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Abstract
In this paper, we will establish some new suffi cient condition for oscillation of

solutions of a certain class of first-order neutral delay difference equations of the
form

∆ (xn − pnxn−1) + qnx
γ
n−τ = 0,

where γ is a quotient of odd positive integers. We will consider the sublinear and
super linear cases. The results will be obtained by using the oscillation theorems of
second order delay difference equations.
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1 Introduction

In recent decades there has been much research activity concerning oscillation and nonoscil-
lation of first and second order delay and neutral delay difference equations, we refer the
reader to the papers [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
and the references cited therein. In the following, we recall some results of first order
neutral delay difference equations of sublinear and super linear types that motivate the
contents of this paper. Xiaoyan Lin in [12] studied the oscillatory behavior of solutions of
the neutral difference equations with nonlinear neutral term of the form

(1.1) ∆
(
xn − pnxαn−σ

)
+ qnx

β
n−τ = 0, for n ∈ Nn0 ,

where α and β are quotient of odd positive integers, τ and σ are nonnegative integers
and {pn} and {qn} are two sequences of nonnegative real numbers. The authors obtained
necessary and suffi cient conditions for existence of oscillatory solutions and studied the
two cases when 0 < α < 1 and when α > 1. As usual, a nontrivial solution xn of (1.1) is
called nonoscillatory if it eventually positive or eventually negative, otherwise it is called
oscillatory and ∆ is the forward difference operator defined by ∆xn = xn+1 − xn and
Ni = {i + 1, i + 2, ...}. Lalli [11] established several suffi cient conditions for oscillation of
the equation

(1.2) ∆ (xn + pxn−δk) + qnf (xn−τ ) = Fn, n ≥ n0,
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where δ = ±1, p is a nonnegative real number, k ∈ N = {1, 2, ...}, τ is a sequence of
nonnegative integers with limn→∞ τn =∞, and {Fn}, {qn} are sequences of real numbers
and f is a real valued function satisfying xf (x) > 0 for x 6= 0. El-Morshedy et al. [6]
considered the equation

(1.3) ∆g (xn + pnxσn) + f (n, xτn) = 0,

where 0 ≤ pn < p < 1, σn and τn are sequences of integers such that limn→∞ σn =
limn→∞ =∞ and σn+1 > σn for all n ≥ n0. They established several suffi cient conditions
for oscillation when the function f satisfies the condition

f (n, x)

h (x)
≥ qn, x 6= 0 and n ≥ n0,

where qn ≥ 0 for n ≥ n0, h ∈ C (R,R) and xh(x) > 0 for all x 6= 0. Recently Murugesan
and Suganthi [13] discussed the oscillatory behavior of all solutions of the first order
nonlinear neutral delay difference equation

[∆ (rn (anxn − pnxn−τ ))] + qnxn−σ = 0,

where rn and an are sequences of positive real numbers pn and qn are sequences of non-
negative real numbers, τ and σ are positive integers. Following this trend in this paper,
we will consider the first order neutral delay difference equation

(1.4) ∆ (xn − pnxn−1) + qnx
γ
n−τ = 0, for n ∈ Nn0 ,

Our aim in this paper is to establish some new suffi cient conditions for oscillation of (1.4)
by using a new technique when 0 < pn ≤ p ≤ 1 and we will consider the sublinear and
the super linear cases. The new technique depends on the application of an invariant
substitution which transforms the first nonlinear neutral difference equation to a second
nonlinear difference equation. This allows us to obtain several suffi cient conditions for
oscillation of (1.4) by employing the oscillation conditions of second order delay difference
equations by using the Riccati technique.

2 Main results

In this section, we prove the main results but before we do this, we apply an invariant
substitution which transforms the first order neutral equation to a non-neutral second
order difference equations. This substitution is given by

(2.1) yn+1 = xn

n∏
i=1

1

pi
, where

n∏
i=1

pi = O (n) ,

This gives us that

(2.2) xn = yn+1

n∏
i=1

pi, xn−1 = yn

n−1∏
i=1

pi, and xn−τ = yn−τ+1

n−τ∏
i=1

pi.

