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Abstract. In this study, the position tracking control problem of a non-
holonomic mobile robots with system uncertainties and external distur-
bances is examined. In the design approach, a fractional-order sliding
surface is presented that offers asymptotic stability of the system states
towards their equilibrium points. A fractional order sliding mode con-
troller is developed based on the presented sliding surface in order to
handle system uncertainties and external disturbances in a robust man-
ner. A radial basis function neural network is used to approximate the
nonlinearities of the dynamic structure. The weighted matrices of neural
networks are updated in an online mode. The controller’s adaptive bound
portion is used to manage neural network reconstruction error and pro-
vide upper bounds on disturbances and uncertainty. Using the Lyapunov
technique and Barbalat’s Lemma, the asymptotic stability of the control
system is evaluated. Moreover, a numerical simulation study is carried
out to illustrate the effectiveness of the proposed control approach by
comparing the results with the existing control approaches.

Keywords: Nonholonomic mobile robots, Fractional order sliding sur-
face; Sliding mode control; Neural networks

1 Introduction

Because of their wide applications in the field of medical profes-
sion, industries, military operations, and many other areas [1,2,3],
trajectory tracking control of nonholonomic mobile robots has be-
come a very intriguing study area in recent years. Nonholonomic mo-
bile robots are the mechatronic structures that are extremely non-
linear, coupled, and time-varying. Because of these nonlinearities,
uncertainties, and external disruptions, there are several practical
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challenges in managing them. To address these challenges, various
classical control schemes such as Model-based controllers, PID con-
trollers, Back-stepping based controllers, Sliding mode controllers,
Adaptive controllers, etc. [4,5,6] have been presented in the litera-
ture to control these systems.
Among these, sliding mode controllers (SMC) [7] are the most com-
monly used controllers because of their inherent capacity to resist
uncertainty and external disturbances. The intrinsic adaptability at-
tribute of the sliding mode control scheme is that when the sys-
tem is operated on the sliding manifold, it functions independently
of the system dynamics. In sliding mode controller, a sliding syr-
face is utilized to assure the convergence of tracking errors toward
zero. For superior controller performance, linear and nonlinear slid-
ing surfaces are now utilized in SMCs. Using linear sliding surface,
Linear sliding mode controllers [8] (LSMC) have been presented in
the study. LSMC investigates the asymptotic convergence of the tra-
jectory tracking error even when the finite-time trajectory tracking
error cannot be solved by these controllers. Terminal sliding mode
controllers (TSMC) [9] have been presented in the literary texts
to solve this issue. In TSMC, a non-linear sliding manifold is em-
ployed instead of a linear sliding manifold. These controllers guar-
antee tracking error convergence in a finite amount of time, but
occasionally they pose singularity problems that result in unbound-
edly high control input values. The Non-singular Terminal Sliding
Mode Controller (NTSMC) [10], which restricts the non-linear slid-
ing manifold’s parameters, has been proposed as a modified con-
troller to handle this problem. The singularity problem is solved in
NTSMC, although it has a slow convergence rate at the equilibrium
point due to the presence of the term er/s, r > s in the sliding man-
ifold, resulting in a reduction in the convergence rate’s magnitude
away from the equilibrium.
For the enhanced and precise performance of controllers, different
combinations of sliding mode controllers with Fractional Calculus
[11,12,13] have been presented in the literature. Because of their
greater order convergence speed, fractional-order controllers outper-
form integer-order controllers [14,15,16]. The study on integrating
the fractional-order derivative [17] with SMC begins with applying
the fractional order derivative to LSMC , which is known as the
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fractional-order sliding mode controller (FoSMC) [18]. These con-
trollers give superior tracking performance as compared to simple
sliding mode controllers. The reason for this is that the fractional-
order system’s mathematical solution has a faster order convergence
speed than the integer-order system. As fractional order sliding mode
controllers are very efficient controller but the presence of uncer-
tainties and disturbances in the dynamic structure of the manipu-
lator causes many real-time difficulties. So, the employment of in-
telligent approaches such as neural networks [19,20,21] and fuzzy
logics [22,23] improves the controller’s suitability for real-world de-
ployments. In the article [24], the design of a fractional-order sliding
mode controller with a time-varying sliding surface is presented for
trajectory tracking problem of robot manipulators. In this paper au-
thors prove asymptotic convergence of tracking errors towards their
system states. Authors of the article [25] present a fractional adap-
tation law for sliding mode control scheme for multi-input multi-
output nonlinear dynamic system. In the article [26] authors present
a coupled fractional-order sliding mode control scheme using ob-
stacle avoidance for the control of a four-wheeled steerable mobile
robot. A new fractional-order global sliding mode control scheme for
nonholonomic mobile robot systems under external disturbances is
presented in article [27]. While many studies have been conducted
on the position tracking problem of dynamic systems under the in-
fluence of external disturbances and system uncertainties, relatively
few of these studies combine intelligent techniques with the advan-
tageous features of fractional-order sliding mode controllers for the
control of nonholonomic mobile robots. So, the novelty of the pre-
sented work lies on the combination of fractional order sliding surface
and the presented contoller that enhances the performance of the dy-
namical system in a robust manner.
In this paper to enhance the performance of the controller, a neural
network based fractional-order sliding mode controller is presented
for the position control problem of nonholonomic mobile robots un-
der the influence of uncertainties and disturbances. The radial basis
function neural network (RBFNN) is utlized in the developed con-
troller to resemble the nonlinearity of the dynamic structure, and
the exponential reaching rule is utilized when the system is inde-
pendent of its general dynamics. The designed controller’s adaptive
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compensator part handles the neural networks reconstruction error
and upper bounds on disturbances. The Lyapunov stability criterion
and Barbalat’s lemma are used to examine the asymptotic conver-
gence of tracking errors towards their equilibrium states. Moreover,
simulation studies are performed to validate the proposed controller’s
performance in a comparative manner
The main contribution of the presented work is as follows:

