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Abstract

This paper is devoted to the approximation of solutions for nonlinear equations
by using iterative methods. We present a unified convergence analysis for some
Newton-type methods. We consider both semilocal and local analysis. In the first
one, the hypotheses are imposed on the initial guess and in the second on the
solution. The results can be applied for smooth and non-smooth operators. In the
numerical section we study two applications, first one, it is devoted to a nonlinear
integral equation of Hammerstein type and in second one, we approximate the
solution of a nonlinear PDE related to image denoising.

1 Introduction

There are several situations in which the modeling of a problem leads us to calculate a
solution of an equation

F (x) = 0. (1)

This equation can represent a differential equation, ordinary or partial, an integral equa-
tion, an integro-differential equation or a simple system of equations. In general, math-
ematical methods that obtain exact solutions of (1) are not known, so that iterative
methods are usually used to solve (1) [9, 10, 1, 2, 3, 4, 5, 7, 12]. For a greater generality,
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in this study, we consider F : D ⊂ X → Y, where X, Y are Banach spaces and D is a
nonempty, open and convex set. And we pay attention to F is continuous and Fréchet
non-differentiable. In this case, to approximate a solution of (1), iterative methods using
divided differences are usually applied instead of using derivatives [12]-[11]. It is common
to approximate derivatives by divided differences for obtaining derivative free iterative
schemes. So, given an operator G : D ⊂ X → Y, let us denote by L(X, Y ) the space of
bounded linear operators from X into Y , an operator [x, y;G] ∈ L(X, Y ) is called a first
order divided difference for the operator G on the points x and y (x 6= y) in D if

[x, y;G](x− y) = G(x)−G(y). (2)

Steffensen’s method [13] is the most used iterative method using divided differences
in the algorithm, which is{

x0 given in D,

xn+1 = xn − [xn, xn + F (xn);F ]−1F (xn), n ≥ 0.
(3)

As we can see in [14], Steffensen’s method has a problem of accessibility that can be
solved by using a procedure of decomposition ([15]) for operator F , the Fréchet differen-
tiable part and the non-differentiable part. So, we consider

F (x) = F1(x) + F2(x) (4)

where F1, F2 : D ⊂ X → Y , F1 is Fréchet differentiable and F2 is continuous and Fréchet
non-differentiable. Thus, in [14], we consider the method of Newton-Steffensen, given by
the following algorithm{

x0 given in D,

xn+1 = xn − (F ′1(xn) + [xn, xn + F (xn);F2])−1 (F1(xn) + F2(xn)), n ≥ 0,
(5)

withX = Y , which improves significantly the accessibility of method (3) and has quadratic
convergence.

By using this procedure of decomposition for operator F , we see that we can also con-
sider the application of iterative methods that use derivatives when F is non-differentiable.
So, for example, we can consider the well-known Newton’s method, which algorithm is{

x0 given in D,

xn+1 = xn − [F ′(xn)]−1F (xn), n ≥ 0,
(6)

Obviously, Newton’s method is not applicable, under form (6), when F is not Fréchet
differentiable. However, if we consider decomposition of F given in (4), we can use the
following algorithm{

x0 given in D,

xn+1 = xn − [F ′1(xn)]−1(F1(xn) + F2(xn)), n ≥ 0,
(7)
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which is known as method of Zincenko [17].
The main aim of this paper consists of defining one-point iterative methods of Newton-

type, as we can see previously, to obtain a general study for the convergence, local and
semilocal, for these type of iterative methods. Moreover, in view of the last two consid-
erations, with these one point iterative methods we can to improve the accessibility of
one-point iterative methods that use divided differences and, in addition, to extend the
application of iterative methods that use derivatives when F is Fréchet non-differentiable.
For this aim, we consider the one-point iterative methods of Newton-type given by the
following algorithm {

x0 given in D,

xn+1 = xn − L−1
n (F1(xn) + F2(xn)), n ≥ 0,

(8)

where Ln := L(xn) with L(.) : D → L(X, Y ). Clearly, method (8) can be used to solve
equations containing a nondifferentiable term.