From (2.2), we have

(2.3) xn − pnxn−1 = ∆yn

n∏
i=1

pi.
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Substituting (2.3) into (1.4), we obtain

(2.4) ∆

(
∆yn

n∏
i=1

pi

)
+ qn

n−τ∏
i=1

piyn−τ+1 = 0.

Setting dn =
∏n

i=1
pi, and Qn = qndn−τ then (2.4) becomes

(2.5) ∆ (dn∆yn) +Qny
γ
n−(τ−1) = 0, n ∈ N0.

In this section, we intend to use the Riccati transformation technique for obtaining several
new oscillation criteria for (1.4). First we state some fundamental lemmas for second order
difference equations that will be used in the proofs of the main results (see [15]).

Lemma 2.1 Assume that pn is a real sequence with 0 < pn ≤ p < 1 for all n ∈ N.
Furthermore assume that

(2.6)
∞∑
n=1

1

dn
=∞.

Let y be a positive solution of (2.5). Then
(I ). ∆y(n) ≥ 0, y(n) ≥ n∆y(n) for n ≥ N ,
(II ). y is nondecreasing, while y(n)/n is nonincreasing for n ≥ N.

Lemma 2.2 Assume that pn is a real sequence with 0 < pn ≤ p < 1 for all n ∈ N.
Furthermore assume that (2.6) holds. If yn be a nonoscillatory solution of (2.5) such that
yn ≥ 0, ∆yn ≤ 0, then limn→∞ yn = 0 and hence

(2.7) lim
n→∞

xn
dn

= 0,

where xn is a solution of (1.4).

Throughout this paper, we will assume that the real sequences pn, qn are nonnegative,
γ is a quotient of odd positive integers, τ is a nonnegative integer. Now, we state and prove
the suffi cient conditions which ensure that each solution of equation (1.4) is oscillatory or
satisfies (2.7). We start with the case when 0 < γ ≤ 1.

Theorem 2.3 Assume that (H1) holds and ∆dn ≥ 0. Furthermore, assume that there
exists a positive sequence ρn such that,

(2.8) lim
n→∞

sup
n∑

i=n0

[
ρiQi −

di−τ+1β
1−γ (i+ 2− τ)

1−γ
(∆ρi)

2

ρi

]
=∞,

where dn =
∏n

i=1
pi and Qn = qndn−τ . Then every solution of (1.4) oscillates for all

0 < γ ≤ 1.

Proof. Assume to the contrary that xn be a nonoscillatory solution of (1.4) such that
xn−1, xn−τ , xn > 0 for all large n ≥ n1 > n0 suffi ciently large. We shall consider only
this case, since the substitution yn = −xn transforms equation (1.4) into an equation of
the same form. From (2.1) we see that yn is a positive solution of (2.5) such that yn > 0
and yn−τ+1 > 0 for n > n1 > n0 suffi ciently large. From equation (2.5), we have

(2.9) ∆ (dn∆yn) = −Qnyγn−τ+1 ≤ 0, n ≥ n1,

3
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and then dn∆yn is an eventually nonincreasing sequence. We first show that dn∆yn ≥
0 for n ≥ n0. In fact, if there exists an integer n1 ≥ n0 such that dn1∆yn1 = c < 0 then
(2.9) implies that dn∆yn ≤ c for n ≥ n1 that is ∆yn ≤ c/dn, and hence

(2.10) yn ≤ yn1 + c
n−1∑
i=n1

1

di
→ −∞, as n→∞,

which contradicts the fact that yn > 0 for n ≥ n0 then dn∆yn ≥ 0. Also since ∆dn ≥ 0,
we can prove that ∆2yn > 0 for n ≥ n1. Therefore we have

(2.11) yn > 0, ∆yn ≥ 0, and ∆2yn ≤ 0, for n ≥ n1.

