

Π
i=0

[(2i+ 2) δη − 1]

.

And

y4n−7 =
αn−1µn−1

n−2

Π
i=0

[(2i) γε− 1]

γn−1εn−2
n−2

Π
i=0

[(2i+ 1)αµ− 1]

, y4n−6 =
βn−1ωn−1

n−2

Π
i=0

[(2i) δη − 1]

δn−1ηn−2
n−2

Π
i=0

[(2i+ 1) βω − 1]

,

y4n−5 =
αn−1µn

n−2

Π
i=0

[(2i+ 1) γε− 1]

γn−1εn−1
n−2

Π
i=0

[(2i+ 2)αµ− 1]

, y4n =
βn−1ωn

n−2

Π
i=0

[(2i+ 1) δη − 1]

δn−1ηn−1
n−2

Π
i=0

[(2i+ 2) βω − 1]

.
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Now, it can be obviously observed from system (1) that

x4n−3 =
x4n−5y4n−7

y4n−5 (1− x4n−5y4n−7)

=

γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

αn−1µn−1
n−2
Π
i=0

[(2i)γε−1]

γn−1εn−2
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

[
1−

γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

αn−1µn−1
n−2
Π
i=0

[(2i)γε−1]

γn−1εn−2
n−2
Π
i=0

[(2i+1)αµ−1]

]

=

γε
n−2
Π
i=0

[(2i)γε−1]

n−2
Π
i=0

[(2i+2)γε−1]

αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

[
1−

γε
n−2
Π
i=0

[(2i)γε−1]

n−2
Π
i=0

[(2i+2)γε−1]

]

=
γnεn

n−2

Π
i=0

[(2i) γε− 1]
n−2

Π
i=0

[(2i+ 2)αµ− 1]

αn−1µn
n−2

Π
i=0

[(2i+ 1) γε− 1]

[
n−2

Π
i=0

[(2i+ 2) γε− 1]− γε
n−2

Π
i=0

[(2i) γε− 1]

]

= −
γnεn

n−2

Π
i=0

[(2i+ 2)αµ− 1]

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

=
γnεn

n−1

Π
i=0

[(2i)αµ− 1]

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

.

Now, system (1) gives us that

y4n−3 =
y4n−5x4n−7

x4n−5 [1− y4n−5x4n−7]

=

αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

γn−1εn−1
n−2
Π
i=0

[(2i)αµ−1]

αn−2µn−1
n−2
Π
i=0

[(2i+1)γε−1]

γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

[
1−

αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

γn−1εn−1
n−2
Π
i=0

[(2i)αµ−1]

αn−2µn−1
n−2
Π
i=0

[(2i+1)γε−1]

]

=

αµ
n−2
Π
i=0

[(2i)αµ−1]

n−2
Π
i=0

[(2i+2)αµ−1]

γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

[
1−

αµ
n−2
Π
i=0

[(2i)αµ−1]

n−2
Π
i=0

[(2i+2)αµ−1]

]

=
αnµn

n−2

Π
i=0

[(2i)αµ− 1]
n−2

Π
i=0

[(2i+ 2) γε− 1]

γnεn−1
n−2

Π
i=0

[(2i+ 1)αµ− 1]

[
n−2

Π
i=0

[(2i+ 2)αµ− 1]− αµ
n−2

Π
i=0

[(2i)αµ− 1]

]
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= −
αnµn

n−2

Π
i=0

[(2i+ 2) γε− 1]

γnεn−1
n−1

Π
i=0

[(2i+ 1)αµ− 1]

=
αnµn

n−1

Π
i=0

[(2i) γε− 1]

γnεn−1
n−1

Π
i=0

[(2i+ 1)αµ− 1]

.

Hence, the rest of the results can be similarly proved.

2.2 Second System xn+1 = xn−1yn−3

yn−1(−1+xn−1yn−3)
, yn+1 = yn−1xn−3

xn−1(−1+yn−1xn−3)

Our leading duty in this subsection is to determine the solutions of the following discrete
systems:

xn+1 =
xn−1yn−3

yn−1 (−1 + xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (−1 + yn−1xn−3)
. (2)

The initial values of this system are arbitrary real numbers.