1. A new combination of fractional order sliding surface with neu-
ral network based fractional order sliding mode controller is pre-
sented.

2. The position tracking problem for nonholonomic mobile manip-
ulators under the influence of system uncertainties and external
disturbances is discussed.

3. The stability and asymptotic convergence of tracking errors is ex-
amined using Lyapunov stability criterion and Barbalat’s lemma.

4. Simulation studies are used to compare the performance of the
proposed controller to that of existing controllers.

The remaining part of the paper is divided as follows. Sections 2
offer a dynamic model for a nonholonomic mobile robot. Section 3
presents the controller design, while section 4 contains the stability
analysis. Section 5 offers a simulation study, and section 6 concludes
the article.

2 Dynamics of nonholonomic mobile robots

The dynamics equation for 3-dof nonholonomic mobile robots with
generalized cordinates q = [x, y, θ]T satisfies the Euler-Lagrange
equation is given by:

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) + Td = B(q)τ + AT (q)λ (1)

whereM(q) ∈ R3×3 be inertial matrix, V (q, q̇) ∈ R3×3 be centripetal-
coriolis matrix, F (q̇) ∈ R3×1 be friction vector, Td ∈ R3×1 be un-
known bounded disturbance, B(q) ∈ R3×2 be input transformation
matrix, τ ∈ R3×1 be control input, AT (q) ∈ R3×1 be constraint as-
sociated matrix and λ ∈ R be Langranges multiplier.
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With M(q) =

 m 0 m1

0 m −m2

m1 −m2 I

 , Vm(q, q̇) =

0 0 −m2θ̇

0 0 m1θ̇
0 0 0

 , AT (q) =− sin θ
cos θ
0

 , B(q) =

cos θ/r cos θ/r
sin θ/r sin θ/r
b/r −b/r

 ,m1 = mh sin θ,m2 = mh cos θ

where m is total mass of nonholonomic mobile base, I is moment of
inertia of mobile base.
Let the mobile robot system is subject to the following nonholonomic
kinematic constraint.