From (2.9) and (2.11)

(2.12) dn−τ+1∆yn−τ+1 ≥ dn+1∆ (yn+1) and yn−τ+1 ≥ yn−τ .

Defining the sequence un by the Riccati substitution

(2.13) un = ρn
dn∆yn
yγn−τ+1

, for n > n1.

This implies that un > 0, and

∆un = dn+1∆yn+1∆

[
ρn

yγn−τ+1

]
+ ρn

∆ (dn∆yn)

yγn−τ+1
.

Hence

(2.14) ∆un = dn+1∆yn+1

[
∆ρn

(
yγn−τ+1

)
− ρn

(
∆yγn−τ+1

)
yγn−τ+1y

γ
n−τ+2

]
+ ρn

∆ (dn∆yn)

yγn−τ+1
.

From this, (2.5) and (2.14) we see that

(2.15) ∆un ≤
∆ρn
ρn+1

un+1 −
[
dn+1∆yn+1ρn∆yγn−τ+1

yγn−τ+2y
γ
n−τ+1

]
− ρnQn.

From (2.5) and (2.14), we have

(2.16) ∆un ≤ −ρnQn +
∆ρn
ρn+1

un+1 −
dn+1∆yn+1ρn∆yγn−τ+1

y2γn−τ+2
.

By using the inequality (see [8]),

(2.17) xγ − yγ ≥ γxγ−1 (x− y) , for all x 6= y > 0 where 0 < γ ≤ 1,

we have

∆yγn−τ+1 =
(
yγn+2−τ − y

γ
n+1−τ

)
≥ γ (yn+2−τ )

γ−1
(yn−τ+2 − yn−τ+1)(2.18)

= γ (yn+2−τ )
γ−1

(∆yn−τ+1).

Substituting (2.18) into (2.16), we obtain that

(2.19) ∆un ≤ −ρnQn +
∆ρn
ρn+1

un+1 − ρndn+1
γ (yn+2−τ )

γ−1
(∆yn−τ+1)∆yn+1

y2γn−τ+2
.
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From (2.12) and (2.19), we have that

∆un ≤ −ρnQn +
∆ρn
ρn+1

un+1 −
γρnd

2
n+1 (∆yn+1)

2

dn−τ+1 (yn+2−τ )
1−γ (

yγn−τ+2
)2 .

Hence,

(2.20) ∆un ≤ −ρnQn +
∆ρn
ρn+1

un+1 −
γρn(

ρn+1
)2
dn−τ+1 (yn+2−τ )

1−γ (un+1)
2
.

From (2.11), we conclude that

yn ≤ yn0 + ∆yn0 (n− n0) , n ≥ n1,

and consequently there exists a n2 ≥ n2 and appropriate constant β ≥ 1 such that

yn ≤ βn, for n ≥ n2,

and this implies that

yn+2−τ ≤ β (n+ 2− τ) , for n ≥ n3 = n2 + τ + 2,

and then

(2.21)
1

(yn+2−τ )
1−γ ≥

1

(β (n+ 2− τ))
1−γ .

Substituting (2.21) into (2.20) we obtain

(2.22) ∆un ≤ −ρnQn +
∆ρn
ρn+1

un+1 −
γρn(

ρn+1
)2
dn−τ+1β

1−γ (n+ 2− τ)
1−γ (un+1)

2

Hence

∆un ≤ −ρnQn +
dn−τ+1β

1−γ (n+ 2− τ)
1−γ

(∆ρn)
2

ρn

−

 √
ρn

ρn+1

√
(β (n+ 2− τ))

1−γ
dn−τ+1

un+1 −
∆ρn

√
dn−τ+1β

1−γ (n+ 2− τ)
1−γ

2ρn

2

Then, we have

(2.23) ∆un ≤ −
[
ρnQn −

dn−τ+1β
1−γ (n+ 2− τ)

1−γ
(∆ρn)

2

ρn

]
Summing (2.23) from n3 to n we obtain

−un3 < un+1 − un3 ≤ −
n∑

i=n3

[
ρiQi −

di−τ+1β
1−γ (i+ 2− τ)

1−γ
(∆ρi)

2

ρi

]
which yields

n∑
i=n3

[
ρiQi −

di−τ+1β
1−γ (i+ 2− τ)

1−γ
(∆ρi)

2

ρi

]
< c1,

for all large n, and this contrary to (2.8). The proof is complete.
From the Theorem 2.3, we can obtain different condition for oscillation of all solutions

of (1.4) by different choices of ρn. For example if we take ρn = nλ, n ≥ n0 and λ > 1 is a
constant we have the following result.