There are a lot of iterative methods that can be written as algorithm (8), in addition to
modifications of Steffensen and Newton given in (5) and (7), where L(x) = F ′1(x)+[x, x+
F2(x);F2] and L(x) = F ′1(x), respectively. At the same time, we can also consider two
interesting cases. Firstly, the generalized Steffensen methods [6], that are very used in the
approximation of solutions of non-differentiable operators equations and the algorithm is{

x0 given in D,

xn+1 = xn − [xn − aF (xn), xn + bF (xn);F ]−1F (xn), n ≥ 0.

Then, it is clear that we can define the generalized Newton-Steffensen method from 8)
with L(x) = F ′1(x) + [x − aF2(x), x + bF2(x);F2], so we have the final iterative function
given as:{

x0 given in D,

xn+1 = xn − (F ′1(xn) + [xn − aF2(xn), xn + bF2(xn);F2])−1F (xn), n ≥ 0.
(9)

where a, b ∈ R.
In the same way as Newton’s method, from Stirling method [16],{

x0 given in D,

xn+1 = xn − [F ′1(xn − F (xn))]−1F (xn), n ≥ 0,
(10)

we can define a modification of Newton-type, that can be applied to Fréchet non-differentiable
operators. For this, just consider (8) with L(x) = F ′1(x−F (x)). In both cases, we choose
X = Y . Obviously, we can include a lot of iterative methods in (8) if F is Fréchet
differentiable.

So, in this paper, we study the convergence of algorithm (8). We analyze the semilocal
and local convergences, so that we have a study of convergence of a lot of iterative methods
that are usually used and can be written by algorithm (8).
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Section 2 is devoted to the theoretical analysis about local and semilocal convergence
for a very general single step Newton-like methods. In Section 3 we make a comparison
for the behavior of some of these methods by solving a non-differentiable problem. In
Section 4, we consider an application related to image denoising. Finally, in Section 5 we
give some conclusions.

2 Convergence Analysis for single step Newton-like

methods

In this section, we present both semilocal and local convergence analysis. In the first one,
the hypotheses are imposed on the initial guess and in the second on the solution. The
results can be applied for smooth and non-smooth operators.

2.1 Local Convergence Analysis

In this section, we first present the local followed by the semilocal convergence of method
(8). Let v0 : [0,+∞) → [0,+∞) be a nondecreasing continuous function with v0(0) = 0.
Suppose that the equation

v0(t) = 1 (11)

has at least one positive root r0. Let also v : [0, r0) → [0,+∞) be a nondecreasing

continuous function. Define function v̄ on the interval [0, r0) by v̄(t) = v(t)
1−v0(t)

− 1.
Suppose equation

v̄(t) = 0 (12)

has at least one positive root. Denote by r the smallest such root. It follows that for each
t ∈ [0, r)

0 ≤ v0(t) < 1 (13)

and
0 ≤ v̄(t) < 1. (14)

The local convergence analysis of method (8) uses the conditions (A):

• (a1) There exist a solution x∗ ∈ D of equation (4), and B ∈ L(X, Y ) such that
B−1 ∈ L(Y,X).

• (a2) Condition (11) holds and for each x ∈ D

‖B−1(L(x)−B)‖ ≤ v0(‖x− x∗‖),

where v0 is defined previously and r0 is given in (11).

Set D0 = D ∩ Ū(x∗, r0).
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• (a3) For L : D0 → L(X, Y ), any solution y of equation (4) and each x ∈ D0

‖B−1(F1(x) + F2(x)− L(x)(x− y))‖ ≤ v(‖x− y‖)‖x− y‖,

where v is defined previously.

• (a4) Ū(x∗, r) ⊂ D, where r is given in (12).

• (a5) There exist r∗ ≥ r such that

ξ :=
v(r∗)

1− v0(r)
∈ [0, 1).