Theorem 2 Suppose that {xn, yn} is a solution to system (2) and assume that x−3 =
α, x−2 = β, x−1 = γ, x0 = δ, y−3 = ε, y−2 = η, y−1 = µ and y0 = ω.Then, for n = 0, 1, ...
we have

x4n−3 =
γnεn

αn−1µn (γε− 1)n
, x4n−2 =

δnηn

βn−1ωn (δη − 1)n
,

x4n−1 =
γn+1εn (αµ− 1)n

αnµn
, x4n =

δn+1ηn (βω − 1)n

βnωn
.

And

y4n−3 =
αnµn

γnεn−1 (αµ− 1)n
, y4n−2 =

βnωn

δnηn−1 (βω − 1)n
,

y4n−1 =
αnµn+1 (γε− 1)n

γnεn
, y4n =

βnωn+1 (δη − 1)n

δnηn
.

Proof. It is obvious that all solutions are satisfied for n = 0. Next, we suppose that n > 1
and assume that the solutions hold for n− 1. That is

x4n−7 =
γn−1εn−1

αn−2µn−1 (γε− 1)n−1 , x4n−6 =
δn−1ηn−1

βn−2ωn−1 (δη − 1)n−1 ,

x4n−5 =
γnεn−1 (αµ− 1)n−1

αn−1µn−1
, x4n−4 =

δnηn−1 (βω − 1)n−1

βn−1ωn−1
.

And

y4n−7 =
αn−1µn−1

γn−1εn−2 (αµ− 1)n−1 , y4n−6 =
βn−1ωn−1

δn−1ηn−2 (βω − 1)n−1 ,

y4n−5 =
αn−1µn (γε− 1)n−1

γn−1εn−1
, y4n−4 =

βn−1ωn (δη − 1)n−1

δn−1ηn−1
.
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We now turn to illustrate the first result. System (2) leads to

x4n−3 =
x4n−5y4n−7

y4n−5 (−1 + x4n−5y4n−7)

=

γnεn−1(αµ−1)n−1

αn−1µn−1
αn−1µn−1

γn−1εn−2(αµ−1)n−1

αn−1µn(γε−1)n−1

γn−1εn−1

[
−1 + γnεn−1(αµ−1)n−1

αn−1µn−1
αn−1µn−1

γn−1εn−2(αµ−1)n−1

]
=

γnεn

αn−1µn (γε− 1)n−1 [−1 + γε]
=

γnεn

αn−1µn (γε− 1)n
.

Similarly, it is easy to see from system (2) that

y4n−3 =
y4n−5x4n−7

x4n−5 (−1 + y4n−5x4n−7)

=

αn−1µn(γε−1)n−1

γn−1εn−1
γn−1εn−1

αn−2µn−1(γε−1)n−1

γnεn−1(αµ−1)n−1

αn−1µn−1

[
−1 + αn−1µn(γε−1)n−1

γn−1εn−1
γn−1εn−1

αn−2µn−1(γε−1)n−1

]
=

αnµn

γnεn−1 (αµ− 1)n−1 [−1 + αµ]
=

αnµn

γnεn−1 (αµ− 1)n
.

The remaining solutions of system (2) can be clearly justified in a similar technique. Thus,
the proof is complete.

2.3 Third System xn+1 = xn−1yn−3

yn−1(1−xn−1yn−3)
, yn+1 = yn−1xn−3

xn−1(−1+yn−1xn−3)

The central point of this subsection is to resolve a system of fourth order rational recursive
equations given by the form:

xn+1 =
xn−1yn−3

yn−1 (1− xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (−1 + yn−1xn−3)
, (3)

where the initial values are as described previously.

