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Abstract. We provide the semilocal convergence analysis of the Newton-
Secant solver with a decomposition of a nonlinear operator under classical Lip-
schitz conditions for the first order Fréchet derivative and divided differences.
We have weakened the sufficient convergence criteria, and obtained tighter er-
ror estimates. We give numerical experiments that confirm theoretical results.
The same technique without additional conditions can be used to extend the
applicability of other iterative solvers using inverses of linear operators. The
novelty of the paper is that the improved results are obtained using parameters
which are special cases of the ones in earlier works. Therefore, no additional
information is needed to establish these advantages.
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derivative; divided differences; decomposition of nonlinear operator

AMS Classification: 45B05, 47J05, 65J15, 65J22

1 Introduction

One of the important problems in Computational Mathematics including Math-
ematical Biology, Chemistry, Economic, Physics, Engineering and other disci-
plines is finding solutions of nonlinear equations and systems of nonlinear equa-
tions [1-14]. For most of these problems, to find the exact solution is difficult
or impossible. Therefore, the development and research of numerical methods
for solving nonlinear problems is an urgent task.
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A popular solver for dealing with nonlinear equations is Newton’s [2, 3, 4].
But it is not applicable, if functions are nondifferentiable. In this case, we can
apply solvers with divided differences [1, 2, 3, 7, 8, 10, 11]. If it is possible to
decompose into differentiable and nondifferentiable parts, it is advisable to use
combined methods [2, 3, 5, 6, 12, 13, 14].

Consider a nonlinear equation

F (x) +G(x) = 0, (1)

where the operators F and G are defined on a open convex set D of a Banach
space E1 with values in a Banach space E2 , F is a Fréchet differentiable oper-
ator, G is a continuous operator for which differentiability is not assumed. It is
necessary to find an approximate solution x∗ ∈ D that satisfies equation (1).

In this paper, we consider the Newton-Secant solver

xn+1 = xn − [F ′(xn) +G(xn−1, xn)]−1(F (xn) +G(xn)), n = 0, 1, .... (2)

This iterative process was proposed in [6] and studied in [2, 3, 13], and the

convergence order
1 +
√

5

2
was established. It is shown that (2) converges faster

than the Secant solver.
In this paper, we study solver (2) under the classical Lipschitz conditions for

first-order Fréchet derivative and divided differences. Our technique allows to
get the weaker convergence criteria, and tighter error estimates. This way, we
extended the applicability of the results obtained in [13].

2 Convergence Analysis

Let L(E1, E2) be a space of linear bounded operators from E1 into E2. Set
S(x, τ) = {y ∈ E1 : ‖y − x‖ < τ} and let S̄(x, τ) denote its closure.

Define quadratic polynomial ϕ by

ϕ(t) = α1t
2 + α2t+ α3

and parameters r, and r1 by

r =
1− (q0 + q̄0)a

p0 + q0 + 2p̄0 + q̄0 + ¯̄q0
,

r1 =
1− q̄0a

2p̄0 + q̄0 + ¯̄q0
,

where
α1 = p0 + q0 + 2p̄0 + q̄0 + ¯̄q0,

α2 = −[1− (q0 + q̄0)a+ (2p̄0 + q̄0 + ¯̄q0)c]

and
α3 = (1− q̄0a)c,
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3 Argyros, Shakhno, Yarmola

where p0, p̄0, q0, q̄0, ¯̄q0, a and c are nonnegative numbers.
Suppose that (q0 + q̄0)a < 1 and ϕ

(
1
2r
)
≤ 0. Then, it is simple algebra to

show, function ϕ has a unique root r̄0 ∈ (0, r2 ], and

r ≤ r1,

γ̄ =
p0r̄0 + q0(r̄0 + a)

1− q̄0a− (2p̄0 + q̄0 + ¯̄q0)r̄0
∈ [0, 1)

and
r̄0 ≥

c

1− γ̄
.

Set D0 = D ∩ S(x0, r1).

Definition 2.1. We call an operator that acts from E1 into E2 and is denoted
by G(x, y) a first-order divided difference for the operator G by fixed points x
and y (x 6= y), if the equality

G(x, y)(x− y) = G(x)−G(y)

is satisfied.