5
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Corollary 2.4 Assume that all the assumptions of Theorem 2.3 hold, except that the
condition (2.8) is replaced by

lim
n→∞

sup
n∑

s=n0

[
sλQs −

ds−τ+1β
1−γ (s+ 2− τ)

1−γ (
∆sλ

)2
sλ

]
=∞.

Then every solution of (1.4) oscillates for all 0 < γ ≤ 1.

Remark 2.5 When γ = 1 the equation (1.4) reduced to linear delay difference equation

∆ (xn − pnxn−1) + qnxn−τ = 0, for n ∈ Nn0 ,

and the condition (2.8) in Theorem 2.3 reduced to

(2.24) lim
n→∞

sup
n∑

i=n0

[
ρiQi −

di−τ+1 (∆ρi)
2

ρi

]
=∞,

where dn =
∏n

i=1
pi and Qn = qndn−τ for all 0 < γ ≤ 1.

Now, we consider the case when γ ≥ 1.

Theorem 2.6 Assume that (2.6) holds. Furthermore, assume that there exists a positive
sequence {ρn}∞n=1 such that for every positive constant M ,

(2.25) lim
n→∞

sup
n∑

l=n0

[
ρlql −

(dl−σ)
γ

(∆ρl)
2

23−γ (M)
γ−1

(dl+1)
2γ−2

ρl

]
=∞,

where σ = τ − 1. Then every solution of (1.4) oscillates for all γ ≥ 1.

Proof. Suppose to the contrary that xn is a nonoscillatory solution of (1.4). Without
loss of generality, we may assume that xn is an eventually positive solution of (1.4) such
that xn−1, xn−τ , xn > 0 for all large n ≥ n1 > n0 suffi ciently large. We shall consider
only this case, since the substitution yn = −xn transforms equation (1.4) into an equation
of the same form. As in the proof of Theorem 2.3, we have by (2.6) that

(2.26) yn > 0, ∆yn ≥ 0, ∆(dn (∆yn)) ≤ 0, n ≥ n1.

Define the sequence un by

(2.27) un := ρn
dn∆yn
yγn−σ

.

Then un > 0, and

(2.28) ∆un = dn+1∆yn+1∆

[
ρn
yγn−σ

]
+
ρn∆(dn∆yn)

yγn−σ
.

In view of (2.5), (2.28), we have

(2.29) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 −
ρndn+1∆yn+1∆y

γ
n−σ

yγn+1−σy
γ
n−σ

.

From (2.26), we see that

(2.30) dn−σ∆yn−σ ≥ dn+1∆yn+1, and yn+1−σ ≥ yn−σ.

6
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Substituting (2.30) into (2.29), we have

(2.31) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 −
ρndn+1∆yn+1∆y

γ
n−σ(

yγn+1−σ
)2 .

Now, by using the inequality

xγ − yγ > 21−γ(x− y)γ , for all x > y > 0 and γ > 1,

we find that

(2.32) ∆yγn−σ = yγn+1−σ − y
γ
n−σ > 21−γ(yn+1−σ − yn−σ)γ = 21−γ (∆yn−σ)

γ
.

Substituting (2.32) into (2.31), we have

(2.33) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 − 21−γρndn+1
∆yn+1 (∆yn−σ)

γ(
yγn+1−σ

)2 .

From (2.30) and (2.33), we obtain

(2.34) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 − 21−γρn
(dn+1)

γ+1

(dn−σ)
γ

(∆yn+1)
γ+1(

yγn+1−σ
)2 .