A(q)q̇ = 0 (2)

These constraints are limitations on the dynamic equation of mo-
bile robots to the manifold ℑB as ℑB = {(q, q̇)|B(q)q̇ = 0}. From
equation (2), we can get the full rank matrix P (q) ∈ R3×2 as:

P T (q)AT (q) = 0 (3)

From constraints given in equations (2) and (3), we have a new vector
v̇ ∈ R2 satisfies the following condition

q̇ = P (q)v̇ (4)

Differentiating equation (4), we have

q̈ = P (q)v̈ + Ṗ (q)v̇ (5)

Putting equation (4) and (5) in equation (1) and multiplying the
obtained equation by P T we get

M̄f v̈ + V̄f v̇ + F̄f + τ̄fd = P T τ (6)

where M̄f = P TM(q)P, V̄f = P TM(q)Ṗ+P TVm(q, q̇)P, F̄f = P TF (q̇),
τ̄fd = P TTd.
Let the dynamics equation (6) of nonholonomic mobile robots satisfy
the following properties and assumptions.
Property 1 The Inertial matrix M̄f is symmetric, bounded positive-
definite and invertible,.

Property 2 The term A = ( ˙̄Mf − 2V̄f ) satisfies skew-symmetric
property i.e. xTAx = 0 ∀x ∈ Rn.
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Assumption 1 F̄f ≤ a1 + a2∥v̇∥ for arbitrary positive constants
a1, a2 .
Assumption 2 ∥τ̄fd∥ ≤ a3 for arbitrary positive constant a3.
Assumption 3 If v = [y, θ]T ∈ R2 is uniformally bounded and con-
tinuous, then all the jacobian matrices are also uniformally bounded
and continuous.

3 Controller Structure

3.1 Fractional-order sliding surface

The proposed fractional-order sliding surface is given as

S(t) = Dα+1η(t) + η̇(t) + λη(t) (7)

where α ∈ (0, 1), η(t) = vd(t)− v(t) denotes position tracking error,
vd(t) ∈ R2 denotes desired trajectory, λ = diag[λ1, λ2] ∈ R2×2 with
λ1, λ2 > 0, and S(t) = [S1(t), S2(t)]

T ∈ R2 be sliding variable. The
jth element of the proposed sliding surface is written as

Sj(t) = Dα+1ηj(t) + η̇j(t) + ληj(t) (8)

where j = 1, 2
On differentiating equation (8), we have

Ṡj(t) = Dα+2ηj(t) + η̈j(t) + λη̇j(t) (9)

The reduced dynamics equation for nonholonomic mobile robots in
terms of sliding variable S(t) ∈ R2 can be written as

M̄f Ṡ = −V̄fS − P T τ + f(y) + τ̄fd + F̄f (v̇) (10)

where, f(y) = M̄f [D
α+2η(t) + v̈d + λη̇(t)] + V̄f (v, v̇)[v̇d +Dα+1η(t) +

λη(t)] be non-linear dynamics part comprises of two factors as f(y) =
f̂(y) + f̄(y) in which f̂(y) is known dynamic part of the system
and f̄(y) is uncertain part of the dynamic system. For approximat-
ing this non-linear function f(y), radial basis function neural net-
works ( RBFNN) has been utilized. The input vector y during ap-
proximation of non-linear function f(y) by RBFNN is choosen as
y = [ηT , η̇T , Dα+1ηT , Dα+2ηT ]T .
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3.2 RBFNN

Due to the adaptive nature of RBFNN [28], it is utilized to reproduce
the non-linear part of the manipulator’s dynamics. Let the function
approximation on a simply connected compact set of the continuous
function f(y) be

f(y) = W T ξ(y) + ϵ(y) (11)

where, W ∈ RN×b demonstrates weight matrix, it will update on-
line in an adaptive manner, ξ(·) : R → RN denotes predefine basis
array, ϵ(y) : R → Rb denotes reconstruction error, N denotes the
no. of nodes used in the structure of neural-networks. So, we have
∥ϵ(y)∥<ϵN for some ϵN>0.
For larger values of N, ϵ(y) may be reduced to very small value.
In the structure of RBFNN, the Gaussian function ξ(y) [29], has
been used which is given as

ξi(y) = exp(
−∥y − ci∥2

σ2
i

), i = 1, 2...N. (12)

Putting the value of function f(y) from (11) into (10). then, the
reduced error dynamical equation be given by

M̄f Ṡ = −V̄fS − P T τ +W T ξ(y) + ϵ(y) + τ̄fd + F̄f (v̇) (13)