Set D1 = D ∩ Ū(x∗, r∗).

Remark 1 • Condition (a3) can be replaced by the stronger: for each x, y, z ∈ D0

‖B−1(F1(x) + F2(x)− L(x)(x− y))‖ ≤ v1(‖x− y‖)‖x− y‖,

where function v1 is as v. But for each t ≥ 0

v(t) ≤ v1(t).

• Linear operator B does not necessarily depend on the solution x∗. It is used to
determine the invertibility of linear operator L(·) appearing in the method. The
invertibility of B can be assured by an additional condition of the form ||I−B|| < 1
or some other way. A possible choice for B is B = B(x∗) or B = F

′
1(x∗).

• It follows from the definition of r0 and r that r0 ≥ r.

We can present the local convergence analysis of method (8) based on the aforemen-
tioned conditions (A).

Theorem 2 Suppose that the conditions (A) hold. Then, sequence xk generated by
method (8) for x0 ∈ U(x∗, r) − x∗ is well defined in U(x∗, r), remains in U(x∗, r) and
converges to x∗. Moreover, the following estimates hold.

‖xk+1 − x∗‖ ≤
v(‖xk − x∗‖)

1− v0(‖xk − x∗‖)
‖xk − x∗‖ ≤ ‖xk − x∗‖ < r. (15)

The vector x∗ is the only solution of equation (4) in D1, where D1 is given in (a5).

Proof We base the proof on k and mathematical induction. Let x ∈ U(x∗, r). Using
(8), (a1) and (a2), we have in turn that

‖B−1(L(x)−B)‖ ≤ v0(‖x− x∗‖) ≤ v0(r) < 1. (16)
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It follows by (16) and the Banach lemma on invertible operators [] that L(x)−1 ∈ L(Y,X)
and

‖L(x)−1B‖ ≤ 1

1− v0(‖x− x∗‖)
. (17)

In particular, estimate (17) holds for x = x0, so x1 is well defined by method (8) for k = 0.
We also get by method (8) (for k = 0), (a1), (a3), (14) and (17) (for k = 0) that

‖x1 − x∗‖ = ‖x0 − x∗ − L(x0)−1(F1(x0) + F2(x0))‖
= ‖[−L(x0)−1B][B−1(F1(x0) + F2(x0)− L(x0)(x0 − x∗))]‖
≤ ‖L(x0)−1B‖‖B−1(F1(x0) + F2(x0)− L(x0)(x0 − x∗))‖

≤ v(‖x0 − x∗‖)
1− v0(‖x0 − x∗‖)

‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (18)

which shows estimate (15) for k = 0, and x1 ∈ U(x∗, r).
Simply, replace x0, x1 by xi, xi+1 in the preceding estimates to complete the induction

for estimate (15). Then, in view of the estimate

‖xi+1 − x∗‖ ≤ ξ‖xi − x∗‖ < r, (19)

where

ξ =
v(‖x0 − x∗‖)

1− v0(‖x0 − x∗‖)
∈ [0, 1),

we deduce that limi→+∞ xi = x∗ and xi+1 ∈ U(x∗, r). Moreover, to show the uniqueness
part, let y∗ ∈ D1 with F1(y∗) +F2(y∗) = 0. Using (a3), (a5) and estimate (18), we obtain
in turn that

‖xi+1 − y∗‖ ≤ ‖L(xi)
−1B‖‖B−1(F1(xi) + F2(xi)− L(xi)(xi − y∗))‖

≤ v(‖xi − y∗‖)
1− v0(‖xi − x∗‖)

‖xi − y∗‖

≤ ξ‖xi − y∗‖ < ξi+1‖x0 − y∗‖, (20)

which shows limi→+∞ xi = y∗. But, we showed limi→+∞ xi = x∗. Hence, we conclude that
x∗ = y∗.

�

2.2 Semilocal Convergence Analysis

As in the local case it is convenient to define some functions and parameters for the
semilocal analysis. Let w0 : [0,+∞) → [0,+∞) be a continuous and nondecreasing
function.