Theorem 2.2. Suppose that:

1) F and G are nonlinear operators on an open convex set D of a Banach
space E1 into a Banach space E2;

2) F is a Fréchet-differentiable operator, and let G is a continuous operator;

3) G(·, ·) is the first-order divided differences of the operator G defined on the
set D;

4) the linear operator A0 = F ′(x0) + G(x−1, x0), where x−1, x0 ∈ D, is
invertible;

5) the following conditions are satisfied for all x, y,∈ D

‖A−10 (F ′(x0)− F ′(x))‖ ≤ 2p̄0‖x0 − x‖, (3)

‖A−10 (G(x−1, x0)−G(x, x0))‖ ≤ q̄0‖x−1 − x‖, (4)

‖A−10 (G(x, x0)−G(x, y))‖ ≤ ¯̄q0‖x0 − y‖, (5)

and for all x, y, u ∈ D0

‖A−10 (F ′(x)− F ′(y))‖ ≤ 2p0‖x− y‖, (6)

‖A−10 (G(x, y)−G(u, y))‖ ≤ q0‖x− u‖; (7)

6) a, c are nonnegative numbers such that

‖x0 − x−1‖ ≤ a, ‖A−10 (F (x0) +G(x0))‖ ≤ c, c > a, (8)

(q0 + q̄0)a < 1, ϕ
(1

2
r
)
≤ 0; (9)
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7) S̄(x0, r̄0) ⊂ D.

Then, the solver (2) is well-defined and the sequence generated by it converges
to the solution x∗ of equation (1), so that for each n ∈ {−1, 0, 1, 2, ...}, the
following inequalities are satisfied

‖xn − xn+1‖ ≤ tn − tn+1, (10)

‖xn − x∗‖ ≤ tn − t̄∗, (11)

where sequence {tn}n≥−1 defined by the formulas

t−1 = r̄0 + a, t0 = r̄0, t1 = r̄0 − c,

tn+1 − tn+2 = γ̄n(tn − tn+1), n ≥ 0,

γ̄n =
p̃0(tn − tn+1) + q̃0(tn−1 − tn+1)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)
, 0 ≤ γ̄n < γ̄

(12)
is decreasing, nonnegative, and converges to t̄∗, so that r̄0− c/(1− γ̄) ≤ t̄∗ < t0,
where

p̃0 =

{
p̄0, n = 0
p0, n > 0

, q̃0 =

{
q̄0, n = 0
q0, n > 0.

Proof. We use mathematical induction to show that, for each k ≥ 0 the
following inequalities are satisfied

tk+1 ≥ tk+2 ≥ r̄0 −
1− γ̄k+2

1− γ̄
c ≥ r̄0 −

c

1− γ̄
≥ 0, (13)

tk+1 − tk+2 ≤ γ̄(tk − tk+1). (14)

Setting k = 0 in (12), we get

t1 − t2 =
p̃0(t0 − t1) + q̃0(t−1 − t1)

1− q̄0a− 2p̄0(t0 − t1)− ¯̄q0(t0 − t1)
(t0 − t1) ≤ γ̄(t0 − t1),

t0 ≥ t1, t1 ≥ t2 ≥ t1−γ̄(t0−t1) ≥ r̄0−(1+γ̄)c = r̄0−
(1− γ̄2)c

1− γ̄
≥ r̄0−

c

1− γ̄
≥ 0.

Suppose that (13) and (14) are true for k = 0, 1, ..., n− 1. Then, for k = n,
we obtain

tn+1 − tn+2 =

(
p̃0(tn − tn+1) + q̃0(tn−1 − tn+1)

)
(tn − tn+1)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)

≤ p̃0tn + q̃0tn−1
1− q̄0a− 2p̄0t0 − q̄0t0 − ¯̄q0t0

(tn − tn+1) ≤ γ̄(tn − tn+1),

tn+1 ≥ tn+2 ≥ tn+1 − γ̄(tn − tn+1) ≥ r̄0 −
1− γ̄n+2

1− γ̄
c ≥ r̄0 −

c

1− γ̄
≥ 0.
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Thus, {tn}n≥0 is a decreasing nonnegative sequence, and converges to t̄∗ ≥ 0.
Let us prove that the method (2) is well-defined, and for each n ≥ 0 the

inequality (10) is satisfied.
Since t−1 − t0 = a, t0 − t1 = c and conditions (8) are fulfilled then

x1 ∈ S(x0, r̄0) and (10) is satisfied for n ∈ {−1, 0}. Let conditions (8) be
satisfied for k = 0, 1, ..., n. Let us prove that the method (2) is well-defined for
k = n+ 1.