3.3 Adaptive bound

From assumptions 1,2 and the upper bound ϵN , we have

∥τ̄fd + F̄f (v̇) + ϵ(y)∥ ≤ a1 + a2∥v̇∥+ a3 + ϵN (14)

As an adaptive bound, define µ = a1 + a2∥v̇∥+ a3 + ϵN

µ =
[
1 ∥v̇∥ 1 1

] [
a1 a2 a3 ϵN

]T
= HT (∥v̇∥)ϕ (15)

where H ∈ Rm is known vector function and ϕ ∈ Rm be the param-
eter vector.
To compensate the influence of friction, reconstruction error, and
disturbances, the adaptive compensator is chosen as

χ =
µ̂2S

µ̂∥S∥+ δ
(16)
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where δ̇ = −βδ, δ(0) > 0, β > 0 and µ̂ = HT ϕ̂.
The control input law is offered as follows to reach the reference
trajectory

P T τ = Ŵ T ξ(y) +K1S +K2sign(S) + χ (17)

with K1, K2 as gain matrices and τ = [τ1, τ2]
T ∈ R2

Using equation (17), the reduced dynamics equation in form of slid-
ing variable S(t) can be given as

M̄f Ṡ = −V̄fS+ W̃ T ξ(y)−K1S−K2sign(S)+ ϵ(y)+ τ̄fd+ F̄f (v̇)−χ
(18)

where W̃ = W − Ŵ

4 Stability analysis

4.1 Asymptotical convergence of tracking error and
boundedness of signals

If we select the update laws for varying parameters as:

˙̂
W = Λwξ(y)S

T (19)

˙̂
ϕ = ΛϕH∥S∥ (20)

where Λw = ΛT
w ∈ RN×N and Λϕ = ΛT

ϕ ∈ Rm×m are positive-definite
matrices. Then, the trajectory tracking error asymptotically con-
verges to zero along with the boundedness of signals.
Proof: Let the Lyapunov function be

L =
1

2
STM̄fS +

1

2
tr(W̃ TΛ−1

w W̃ ) +
1

2
tr(ϕ̃TΛ−1

ϕ ϕ̃) +
δ

β
(21)

where W̃ = W − Ŵ and ϕ̃ = ϕ− ϕ̂.
Differentiating equation (21), we get

L̇ =
1

2
ST ˙̄MfS + STM̄f Ṡ + tr(W̃ TΛ−1

w
˙̃W ) + tr(ϕ̃TΛ−1

ϕ
˙̃ϕ) +

δ̇

β
(22)
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Putting equation (18) into equation (22) with ˙̃W = − ˙̂
W, ˙̃ϕ = − ˙̂

ϕ,
and δ̇ = −βδ, we get

L̇ =
1

2
ST ( ˙̄Mf − 2V̄f )S + ST W̃ T ξ(y)− ST (K1S +K2sign(S)) + ST (F̄f

(v̇) + ϵ(y) + τ̄fd)−
µ̂2S

µ̂∥S∥+ δ
)− tr(W̃ TΛ−1

w
˙̂
W )− tr(ϕ̃TΛ−1

ϕ
˙̂
ϕ)− δ

(23)
From equations (19), (20), and property 2, equation (23) can be
written as

L̇ =− ST (K1S +K2sign(S)) + ST (F̄f (v̇) + ϵ(y) + τ̄fd)−
µ̂2∥S∥2

µ̂∥S∥+ δ
−

ϕ̃TH∥S∥ − δ
(24)

Using adaptive bound µ, we get

ST (F̄f (v̇) + ϵ(y) + τ̄fd) ≤ HT (ϕ̂+ ϕ̃)∥S∥ (25)

From (25), we have equation (24) as

L̇ ≤ −STK1S − STK2sign(S)−
(HT ϕ̂)2∥S∥2

HT ϕ̂∥S∥+ δ
+ (HT ϕ̂)∥S∥ − δ

(26)

L̇ ≤ −STK1S − δ(HT ϕ̂)∥S∥
HT ϕ̂∥S∥+ δ

− δ = −STK1S − δ2

HT ϕ̂∥S∥+ δ
(27)