Suppose that equation
w0(t) = 1. (21)
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has at least one positive root. Denote by ρ0 the smallest such root. Let also w : [0, ρ0)×
[0, ρ0) → [0,+∞) be a nondecreasing continuous function. Moreover, for η ≥ 0, define
parameters C1 and C2 by

C1 =
w(η, 0)

1− w0(η)
,

C2 =
w( η

1−C1
, η)

1− w0( η
1−C1

)

and function C : [0, ρ0)→ [0,+∞) by C(t) = w(t,t)
1−w0(t)

. Suppose that equation

(
C1C2

1− C(t)
+ C1 + 1)η − t = 0 (22)

has as least one positive root. Denote by ρ the smallest such root.
Next, we show the semilocal convergence analysis of method (8) in an analogous way,

under the conditions (H):

• (h1) There exists x0 ∈ D and B ∈ L(X, Y ) such that B−1 ∈ L(Y,X).

• (h2) Condition (21) holds and for each x ∈ D

‖B−1(L(x)−B)‖ ≤ w0(‖x− x0‖),

where w0 is as defined previously, and ρ0 is given in (21).

Set D2 = D
⋂
Ū(x0, ρ0).

• (h3) For L(·) : D2 → L(X, Y ), and each x, y ∈ D2

‖B−1(F1(y)− F1(x) + F2(y)− F2(x)− L(x)(y − x))‖
≤ w(‖y − x0‖, ‖x− x0‖)‖y − x‖,

where w is as defined previously.

• (h4) Ū(x0, ρ) ⊆ D and condition (22) holds for ρ, where ‖x1 − x0‖ ≤ η.

• (h5) There exists ρ∗ ≥ ρ such that

ξ0 :=
w(ρ, ρ∗)

1− w0(ρ)
∈ [0, 1).

Set D2 = D
⋂
Ū(x∗, ρ∗).
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Then, as in the local case but using the (H) instead of the (A) conditions, we have in
turn the estimates:

‖x2 − x1‖ ≤
w(‖x1 − x0‖, ‖x0 − x0‖)

1− w0(‖x1 − x0‖)
= C1‖x1 − x0‖,

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤ (1 + C1)‖x1 − x0‖

=
1− C2

1

1− C1

‖x1 − x0‖

<
‖x1 − x0‖

1− C1

η < ρ,

‖x3 − x2‖ ≤
w(‖x2 − x0‖, ‖x1 − x0‖)

1− w0(‖x2 − x0‖)
‖x2 − x1‖

≤
w( η

1−C1
, η)

1− w0( η
1−C1

)
‖x2 − x1‖ = C2‖x2 − x1‖

‖x3 − x0‖ ≤ ‖x3 − x2‖+ ‖x2 − x1‖+ ‖x1 − x0‖
≤ C2‖x2 − x1‖+ C1‖x1 − x0‖+ ‖x1 − x0‖
≤ (C2C1 + C1 + 1)‖x1 − x0‖,

‖x4 − x3‖ ≤
w(‖x3 − x0‖, ‖x2 − x0‖)

1− w0(‖x3 − x0‖)
‖x3 − x2‖

≤ C(ρ)‖x3 − x2‖ ≤ C(ρ)C2‖x2 − x1‖
≤ C(ρ)C2C1‖x1 − x0‖,

...

‖xi+1 − xi‖ ≤ C(ρ)‖xi − xi−1‖ ≤ C(ρ)i−2‖x3 − x2‖
‖xi+1 − x0‖ ≤ ‖xi+1 − xi‖+ ...+ ‖x4 − x3‖+ ‖x3 − x0‖