Denote An = F ′(xn) + G(xn−1, xn). Using the Lipschitz conditions (3) –
(5), we have

‖I −A−10 An+1‖ = ‖A−10 (A0 −An+1)‖ ≤ ‖A−10 (F ′(x0)− F ′(xn+1))‖

+‖A−10 (G(x−1, x0)−G(xn, x0) +G(xn, x0)−G(xn, xn+1))‖

≤ 2p̄0‖x0 − xn+1‖+ q̄0(‖x−1 − x0‖+ ‖x0 − xn‖) + ¯̄q0‖x0 − xn+1‖

≤ 2p̄0‖x0 − xn+1‖+ q̄0a+ q̄0‖x0 − xn‖+ ¯̄q0‖x0 − xn+1‖

≤ q̄0a+ 2p̄0(t0 − tn+1) + q̄0(t0 − tn) + ¯̄q0(t0 − tn+1)

≤ q̄0a+ 2p̄0r̄0 + q̄0r̄0 + ¯̄q0r̄0 < 1.

According to the Banach lemma on inverse operators [2] An+1 is invertible,
and

‖A−1n+1A0‖ ≤ (1− q̄0a− 2p̄0‖x0 − xn+1‖ − q̄0‖x0 − xn‖+ ¯̄q0‖x0 − xn+1‖)−1.

By the definition of the divided difference and conditions (6), (7), we obtain

‖A−10 (F (xn+1) +G(xn+1))‖

= ‖A−10 (F (xn+1) +G(xn+1)− F (xn)−G(xn)−An(xn − xn+1))‖

≤ ‖A−10 (
∫ 1

0
{F ′(xn+1 + t(xn − xn+1))− F ′(xn)}dt)‖‖xn − xn+1‖

+‖A−10 (G(xn+1, xn)−G(xn−1, xn))‖‖xn − xn+1‖

≤ (p̃0‖xn − xn+1‖+ q̃0(‖xn − xn+1‖+ ‖xn−1 − xn‖))‖xn − xn+1‖.

In view of condition (10), we have

‖xn+1 − xn+2‖ = ‖A−1n+1(F (xn+1) +G(xn+1))‖

≤ ‖A−1n+1A0‖‖A−10 (F (xn+1) +G(xn+1))‖

≤ p̃0‖xn − xn+1‖+ q̃0(‖xn − xn+1‖+ ‖xn−1 − xn‖)
1− q̄0a− 2p̄0‖x0 − xn+1‖ − q̄0‖x0 − xn+1‖+ ¯̄q0‖x0 − xn‖

‖xn − xn+1‖

≤
(
p̃0(tn − tn+1) + q̃0(tn−1 − tn+1)

)
(tn − tn+1)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)
= tn+1 − tn+2.

Thus, the method (2) is well-defined for each n ≥ 0 . Hence it follows that

‖xn − xk‖ ≤ tn − tk, −1 ≤ n ≤ k. (15)
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Therefore, the sequence {xn}n≥0 is fundamental, so it converges to some
x∗ ∈ S̄(x0, r̄0). Inequality (11) is obtained from (15) for k → ∞. Let us
show that x∗ solves the equation F (x) +G(x) = 0. Indeed, we get in turn that

A−10 (F (xn+1) +G(xn+1)) ≤
(
p̃0‖xn − xn+1‖

+q̃0(‖xn − xn+1‖+ ‖xn−1 − xn‖)
)
‖xn − xn+1‖ → 0, n→∞.

Hence, F (x∗) +G(x∗) = 0. tu

Remark 2.3. The order of convergence of method (2) is equal to
1 +
√

5

2
.

Proof. In view of tn − tn+1 ≤ γ̄(tn−1 − tn), and (12), we obtain

tn+1 − tn+2 =

(
p̃0(tn − tn+1) + q̃0(tn − tn+1 + tn−1 − tn)

)
(tn − tn+1)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)

≤ p̃0γ̄(tn−1 − tn) + q̃0(1 + γ̄)(tn−1 − tn)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)
(tn − tn+1)

=

(
p̄0γ̄ + q̄0(1 + γ̄)

)
(tn − tn+1)(tn−1 − tn)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)

≤ p̃0γ̄ + q̃0(1 + γ̄)

1− q̄0a− 2p̄0t0 − q̄0t0 − ¯̄q0t0
(tn − tn+1)(tn−1 − tn).