Theorem 3 Let {xn, yn} be a solution to system (3) and suppose that x−3 = α, x−2 =
β, x−1 = γ, x0 = δ, y−3 = ε, y−2 = η, y−1 = µ and y0 = ω. Then, for n = 0, 1, ... we have

x4n−3 =
(−1)n γnεn

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

, x4n−2 =
(−1)n δnηn

βn−1ωn
n−1

Π
i=0

[(2i+ 1) δη − 1]

,

x4n−1 =
(−1)n γn+1εn (αµ− 1)n

αnµn
n−1

Π
i=0

[(2i+ 2) γε− 1]

, x4n =
(−1)n δn+1ηn (βω − 1)n

βnωn
n−1

Π
i=0

[(2i+ 2) δη − 1]

.

And
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y4n−3 =
(−1)n αnµn

n−1

Π
i=0

[(2i) γε− 1]

γnεn−1 (αµ− 1)n
, y4n−2 =

(−1)n βnωn
n−1

Π
i=0

[(2i) δη − 1]

δnηn−1 (βω − 1)n
,

y4n−1 =
(−1)n αnµn+1

n−1

Π
i=0

[(2i+ 1) γε− 1]

γnεn
, y4n =

(−1)n βnωn+1
n−1

Π
i=0

[(2i+ 1) δη − 1]

δnηn
.

Proof. The results are true for n = 0. Next, we suppose that n > 1 and assume that the
relations hold for n− 1. That is

x4n−7 =
(−1)n−1 γn−1εn−1

αn−2µn−1
n−2

Π
i=0

[(2i+ 1) γε− 1]

, x4n−6 =
(−1)n−1 δn−1ηn−1

βn−2ωn−1
n−2

Π
i=0

[(2i+ 1) δη − 1]

,

x4n−5 =
(−1)n−1 γnεn−1 (αµ− 1)n−1

αn−1µn−1
n−2

Π
i=0

[(2i+ 2) γε− 1]

, x4n−4 =
(−1)n−1 δnηn−1 (βω − 1)n−1

βn−1ωn−1
n−2

Π
i=0

[(2i+ 2) δη − 1]

.

And

y4n−7 =
(−1)n−1 αn−1µn−1

n−2

Π
i=0

[(2i) γε− 1]

γn−1εn−2 (αµ− 1)n−1 , y4n−6 =
(−1)n−1 βn−1ωn−1

n−2

Π
i=0

[(2i) δη − 1]

δn−1ηn−2 (βω − 1)n−1 ,

y4n−5 =
(−1)n−1 αn−1µn

n−2

Π
i=0

[(2i+ 1) γε− 1]

γn−1εn−1
, y4n−4 =

(−1)n−1 βn−1ωn
n−2

Π
i=0

[(2i+ 1) δη − 1]

δn−1ηn−1
.

Now, we establish the proofs of two relations. Firstly, system (3) gives us that

x4n−3 =
x4n−5y4n−7

y4n−5 (1− x4n−5y4n−7)

=

(−1)n−1γnεn−1(αµ−1)n−1

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

(−1)n−1αn−1µn−1
n−2
Π
i=0

[(2i)γε−1]

γn−1εn−2(αµ−1)n−1

(−1)n−1αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1

[
1− (−1)n−1γnεn−1(αµ−1)n−1

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

(−1)n−1αn−1µn−1
n−2
Π
i=0

[(2i)γε−1]

γn−1εn−2(αµ−1)n−1

]

=

γε
n−2
Π
i=0

[(2i)γε−1]

n−2
Π
i=0

[(2i+2)γε−1]

(−1)n−1αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1

[
1−

γε
n−2
Π
i=0

[(2i)γε−1]

n−2
Π
i=0

[(2i+2)γε−1]

]
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=
(−1)−n+1 γnεn

n−2

Π
i=0

[(2i) γε− 1]

αn−1µn
n−2

Π
i=0

[(2i+ 1) γε− 1]

[
n−2

Π
i=0

[(2i+ 2) γε− 1]− γε
n−2

Π
i=0

[(2i) γε− 1]

]
=

− (−1)−n+1 γnεn

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

=
(−1)n γnεn

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

.