≤ C(ρ)‖xi − xi−1‖+ ...+ C(ρ)‖x3 − x2‖
+(C2C1 + C1 + 1)‖x1 − x0‖

≤ C(ρ)i−2‖x3 − x2‖+ ...+ C(ρ)‖x3 − x2‖
+(C2C1 + C1 + 1)‖x1 − x0‖

≤ (
1− C(ρ)i−1

1− C(ρ)
C2C1 + C1 + 1)‖x1 − x0‖

< (
C1C2

1− C(ρ)
+ C1 + 1)η ≤ ρ, (23)
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‖xi+j − xi‖ ≤ ‖xi+j − xi+j−1‖+ ‖xi+j−1 − xi+j−2‖+ ...+ ‖xi+1 − xi‖
≤ (C(ρ)i+j−3 + ...+ C(ρ)i−2)‖x3 − x2‖

≤ C(ρ)i−2 1− C(ρ)j−1

1− C(ρ)
‖x3 − x2‖

≤ C(ρ)i−2 1− C(ρ)j−1

1− C(ρ)
C2C1‖x1 − x0‖

≤ C(ρ)i−2 1− C(ρ)j−1

1− C(ρ)
C2C1η. (24)

It follows from (23) that xi ∈ U(x0, ρ) and from (24) that sequence xi is complete in
X and as such it converges to some x∗ ∈ Ū(x0, ρ). By letting i→ +∞ in the estimate

‖B−1(F1(xi) +F2(xi))‖ = ‖B−1(F1(xi) +F2(xi)−F1(xi−1)−F2(xi−1)−Bi−1(xi− xi−1))‖

≤ w(‖xi − x0‖, ‖xi−1 − x0‖)‖‖xi − xi−1‖
1− w0(‖xi − x0‖)

≤ w(ρ, ρ)

1− w0(ρ)
‖xi − xi−1‖,

we obtain F1(x∗) + F2(x∗) = 0. The uniqueness part is omitted as identical to the one in
the local convergence case.

Hence, we arrived at the semilocal convergence result for method (8).

Theorem 3 Suppose that the conditions (H) hold. Then, sequence xk generated by
method (8) for x0 ∈ D is well defined in U(x0, ρ) remains in U(x0, ρ) and converges
x∗ ∈ Ū(x0, ρ) to a solution of equation (4). Moreover, the vector x∗ is the only solution
of equation (4) in D3, where D3 is defined previously.

The same comments introduced in the previous remark are valid.
We emphasize the theoretical importance of this theorem because it presents a unified

studied of the local and semilocal convergence of a big variety of Newton-Type methods
and Steffensen type methods, so the study is applicable to differentiable an non differen-
tiable equations.

3 Numerical Experiments

In this section, we consider a nonlinear integral equation of Hammerstein type, which can
be used to describe applied problems in the fields of electro-magnetics, fluid dynamics,
in the kinetic theory of gases and, in general, in the reformulation of boundary value
problems. These equations are of the form:

x(s) = f(s)−
∫ b

a

K(s, t)Φ(x(t))dt, a ≤ s ≤ b, (25)
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where x(s), f(s) ∈ C[a, b], with −∞ < a < b <∞, and Φ is a polynomial function. One
of the most used techniques to solve this kind of equations consists of expressing them as
a nonlinear operator in a Banach space and solving the following operator equation:

F (x)(s) = x(s)− f(s) +

∫ b

a

K(s, t)Φ(x(t))dt = 0, (26)

where F : D ⊆ C[a, b] → C[a, b] with D a non-empty open convex subset of C[a, b] with
the max-norm ‖ν‖ = maxs∈[a,b] |ν(s)|.

We consider (25), where K is the Green function in [a, b] × [a, b], and then use a
discretization process to transform equation (26) into a finite dimensional problem by
approximating the integral by an adequate quadrature formula∫ b

a

q(t) dt '
p∑
i=1

wiq(ti),

where the nodes ti and the weights wi are known.
If we denote the approximations of x(ti) and f(ti) by xi and fi, respectively, with

i = 1, 2, . . . , p, then equation (26) is equivalent to the following system of nonlinear
equations:

xi = fi +

p∑
j=1

aij Φ(xj), j = 1, 2, . . . , p, (27)

where

aij = wjK(ti, tj) =

{
wj

(b−ti)(tj−a)

b−a , j ≤ i,

wj
(b−tj)(ti−a)

b−a , j > i.