Hence,

(2.35) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 −
(dn+1)

γ+1

(dn−σ)
γ

21−γρn (∆yn+1)
2γ(

yγn+1−σ
)2

(∆yn+1)
γ−1 .

From the definition of un, we get that

(2.36) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 −
21−γρn(
ρn+1

)2 (dn+1)
γ−1

(dn−σ)
γ

u2n+1

(∆yn+1)
γ−1 .

Since {dn (∆yn)} is a positive and nonincreasing sequence, there exists a n2 ≥ n1 suffi -
ciently large such that dn (∆yn) ≤ 1/M for some positive constant M and n ≥ n1, and
hence by (2.26), we have

1

(∆yn+1)
γ−1 > (Mdn+1)

γ−1
.

Substituting the last inequality into (2.36), we obtain

(2.37) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 −
(
M

2

)γ−1
ρn (dn+1)

2γ−2(
ρn+1

)2 1

(dn−σ)
γ u

2
n+1,

so that

∆un ≤ −ρnqn +
(dn−σ)

γ
(∆ρn)2

23−γ (M)
γ−1

(dn+1)
2γ−2

ρn
−


√(

M
2

)γ−1
(dn+1)

2γ−2
ρn

ρn+1
√

(dn−σ)
γ un+1 −

√
(dn−σ)

γ
∆ρn

2

√(
M
2

)γ−1
(dn+1)

2γ−2
ρn

2

< −
[
ρnqn −

(dn−σ)
γ

(∆ρn)2

23−γ (M)
γ−1

(dn+1)
2γ−2

ρn

]

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

258 SAKER 252-265



Then, we have

(2.38) ∆un < −
[
ρnqn −

(dn−σ)
γ

(∆ρn)2

23−γ (M)
γ−1

(dn+1)
2γ−2

ρn

]
.

Summing (2.38) from n2 to n, we obtain

−un2 < un+1 − un2 < −
n∑

l=n2

[
ρlql −

(dl−σ)
γ

(∆ρl)
2

23−γ (M)
γ−1

(dl+1)
2γ−2

ρl

]
,

which yields
n∑

l=n2

[
ρlql −

(dl−σ)
γ

(∆ρl)
2

23−γ (M)
γ−1

(dl+1)
2γ−2

ρl

]
< c1,

for all large n. This contradicts (2.25). The proof is complete.
From Theorem 2.6, we can obtain different conditions for oscillation of all solutions of

(1.4) when (2.6) holds by different choices of {ρn}. For example, let ρn = nλ, n ≥ n0 and
λ > 1 is a constant. From Theorem 2.6 we have the following result.

Corollary 2.7 Assume that all the assumptions of Theorem 2.6 hold, except the condition
(2.25) is replaced by

(2.39) lim
n→∞

sup

n∑
s=n0

[
sλqs −

(ds−σ)
γ

((s+ 1)λ − sλ)2

23−γ (M)
γ−1

(ds+1)
2γ−2

sλ

]
=∞.

Then, every solution of (1.4) oscillates for all γ ≥ 1.

As a variant of the Riccati transformation technique used above, we will derive some
oscillation criterion which can be considered as a discrete analogy of the Philos condition
for oscillation of second order differential equation by introducing the following class of
sequences that will be used in this chapter and later. Let

£0 = {(m,n) : m > n ≥ n0}, £ = {(m,n) : m ≥ n ≥ n0}.

The double sequence Hm,n ∈ Σ if:
(I). H(m,m) = 0 on £,
(II). H(m,n) > 0 on £0;
(III). ∆2Hm,n = Hm,n+1 − Hm,n ≤ 0 for m ≥ n ≥ 0, and there exists a double

sequence hm,n such that

hm,n = −∆2Hm,n√
Hm,n

, for m > n ≥ 0.