L̇ ≤ −STK1S ≤ −Kmin∥S∥2 (28)

where Kmin be the min. eigenvalue of matrix K1.
So, it is concluded that L1(S(0), W̃ , ϕ̃) and L1(S(t), W̃ , ϕ̃) are both
bounded functions with L1(S(t), W̃ , ϕ̃) as non-increasing function .
Thus, it has been shown that S(t), W̃ , and ϕ̃ are all bounded. As
S(t) is function of location and velocity tracking error, so bounded
value of S(t) leads to the boundedness of these tracking errors.
Differentiating equation (28), we have L̈ ≤ −2STK1Ṡ. As S(t) and
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Ṡ(t) (Equation (18)) are both bounded implies L̈1 is also bounded,
that means L̇1 is uniformly continuous. Using to Barbalat’s lemma,
the position tracking errors approaches to zero in an asymptotic
manner.

5 Simulation

To show the effecient performance of the designed controller, a sim-
ulation study is carried out on a nonholonomic mobile robot. The
dynamic structure and parameters used in this study for position
tracking problem of nonholonomic mobile robot is given in [30]. The
non-holonomic constraint applied on mobile robot system is con-
sidered as: −ẋ sin(θ) + ẏ cos(θ) = 0. The simulation study on non-
holonomic mobile robot is carried out using Matlab. ODE45 Matlab
solver is utilized to solve ordinary differential equation. For calculat-
ing fractional order derivative, definition of Grunwald-Letnikov(GL)
derivative [31] has been used.
To show the effectiveness and robustness of the proposed control
scheme, the performance of the proposed control scheme is compared
with the existing controller given in article [32], proposed controller
by taking adaptive compensator is equal to zero and with desired
trajectory. Figures 1-6 show how well the suggested control tech-
nique for a nonholonomic mobile robot system works. Figures 1 and
2 compare the location and velocity tracking errors of the proposed
controller. These data demonstrate that the trajectory tracking er-
rors for the proposed control method converge rapidly when com-
pared to the existing controller. The location tracking performance
is displayed in Figures 3 and 4. In the second case i.e. proposed
controller with ∆ = 0, due to the presence of the disturbances and
reconstruction error, there is some fluctuations during the tracking of
reference trajectory but the performance of the proposed controller
is very smooth that shows the robustness of the proposed controll
approach. These Figures shows that the dynamic system tracks the
desired trajectory very efficiently for the proposed case as compare
to the other two cases. In Figures 5 and 6, velocity tracking perfor-
mance is given that shows in the initial phase, the velocity of the
mobile robot system fluctuates but after a very small duration, it
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tracks the reference velocity very smoothly for the proposed ap-
proach while for other two cases, the trajectory achieve after some
time. From these figures, We get to the conclusion that the proposed
controller precisely and quickly tracks the reference trajectory in a
robust manner.
Further to compare the performance of controllers statistically, L2

norm error analysis is presented in tabular form by comparing these
parameters with existing controllers. Formula used for L2 norm is
given as

L2[η] =

√
1

tf − t0

∫ tf

t0

∥η(t)∥2dt (29)

Table 1. L2-norm of position tracking error

Controllers L2[η1] L2[η2]

Existing controller [32] 0.1548 0.2180
Proposed controller with ∆ = 0 0.0997 0.0696
Proposed Controller 0.0100 0.0150

A lower value of L2[η] shows a lower tracking error, which demon-
strates the effectiveness of the control strategy.

6 Conclusions

In this article, a neural network based fractional-order sliding mode
controller is designed for the trajectory tracking problem of non-
holonomic mobile robots. In the designed controller, RBFNN is used
for approximation of the nonlinear part of dynamic structure, and
an exponential reaching law is adopted. An adaptive compensator
makes up for reconstruction error and disturbance upper limits. In
order to analyze the convergence of tracking errors asymptotically,
the Lyapunov stability criterion and Barbalat’s lemma are used. To
show the effectiveness and robustness of the presented controller, a
simulation study is carried out in a comparative manner. It can be
evident from the simulated data and statistical analysis that the ef-
ficiency of the proposed controller is enhanced. Further this control
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approach can be implemented to another dynamical systems such
as mobile manipulator systems, cart-pendulum systems, constrained
reconfigurable dynamical systems ect.
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