Denote C̄ =
p̄0γ̄ + q̄0(1 + γ̄)

1− q̄0a− 2p̄0t0 − q̄0t0 − ¯̄q0t0
. Clearly,

tn+1 − tn+2 ≤ C̄(tn−1 − t̄∗)(tn − t̄∗). (16)

Since, for each k > 2, the estimate is satisfied

tn+k−1 − tn+k ≤ γ̄k−2(tn+1 − tn+2),

we get

tn+1 − tn+k = tn+1 − tn+2 + tn+2 − tn+3 + . . .+ tn+k−1 − tn+k

≤ (1 + γ̄ + . . .+ γ̄k−2)(tn+1 − tn+2)

=
1− γ̄k−1

1− γ̄
(tn+1 − tn+2) ≤ 1

1− γ̄
(tn+1 − tn+2).

In view of (16), for k →∞, we have

tn+1 − t̄∗ ≤
C̄

1− γ̄
(tn−1 − t̄∗)(tn − t̄∗)

Hence, it follows that the order of convergence of the sequence {tn}n≥0 is

equal to
1 +
√

5

2
, and, according (11), the sequence {xn}n≥0 converges with the

same order. tu
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Remark 2.4. (a) The following conditions were used for each x, y, u, v ∈ D
in [13]

‖A−10 (F ′(y)− F ′(x))‖ ≤ 2P0‖y − x‖, (17)

‖A−10 (G(x, y)−G(u, v))‖ ≤ Q0(‖x− u‖+ ‖y − v‖), (18)

r0 ≥
c

1− γ
, Q0a+ 2P0r0 + 2Q0r0 < 1,

γ =
P0r0 +Q0(r0 + a)

1−Q0a− 2P0r0 − 2Q0r0
, 0 ≤ γ < 1.

(19)

But, then we have

p̄0 ≤ P0,

q̄0 ≤ Q0,

¯̄q0 ≤ Q0,

since D0 ⊆ D, (3) and (4), (5), (7) are weaker than (17) and (18) respectively
for r̄0 ≤ r0. Notice that sufficient convergence criteria (9) imply (19) but not
necessarily vice versa, unless if p̄0 = P0, q̄0 = ¯̄q0 = Q0 and r̄0 = r0.

A simple inductive argument shows that

γ̄n ≤ γn, (20)

tn − tn+1 ≤ sn − sn+1, (21)

where

s−1 = r0 + a, s0 = r0, s1 = r0 − c,

sn+1 − sn+2 = γn(sn − sn+1), n ≥ 0,

γn =
P0(sn − sn+1) +Q0(sn−1 − sn+1)

1−Q0a− 2P0(s0 − sn+1)−Q0(2s0 − sn − sn+1)
, 0 ≤ γn ≤ γ.

Notice that the corresponding quadratic polynomial ϕ1 to ϕ is defined simi-
larly by

ϕ1(t) = b1t
2 + b2t+ b3

where

b1 = 3P0 + 3Q0,

b2 = −[1− 2Q0a+ (2P0 + 2Q0)c]

and

b3 = (1−Q0a)c.

We have by these definitions that

α1 < b1, α2 < b2, but α3 > b3.
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Therefore, we cannot tell, if r0 < r̄0 or r̄0 < r0 or r0 = r̄0. But, we have

γ ≤ γ̄ ⇒ r0 ≤ r̄0,

sn ≤ tn,

s∗ ≤ t̄∗ = lim
n→∞

tn

(22)

and
γ̄ ≤ γ ⇒ r̄0 ≤ r0 ⇒ C̄ ≤ C,

tn ≤ sn,

t̄∗ ≤ s∗ = lim
n→∞

sn,

(23)

It is simple algebra to show that ϕ(r) ≥ 0, and for rmin = − α2

2α1
(solving

ϕ′(t) = 0), rmin ≥
r

2
, rmin ≤

r1
2

. Hence, one may replace the second inequation

in (9) by ϕ(λr) ≤ 0 for some λ ∈ (0, 12 ] to obtain a better information about the
location of r̄0, if λ 6= 1

2 , especially in the case when we do not actually need to
compute r̄0.

(b) The Lipschitz parameters p̄0, q̄0, ¯̄q0 can become even smaller, if we define
the set D1 = D ∩ S(x1, r1 − c) for r1 > c to replace D0 in Theorem 2.2., since
D1 ⊆ D0.

3 Numerical experiments

Let us define function F +G : R→ R, where

F (x) = ex−0.5 + x3 − 1.3, G(x) = 0.2x|x2 − 2|.