Theorem 2.8 Assume that (2.6) hold. Let {ρn}∞n=1 be a positive sequence and Hm,n ∈ Σ.
If

(2.40) lim
m→∞

sup
1

Hm,0

m−1∑
n=0

[
Hm,nρnqn −Bn

(
hm,n −

∆ρn
ρn+1

√
Hm,n

)2]
=∞,

where

Bn :=
(dn−σ)

γ
ρ2n+1

23−γMγ−1 (dn+1)
2γ−2

ρn
.

Then every solution of (1.4) oscillates for all γ ≥ 1.

8
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Proof. We proceed as in the proof of Theorem 2.6, we may assume that (1.4) has a
nonoscillatory solution xn such that xn > 0. As in the proof of Theorem 2.6 we get that
(2.26) holds. Define {un} by (2.27) as before, then we have un > 0 and there is some
M > 0 such that (2.37) holds. For the sake of convenience, let us set

−
ρn =

21−γ (M)
γ−1

(dn+1)
2γ−2

ρn
(dn−σ)

γ .

Then, we have from (2.37) that

(2.41) ρnqn ≤ −∆un +
∆ρn
ρn+1

un+1 −
−
ρn(

ρn+1
)2u2n+1.

Therefore, we get

(2.42)
m−1∑
n=n1

Hm,nρnqn ≤ −
m−1∑
n=n1

Hm,n∆un +
m−1∑
n=n1

Hm,n
∆ρn
ρn+1

un+1 −
m−1∑
n=n1

Hm,n

−
ρnu

2
n+1(

ρn+1
)2 .

The rest of the proof is similar to the proof of [15, Theorem 2.3.6].
As an immediate consequence of Theorem 2.8, we get the following:

Corollary 2.9 Assume that all the assumptions of Theorem 2.8 hold, except that the
condition (2.40) is replaced by

lim
m→∞

sup
1

Hm,0

m−1∑
n=n0

Hm,nρnqn =∞,

lim
m→∞

sup
1

Hm,0

m−1∑
n=n0

(dn−σ)
γ
ρ2n+1

(M)
γ−1

(dn+1)
2γ−2

ρn

(
hm,n −

∆ρn
ρn+1

√
Hm,n

)2
<∞.

Then every solution of (1.4) oscillates for all γ ≥ 1.

By choosing the sequence Hm,n in appropriate manners, we can derive several oscilla-
tion criteria for (1.4). For instance, let us consider the double sequence {Hm,n} defined
by

(2.43)

Hm,n = (m− n)λ, λ ≥ 1,m ≥ n ≥ 0,

Hm,n =
(

log m+1
n+1

)λ
, λ ≥ 1,m ≥ n ≥ 0,

Hm,n = (m− n)(λ) λ > 2, m ≥ n ≥ 0,


where (m− n)(λ) = (m− n)(m− n+ 1)...(m− n+ λ− 1), and

∆2(m− n)(λ) = (m− n− 1)(λ) − (m− n)(λ) = −λ(m− n)(λ−1).

Then Hm,m = 0 for m ≥ 0 and Hm,n > 0 and ∆2Hm,n ≤ 0 for m > n ≥ 0. Hence we
have the following result which gives new suffi cient conditions for the oscillation of (1.4)
of Kamenev type.

Corollary 2.10 Assume that all the assumptions of Theorem 2.8 hold, except that the
condition (2.40) is replaced by

(2.44) lim
m→∞

sup
1

mλ

m−1∑
n=0

[
(m− n)λρnqn −

ρ2n+1

4
−
ρn

V 2m,n

]
=∞,
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where

Vm,n :=

(
λ(m− n)

λ−2
2 − ∆ρn

ρn+1

√
(m− n)λ

)
.

Then every solution of (1.4) oscillates for all γ ≥ 1.

Corollary 2.11 Assume that all the assumptions of Theorem 2.8 hold, except that the
condition (2.40) is replaced by

(2.45) lim
m→∞

sup
1

(log(m+ 1))λ

m−1∑
n=0

[(
log

m+ 1

n+ 1

)λ
ρnqn −

ρ2n+1

4
−
ρn

2

R2m,n

]
=∞,

where

Rm,n =

 λ

n+ 1

(
log

m+ 1

n+ 1

)λ−2
2

− ∆ρn
ρn+1

√(
log

m+ 1

n+ 1

)λ .