Now, system (27) can be written as

F(x) ≡ x− f− A z = 0, F : ∆ ⊆ Rp −→ Rp, (28)

where
x = (x1, x2, . . . , xp)

T , f = (f1, f2, . . . , fp)
T , A = (aij)

p
i,j=1,

z = (Φ(x1),Φ(x2), . . . ,Φ(xp))
T .

After that, we choose a = 0, b = 1, K(s, t) as the Green function in [0, 1]× [0, 1] and
Φ(x(t)) = x(t)3 + |x(t)| in (25). Then, the system of nonlinear equations given in (28) is
of the form

F(x) = x− f− A (vx + wx) = 0, F : Rp −→ Rp, (29)

where
vx = (x3

1, x
3
2, . . . , x

3
p)
T , wx = (|x1|, |x2|, . . . , |xp|)T .

It is obvious that the function F defined in (29) is nonlinear and non-differentiable. So,
we consider F(x) = F1(x) + F2(x) where:

F1(x) = x− f− Avx and F2(x) = −Awx.

10
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As in Rp we can consider divided difference of first order that do not need that the
function F is differentiable (see [16]), we use the divided difference of first order given by
[u,v;G] = ([u,v;G]ij)

p
i,j=1 ∈ L(Rp,Rp), where

[u,v;G]ij =
1

uj − vj
(Gi(u1, . . . , uj, vj+1, . . . , vp)−Gi(u1, . . . , uj−1, vj, . . . , vp)) , (30)

if uj 6= vj, in other case [u,v;G]ij = 0, for u = (u1, u2, . . . , up)
T and v = (v1, v2, . . . , vp)

T .
Now, to compare the behavior of different methods we consider the case f = 0 in

(29). Obviously, for this problem, x∗ = 0 is a solution of F(x) = 0. Then, the system of
nonlinear equations given in (29) is of the form

F(x) = x− A z, zj = x3
j + |xj|, j = 1, . . . , p. (31)

The numerical results are obtained by using MATLAB 2018 and working with variable
precision arithmetic with 100 digits. In Table 1 we can see the results obtained by using
the methods mentioned in our study. First of all we take nodes and weights of Trape-
zoidal rule with n = 10 subintervals for approximatting the integral and starting guess
x0(t) = 1/2 ∀t ∈ [0, 1]. We compare the distance between consecutive iterates of the first
7 iterations of each method. In the case of the Newton-Steffensen General method (9),
the parameters involved are a = 0.5 and b = 1.5.

Stirling (10) Zincenko (7) Steffensen (3) New-Steff. (5) New-Steff. Gen.(9)
1 1.5887 1.1637 7.4375 2.9044 2.9044
2 6.0578e− 01 3.0210e− 01 2.7350e− 01 1.3867 1.3867
3 4.7941e− 01 1.2065e− 01 1.8235e− 02 3.2041e− 01 1.2942e− 01
4 4.1942e− 01 4.9511e− 02 5.5411e− 05 2.8725e− 04 2.8725e− 04
5 3.5456e− 01 2.0403e− 02 2.8134e− 09 1.3552e− 12 1.3552e− 12
6 1.9024e− 01 8.4133e− 03 3.0173e− 18 3.1538e− 37 3.3246e− 37
7 2.9676e− 02 3.4697e− 03 3.9490e− 36 1.7796e− 111 2.1782e− 111

Table 1: Results with different methods in the first iterations.