Next, it can be noticed from system (3) that

y4n−3 =
y4n−5x4n−7

x4n−5 (−1 + y4n−5x4n−7)

=

(−1)n−1αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1

(−1)n−1γn−1εn−1

αn−2µn−1
n−2
Π
i=0

[(2i+1)γε−1]

(−1)n−1γnεn−1(αµ−1)n−1

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

[
−1 +

(−1)n−1αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1

(−1)n−1γn−1εn−1

αn−2µn−1
n−2
Π
i=0

[(2i+1)γε−1]

]

=
(−1)−n+1 αnµn

n−2

Π
i=0

[(2i+ 2) γε− 1]

γnεn−1 (αµ− 1)n−1 [−1 + αµ]
=
− (−1)n−1 αnµn

n−1

Π
i=0

[(2i) γε− 1]

γnεn−1 (αµ− 1)n

=
(−1)n αnµn

n−1

Π
i=0

[(2i) γε− 1]

γnεn−1 (αµ− 1)n
.

The proofs of the remaining relations can be likewise achieved. Therefore, they are omitted.

2.4 Fourth System xn+1 = xn−1yn−3

yn−1(−1+xn−1yn−3)
, yn+1 = yn−1xn−3

xn−1(1−yn−1xn−3)

Our fundamental task in this subsection is to develop fractional solutions to the system of
recursive equations given by the form:

xn+1 =
xn−1yn−3

yn−1 (−1 + xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (1− yn−1xn−3)
, (4)

where the initial conditions are required to be non-zero real numbers.

Theorem 4 Assume that {xn, yn} is a solution to system (4) and suppose that x−3 =
α, x−2 = β, x−1 = γ, x0 = δ, y−3 = ε, y−2 = η, y−1 = µ and y0 = ω. Then, for
n = 0, 1, ... we have

x4n−3 =
(−1)n γnεn

n−1

Π
i=0

[(2i)αµ− 1]

αn−1µn (γε− 1)n
, x4n−2 =

(−1)n δnηn
n−1

Π
i=0

[(2i) βω − 1]

βn−1ωn (δη − 1)n
,

x4n−1 =
(−1)n γn+1εn

n−1

Π
i=0

[(2i+ 1)αµ− 1]

αnµn
, x4n =

(−1)n δn+1ηn
n−1

Π
i=0

[(2i+ 1) βω − 1]

βnωn
.

And
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y4n−3 =
(−1)n αnµn

γnεn−1
n−1

Π
i=0

[(2i+ 1)αµ− 1]

, y4n−2 =
(−1)n βnωn

δnηn−1
n−1

Π
i=0

[(2i+ 1) βω − 1]

,

y4n−1 =
(−1)n αnµn+1 (γε− 1)n

γnεn
n−1

Π
i=0

[(2i+ 2)αµ− 1]

, y4n =
(−1)n βnωn+1 (δη − 1)n

δnηn
n−1

Π
i=0

[(2i+ 2) βω − 1]

.

Proof. The relations hold for n = 0. Next, we let n > 1 and assume that the formulas hold
for n− 1. That is

x4n−7 =
(−1)n−1 γn−1εn−1

n−2

Π
i=0

[(2i)αµ− 1]

αn−2µn−1 (γε− 1)n−1 , x4n−6 =
(−1)n−1 δn−1ηn−1

n−2

Π
i=0

[(2i) βω − 1]

βn−2ωn−1 (δη − 1)n−1 ,

x4n−5 =
(−1)n−1 γnεn−1

n−2

Π
i=0

[(2i+ 1)αµ− 1]

αn−1µn−1
, x4n−4 =

(−1)n−1 δnηn−1
n−2

Π
i=0

[(2i+ 1) βω − 1]

βn−1ωn−1
.

And

y4n−7 =
(−1)n−1 αn−1µn−1

γn−1εn−2
n−2

Π
i=0

[(2i+ 1)αµ− 1]

, y4n−6 =
(−1)n−1 βn−1ωn−1

δn−1ηn−2
n−2

Π
i=0

[(2i+ 1) βω − 1]

,

y4n−5 =
(−1)n−1 αn−1µn (γε− 1)n−1

γn−1εn−1
n−2

Π
i=0

[(2i+ 2)αµ− 1]

, y4n−4 =
(−1)n−1 βn−1ωn (δη − 1)n−1

δn−1ηn−1
n−2

Π
i=0

[(2i+ 2) βω − 1]

.