Then, every solution of (1.4) oscillates for all γ ≥ 1.

Corollary 2.12 Assume that all the assumptions of Theorem 2.8 hold, except that the
condition (2.40) is replaced by

(2.46) lim
m→∞

sup
1

m(λ)

m−1∑
n=0

(m− n)(λ)

[
ρnqn −

ρ2n+1

4
−
ρn

U2n

]
=∞,

where

Un :=

(
λ

m− n+ λ− 1
− ∆ρn
ρn+1

)2
.

Then, every solution of (1.4) oscillates for all γ ≥ 1.

In the following theorem, we consider the case when 0 < γ < 1.

Theorem 2.13 Assume that (2.6) holds and ∆dn ≥ 0. If

(2.47)
∞∑

n=n0

(
n− σ
dn

)γ
qn =∞.

Then every solution of (1.4) oscillates for all 0 <γ < 1.

Proof. Proceeding as in Theorem 2.6, we assume that (1.4) has a nonoscillatory solution,
say xn > 0 and xn−τ > 0 for all n ≥ n0. From the proof of Theorem 2.6 we know that
∆yn > 0, then yn is nondecreasing sequence. Since ∆dn ≥ 0 we obtain that ∆2yn ≤ 0
and then ∆yn is a nonincreasing for all n ≥ n1 ≥ n0. Then, we have yn ≥ (n − n1)∆yn
which implies that yn ≥ n

2∆yn for n ≥ n2 ≥ 2n1 + 1. Then

(2.48) yn−σ ≥
n− σ

2
∆yn−σ ≥

n− σ
2

∆yn+1, for n ≥ N = n2 + σ.

From (2.5) and (2.48) by dividing by zn+1 = (dn∆yn+1)
γ > 0 and summing from 2N to

k, we obtain

(2.49)
k∑

n=2N

(
n− σ
2dn

)γ
qn ≤ −

k∑
n=2N

∆(zn)

(zn+1)
γ , k ≥ 2N.

10
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Since
yγ − zγ ≤ γyγ−1(y − z) for γ < 1 and y > z > 0,

we see that

∆
(
z1−γn

)
=
(
z1−γn+1

)
−
(
z1−γn

)
≤ (1− γ)(z(n+ 1))−γ∆z(n).

Substituting in (2.49), we see that

k∑
n=2N

(
n− σ
2dn

)γ
qn ≤ −

k∑
n=2N

∆
(
z1−γn

)
(1− γ)

= −

(
z1−γk−1

)
(1− γ)

+

(
z1−γ2N

)
(1− γ)

<

(
z1−γ2N

)
(1− γ)

<∞, as n→∞

which contradicts (2.47). The proof is complete.
Now, we consider the case when

(2.50)
∞∑
n=0

(
1

dn

)
<∞,

holds and establish some oscillation criteria for (1.4) in the sublinear and superlinear
cases.

Theorem 2.14 Assume that (2.50) holds and there exist positive sequences {ρn}∞n=1 such
that (2.25) holds for every positive constant M , and

(2.51)
∞∑
n=0

(
1

dn

n−1∑
i=n0

qi

)
=∞.

Then every solution of (1.4) oscillates or limn→∞ xn/dn = 0 for all γ ≥ 1.

Proof. Suppose that {xn} is a nonoscillatory solution of (1.4). Without loss of generality
we may assume that {xn} is eventually positive. From (2.5), we have

(2.52) ∆(dn∆yn) ≤ −qnyγn−σ ≤ 0, n ≥ n0,

and so {dn(∆yn)} is an eventually nonincreasing sequence. Since {qn} has a positive
subsequence, either {∆yn} is eventually negative or eventually positive. If {∆yn} is
eventually positive, we are then back to the case where (2.26) holds. Thus the proof of
Theorem 2.6 goes through, and we may conclude that {yn} cannot be eventually positive,
which is not possible. If {∆yn} is eventually negative, then limn→∞ yn = b ≥ 0.We assert
that b = 0. If not then yγn−σ → bγ > 0 as n → ∞, and hence there exists n1 ≥ n0 > 0
such that yγn−σ ≥ bγ . Therefore from (2.52) we have

∆(dn∆yn) ≤ −qnbγ .