In Table 2 we work with same conditions, we obtain the iterations that each method
needs to satisfy the stopping criterion ||xk+1 − xk|| ≤ 10−40. It should be noted that the
first two methods never meet the required tolerance because they are not convergent and,
therefore, the methods end when the required iterations are completed (in this case 15
iterations at most). Second, we observe a good approximation to the order of convergence
of each method p in case the method converges. In the last two rows of Table 2 we compare
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Stirling (10) Zincenko (7) Steffensen (3) New-Steff. (5) New-Steff. Gen.(9)

k 15 15 8 7 7
p 1.0000 1.0000 1.9994 3.0142 3.0148

||xk−1 − xk|| 2.3258e− 04 2.9041e− 06 6.9382e− 72 1.7796e− 111 2.1782e− 111
||F (xk)|| 9.5985e− 05 1.1977e− 06 1.2745e− 107 7.8863e− 219 6.8587e− 219

Table 2: Numerical results for comparing the proposed methods.

the difference between the last iterates of each method and we also see the norm of the
function evaluted in the last iteration.

Now, we also want to use the Gauss-Legendre quadrature to approximate the integral
of equation (25). Moreover, by using the Newton-Steffensen method we compare two
different possibilities for implementing the divided differences given in (30), that is, in
Tables 1 and 2 we obtain the divided difference like [xn, xn + F1(xn) + F2(xn), F2] but
we want to compare with [xn, xn + F2(xn), F2]. The results in Table 3 show that the
use of first form used for obtaining the divided differences gives better residual errors,
which was expected because F1(xn) + F2(xn) tends to zero quicker than F2(xn). Even
in some different example the value F2(xn) could not tend to zero, in this case only first
form of obtaining the divided differences considered would work. In Table 3 we have also
included the computational time, as can be observed in the last row, notice that the use
of Gauss-Legedre quadrature needs much more time than the trapezoidal rule although
in some cases reaches better accuracy.

||xn − xn−1||
Iterations Trapezoidal rule Gauss− Legendre

n [x, x+ F1 + F2, F2] [x, x+ F2, F2] [x, x+ F1 + F2, F2] [x, x+ F2, F2]
1 2.9044 2.9044 2.7204 2.7204
2 1.3867 1.3867 1.1355 1.1355
3 3.2041e− 01 1.2942e− 01 6.6978e− 02 6.6978e− 02
4 2.8725e− 04 2.8725e− 04 3.4608e− 05 3.4608e− 05
5 1.3552e− 12 1.3552e− 12 2.1448e− 15 2.1448e− 15
6 3.1538e− 37 3.3489e− 28 1.124e− 45 1.124e− 45
7 1.7796e− 111 1.3651e− 43 8.0773e− 137 7.8571e− 137

Table 3: Results with Trapezoidal rule and Gauss-Legendre method by using different
form of obtaining the divided differences.
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Trapezoidal rule Gauss− Legendre
n [x, x+ F1 + F2, F2] [x, x+ F2, F2] [x, x+ F1 + F2, F2] [x, x+ F2, F2]
k 7 8 7 7
p 3.0142 unstable 3.0099 3.0103

||xk−1 − xk|| 1.7796e− 111 4.3463e− 59 8.0772e− 137 7.8571e− 137
||F (xk)|| 7.8863e− 219 1.0160e− 74 1.3057e− 243 1.5367e− 138
time 17.796129 20.6134 282.5403 309.3090

Table 4: Numerical results and computational time for comparing the proposed methods.

4 Approximating the solution of a nonlinear PDE

related to image denoising

In some steps of the manipulation of an image, some random noise is usually introduced.
This noise makes the later steps of processing the image difficult and inaccurate.

In many applications like astrophysics, astronomy or meteorology we have to manipu-
late images contaminated by noise. The image processing becomes difficult and inaccurate.
For these reasons, usually some image denoising strategies are developed. In this paper,
we center our attention in the PDE framework.

Let f : Ω→ R be a signal or image which we would like to denoise.

The usual PDE frameworks start with constrained optimization problems like

Minimize in u : R(u)

subject to ‖u− f‖2
L2(Ω) = |Ω|σ2.

where n = u − f denotes the noise. If there is no good estimate of the variance of the
noise, then we may consider the unconstrained optimization problem.

Different linear regularization functionals R(u) can be consider, the most used is
‖∇u‖L2 . This type of functionals introduce diffusion near the edges of the images, this is
their main limitation.