We now turn to verify the proof of two relations. It can be obviously seen from system (4)
that

x4n−3 =
x4n−5y4n−7

y4n−5 (−1 + x4n−5y4n−7)

=

(−1)n−1γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1

(−1)n−1αn−1µn−1

γn−1εn−2
n−2
Π
i=0

[(2i+1)αµ−1]

(−1)n−1αn−1µn(γε−1)n−1

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

[
−1 +

(−1)n−1γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1

(−1)n−1αn−1µn−1

γn−1εn−2
n−2
Π
i=0

[(2i+1)αµ−1]

]

=
(−1)−n+1 γnεn

n−2

Π
i=0

[(2i+ 2)αµ− 1]

αn−1µn (γε− 1)n−1 [−1 + γε]
=
− (−1)n−1 γnεn

n−1

Π
i=0

[(2i)αµ− 1]

αn−1µn (γε− 1)n

=
(−1)n γnεn

n−1

Π
i=0

[(2i)αµ− 1]

αn−1µn (γε− 1)n
.
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Further, it can be attained from system (4) that

y4n−3 =
y4n−5x4n−7

x4n−5 (1− y4n−5x4n−7)

=

(−1)n−1αn−1µn(γε−1)n−1

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

(−1)n−1γn−1εn−1
n−2
Π
i=0

[(2i)αµ−1]

αn−2µn−1(γε−1)n−1

(−1)n−1γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1

[
1− (−1)n−1αn−1µn(γε−1)n−1

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

(−1)n−1γn−1εn−1
n−2
Π
i=0

[(2i)αµ−1]

αn−2µn−1(γε−1)n−1

]

=

αµ
n−2
Π
i=0

[(2i)αµ−1]

n−2
Π
i=0

[(2i+2)αµ−1]

(−1)n−1γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1

[
1−

αµ
n−2
Π
i=0

[(2i)αµ−1]

n−2
Π
i=0

[(2i+2)αµ−1]

]

=
(−1)−n+1 αnµn

n−2

Π
i=0

[(2i)αµ− 1]

γnεn−1
n−2

Π
i=0

[(2i+ 1)αµ− 1]

[
n−2

Π
i=0

[(2i+ 2)αµ− 1]− αµ
n−2

Π
i=0

[(2i)αµ− 1]

]
=

(−1)n αnµn

γnεn−1
n−1

Π
i=0

[(2i+ 1)αµ− 1]

.

Other results can be proved in a similar way. Thus, the remaining proofs are omitted.

2.5 Numerical Examples

This subsection aims to present graphical confirmations to the whole solutions obtained in
the previous subsections. Here, we plot the solutions (by using MATLAB software) under
specific selections of some initial conditions.
Example 1. This example shows the paths of the solutions of system (1). The initial
conditions of this example are given as follows: x−3 = 3, x−2 = 1, x−1 = 5, x0 = 2, y−3 =
1, y−2 = 3, y−1 = 5 and y0 = 5. See Figure 1.
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Figure 1: The behaviour of the solution of system (1).

Example 2. In Figure 2, we illustrate the behaviour of the solution of system (2) under
the following selection of initial conditions: x−3 = 3.4, x−2 = 0.7, x−1 = 2, x0 = 3, y−3 =
1.5, y−2 = 1.5, y−1 = 0.5 and y0 = 1.22.
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Figure 2: The behaviour of the solution of system (2).

Example 3. Figure 3 illustrates the curves of the solutions of system (3) when we assume
that x−3 = 0.7, x−2 = 2.1, x−1 = 1, x0 = 0.5, y−3 = 0.1, y−2 = 0.2, y−1 = 2.2 and
y0 = 0.5.
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Figure 3: The behaviour of the solution of system (3).

Example 4. The solutions of system (4) are depicted in Figure 4 under the following initial
data: x−3 = 0.2, x−2 = 1, x−1 = 0.3, x0 = 0.2, y−3 = 3, y−2 = 1, y−1 = 2 and y0 = 0.3.
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Figure 4: The behaviour of the solution of system (4).
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