The rest of the proof is similar to the proof of [15, Theorem 2.3.7] and hence is omitted.

By choosing {ρn}∞n=1 in appropriate manners, we may obtain different oscillation crite-
ria. For instance, let ρn = nλ for n ≥ 0 and λ > 1. Then we have the following oscillation
conditions of all solutions of (1.4) when (2.50) holds.
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Corollary 2.15 Assume that all assumptions of Theorem 2.14 hold, except that the condi-
tion (2.25) is replaced by (2.39). Then, every solution of (1.4) oscillates or limn→∞ xn/dn =
0 for all γ ≥ 1.

Theorem 2.16 Assume that (2.50) and (2.51) hold. Furthermore, assume that there ex-
ists a double sequence Hm,n ∈ Σ such that (2.40) holds. Then every solution of (1.4)
oscillates or limn→∞ xn/dn = 0 for all γ ≥ 1.

Indeed, suppose that {xn} is an eventually positive solution of (1.4). Then as seen in
the proof of Theorem 2.3, either {∆xn} is eventually positive or is eventually negative.
In the case when {∆yn} is eventually positive, we may follow the proof of Theorem 2.8
and obtain a contradiction. If {∆yn} is eventually negative, then we may follow the proof
of Theorem 2.14 to show that {yn} converges to zero.
By choosing Hm,n in appropriate manners, we can derive several oscillation criteria for

(2.5) when (2.50) holds. For instance, let us consider the double sequence Hm,n defined
again by (2.43). Hence we have the following results.

Corollary 2.17 Assume that all the assumptions of Theorem 2.16 hold, except that
the condition (2.40) is replaced by (2.44). Then, every solution of (1.4) oscillates or
limn→∞ xn/dn = 0 for all γ ≥ 1.

Corollary 2.18 Assume that all the assumptions of Theorem 2.16 hold, except that the
condition (2.40) is replaced by( 2.45) or (2.46). Then, every solution of (1.4) oscillates
or limn→∞ xn/dn = 0 for all γ ≥ 1.

Theorem 2.19 Assume that (2.50) and (2.47) hold. Let {ρn}∞n=1 such that (2.51) holds.
Then every solution of (1.4) oscillates or limn→∞ xn/dn = 0 for all 0 <γ < 1.

Indeed, suppose that {xn} is an eventually positive solution of (1.4). Then as seen in
the proof of Theorem 2.6, either {∆yn} is eventually positive or is eventually negative.
In the case when {∆yn} is eventually positive , we may follow the proof of Theorem 2.13
and obtain a contradiction. If {∆yn} is eventually negative, then we may follow the proof
of Theorem 2.14 to show that {xn/dn} converges to zero.
From Theorem 2.14 if ρn = 1, we see that the Riccati inequality associated with the

equation (1.4) is given by

(2.53) ∆un + ρnqn +
1

an
u2n+1 ≤ 0,

where

(2.54) An =
2γ−1 (dn−σ)

γ

(M)
γ−1

(dn+1)
2γ−2 > 0,

for every positive constant M > 0. Using the inequality (2.53) and proceeding as in the
proof [15, Theorem 2.3.8], we can prove the following Hille and Nehari type results.

Theorem 2.20 Assume that (H1) holds and ∆dn ≥ 0. Furthermore, assume that

lim inf
n→∞

n

An

∞∑
n+1

q(s) >
1

4
,

or

lim inf
n→∞

n

An

∞∑
n+1

qs+ lim inf
n→∞

1

n

n−1∑
N

s2

An
qs > 4.

Then every solution of (1.4) is oscillatory.
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