The TV norm does not penalize discontinuities in u, and thus allows us to improve
the approximation near the edges. ∫

Ω

|∇u(x)|dx.

For the linear model its Euler–Lagrange equation, with Neumann’s boundary condi-
tions for u, is

−4u+ λ(u− f) = 0, (32)
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which comes from the corresponding unconstrained problem with the norm ‖∇u‖2
L2(Ω)

and where the positive parameter λ determines the relative importance of the smoothness
of u and the quality of the approximation to the given signal f ..

For the TV- model we have

−∇ · ( ∇u
|∇u|

) + λ(u− f) = 0. (33)

In practice, the term |∇u| is replaced by
√
|∇u|2 + ε, but even after this regularization,

Newton’s method does not work satisfactorily in the sense that its domain of convergence
is very small. This is especially true if the regularizing parameter ε is small.

On the other hand, while the singularity and nondifferentiability of the term w =
∇u/|∇u| is the source of numerical problems, w itself is usually smooth because it is in
fact the unit vector normal to the level sets of u. The numerical difficulties arise only
because we linearize it the wrong way.

Thus we should introduce a new variable w; namely

w =
∇u√
|∇u|2

,

and replace (33) by the equivalent system of nonlinear PDEs:

−∇ · w + λ(u− f) = 0,

w
√
|∇u|2 −∇u = 0.

Without the inclusion of the above regularization parameter ε, this system is nonlinear
and nondifferentiable .

4.1 Discretization and numerical implementation

We present a comparison between the nonlinear model and the linear model using a simple
finite difference discretization procedure.

For a regular mesh of size h = 1/m, m ∈ N (xi = i · h, i = 0, . . . ,m), if in each
iteration k we approximate the divergence and the gradient operators (these operators
are the same in 1D) by

∇ · v(xi) = ∇v(xi) ≈
vi − vi−1

h
,

we obtain a nonlinear system for the unknowns wi and ui.

That is,

−wi − wi−1

h
− λ(ui − fi) = 0, w1 = wm = 0,

wi ·
√

(
ui − ui−1

h
)2 − ui − ui−1

h
= 0, u0 = f0, um = fm,
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for i = 1, . . . ,m− 1.

We then consider the nonlinear and nondifferentiable operator

F2i−1(u,w, λh) = wi − wi−1 + λh(ui − fi) = 0,

F2i(u,w, λh) = wi
√

(ui − ui−1)2+− (ui − ui−1) = 0, 1 ≤ i ≤ m− 1,

with λh = hλ, w0 = wm = 0, u0 = f0 and um = fm.
For the discretization of the linear model we can consider the system

−ui+1 − 2ui + ui−1

h2
− λ(ui − fi) = 0, u0 = f0, um = fm,

for i = 1, . . . ,m− 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

Figure 1: Original signal with a jump sin-
gularity.
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Figure 2: Solid lines = nonlinear model,
starred lines = linear model and + lines
= signal with noise. Noise level = 0.3,
λ = 10.

In Figure 2, the solid lines are the function reconstructed by the nonlinear model
approximated by the linearization based on a dual variable, solving the nonlinear system
of equations by Steffensen’s method 3 and the starred lines are given by the standard
linear model, solving the associated linear system of equations by Gauss’s method. The
line with ‘+’ is the noisy signal. The linear model introduces too much diffusion, giving
a continuous function.
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5 Conclusions

We have to point out the generalization of this study in which we have analyzed the local
and semilocal convergence for Newton type methods and Steffensen like methods, so we
can consider Newton-Steffensen’s methods. The main idea it is to apply these kind of
study to non-differentiable equations by taking in to account the advantages of consider
the decomposition of the nonlinear equation into a sum of the differentiable part and the
one non-differentiable.
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[9] Argyros I.K.; Magreñán A.A., Iterative Methods and Their Dynamics with Applica-
tions: A Contemporary Study, CRC Press, 2017.
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