The exact solution of F (x) +G(x) = 0 is x∗ = 0.5. Let D = (0, 1). Then

F ′(x) = ex−0.5 + 3x2,

G(x, y) =
0.2x(2− x2)− 0.2y(2− y2)

x− y
= 0.2(1− x2 − xy − y2).

A0 = ex0−0.5 + 3x20 + 0.2(1− x2−1 − x−1x0 − x20),

|A−10 (F ′(x)− F ′(y))| ≤ e0.5 + 3|x+ y|
|A0|

|x− y|,

|A−10 (G(x, y)−G(u, v))| = 0.2

|A0|
|(u+ x+ y)(u− x) + (v + y + u)(v − y)|.

Let x0 = 0.57, x−1 = 0.571. Then, we have a = 0.001, c ≈ 0.0660157,
p̄0 ≈ 1.4118406, q̄0 ≈ 0.1901483, ¯̄q0 ≈ 0.2282491, r1 ≈ 0.3083854,

D0 = D ∩ S(x0, r1) = (0.2616146, 0.8783854),
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p0 ≈ 1.5362481, q0 ≈ 0.2340358, P0 ≈ 1.6982621, Q0 ≈ 0.2664386, and
r ≈ 0.1994221, ϕ( 1

2r) ≈ −0.0051722 < 0. So, p̄0 < P0, q̄0 < Q0, ¯̄q0 < Q0.

By solving inequalities ϕ(t) ≤ 0 and ϕ1(t) ≤ 0, we get

t ∈ [0.0824903, 0.1596319]⇒ r̄
(1)
0 ≈ 0.0824903, r̄

(2)
0 ≈ 0.1596319,

t ∈ [0.0924062, 0.1211750]⇒ r
(1)
0 ≈ 0.0924062, r

(2)
0 ≈ 0.1211750.

Then r̄0 = r̄
(1)
0 ≈ 0.0824903, r0 = r

(1)
0 ≈ 0.0924062, and

S(x0, r̄0) = (0.4875097, 0.6524903), γ̄ ≈ 0.1997151 < 1, C̄ ≈ 0.8023108,

S(x0, r0) = (0.4775938, 0.6624062), γ ≈ 0.2855916 < 1, C ≈ 1.2998717.

In Table 1, there are results that confirm estimates (10), (11) and (21).
Table 2 shows that sequences {tn} and {sn} converge to t̄∗ ≈ 0.0073550 and
s∗ ≈ 0.0144209, respectively, and confirms (20) and (23).

Table 1: Obtained results for ε = 10−7

n |xn−1 − xn| tn−1 − tn sn−1 − sn |xn − x∗| tn − t̄∗ sn − s∗
1 0.0660157 0.0660157 0.0660157 0.0039843 0.0091195 0.0119695
2 0.0040123 0.0087609 0.0113203 0.0000281 0.0003586 0.0006492
3 0.0000281 0.0003573 0.0006452 1.761e-08 0.0000013 0.0000040
4 1.761e-08 0.0000040 0.0000040 7.438e-14 1.440e-10 1.033e-09

Table 2: Obtained results for ε = 10−7

n tn sn γ̄n−2 γn−2
-1 0.0834903 0.0934062
0 0.0824903 0.0924062
1 0.0164746 0.0263904
2 0.0077136 0.0150701 0.1327096 0.1714793
3 0.0077136 0.0144249 0.0407873 0.0569927
4 0.0073550 0.0144209 0.0035475 0.0061771
5 0.0073550 0.0144209 0.0001136 0.0002592

4 Conclusions

We investigated the semilocal convergence of Newton-Secant solver under clas-
sical center and restricted Lipschitz conditions. This technique weakens the
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sufficient convergence criteria without adding more conditions and uses con-
stants that are specializations of earlier ones. Moreover, tighter estimate errors
are obtained. The theoretical results are confirmed by numerical experiments.
Our technique can be used to extend the applicability of other iterative methods
using inverses of linear operators [1-14] along the same lines.
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[3] I.K. Argyros, Á.A. Magreñán, Iterative Methods and Their Dynamics with
Applications: A Contemporary Study, CRC Press, 2017.

[4] I.K. Argyros, S. Hilout, On an improved convergence analysis of Newtons
method, Applied Mathematics and Computation, 25, 372-386 (2013).

[5] I.K. Argyros, S.M. Shakhno, H.P. Yarmola, Two-Step Solver for Nonlinear
Equations, Symmetry, 11(2):128 (2019).
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