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Abstract : We introduced the generalized twisted (h, q)-tangent numbers and polynomials. In this

paper, our goal is to give generating functions of the generalized degenerate twisted (h, q)-tangent

numbers and polynomials. We also obtain some explicit formulas for generalized degenerate twisted

(h, q)-tangent numbers and polynomials.
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1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers and polynomials,

Euler numbers and polynomials, Genocchi numbers and polynomials, tangent numbers and poly-

nomials(see [1-16]). In [2], L. Carlitz introduced the degenerate Bernoulli polynomials. Recently,

Feng Qi et al.[3] studied the partially degenerate Bernoull polynomials of the first kind in p-adic

field. In this paper, we obtain some interesting properties for generalized degenerate tangent num-

bers and polynomials. Throughout this paper we use the following notations. Let p be a fixed odd

prime number. By Zp we denote the ring of p-adic rational integers, Q denotes the field of rational

numbers, Qp denotes the field of p-adic rational numbers, C denotes the complex number field, and

Cp denotes the completion of algebraic closure of Qp, N denotes the set of natural numbers and

Z+ = N∪ {0}. Let r be a positive integer, and let ζ be rth root of 1. Let χ be Dirichlet’s character

with conductor d ∈ N with d ≡ 1(mod 2). Then the generalized twisted (h, q)-tangent numbers

associated with associated with χ, T
(h)
n,χ,q,ζ , are defined by the following generating function

2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1
=

∞∑
n=0

T
(h)
n,χ,q,ζ

tn

n!
. (1.1)

We now consider the generalized twisted (h, q)-tangent polynomials associated with χ, T
(h)
n,χ,q,ζ(x),

are also defined by (
2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1

)
ext =

∞∑
n=0

T
(h)
n,χ,q,ζ(x)

tn

n!
. (1.2)

When χ = χ0, above (1.1) and (1.2) will become the corresponding definitions of the twisted (h, q)-

tangent numbers T
(h)
n,q,w and polynomials T

(h)
n,q,w(x). If q → 1, above (1.1) and (1.2) will become

the corresponding definitions of the generalized twisted tangent numbers Tn,χ,w and polynomials

Tn,χ,w(x). We recall that the classical Stirling numbers of the first kind S1(n, k) and S2(n, k) are

defined by the relations(see [7])

(x)n =
n∑

k=0

S1(n, k)x
k and xn =

n∑
k=0

S2(n, k)(x)k,
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respectively. Here (x)n = x(x− 1) · · · (x− n+1) denotes the falling factorial polynomial of order n.

The numbers S2(n,m) also admit a representation in terms of a generating function

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
. (1.3)

We also have
∞∑

n=m

S1(n,m)
tn

n!
=

(log(1 + t))m

m!
. (1.3)

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1∏
k=0

(x− λk) (1.5)

for positive integer n, with the convention (x|λ)0 = 1. We also need the binomial theorem: for a

variable x,

(1 + λt)x/λ =
∞∑

n=0

(x|λ)n
tn

n!
. (1.6)

2. On the generalized degenerate twisted (h, q)-tangent polynomials

In this section, we define the generalized degenerate twisted (h, q)-tangent numbers and poly-

nomials, and we obtain explicit formulas for them. Let χ be Dirichlet’s character with conductor

d ∈ N with d ≡ 1(mod 2), and let ζ be rth root of 1. For h ∈ Z, the generalized degenerate

twisted (h, q)-tangent polynomials associated with associated with χ, T
(h)
n,χ,q,ζ(x|λ), are defined by

the following generating function

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)2a/λ

ζdqdh(1 + λt)2/λ + 1
(1 + λt)x/λ =

∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!
(2.1)

and their values at x = 0 are called the generalized degenerate twisted (h, q)-tangent numbers and

denoted T
(h)
n,χ,q,ζ(λ).

From (2.1) and (1.2), we note that

∞∑
n=0

lim
λ→0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!
= lim

λ→0

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)2a/λ

ζdqdh(1 + λt)2/λ + 1
(1 + λt)x/λ

=

(
2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1

)
ext

=

∞∑
n=0

T
(h)
n,χ,q,ζ(x)

tn

n!
.

Thus, we get

lim
λ→0

T
(h)
n,χ,q,ζ(x|λ) = T

(h)
n,χ,q,ζ(x), (n ≥ 0).

From (2.1) and (1.6), we have

∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!
=

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)2a/λ

ζdqdh(1 + λt)2/λ + 1
(1 + λt)x/λ

=

( ∞∑
m=0

T
(h)
n,χ,q,ζ(λ)

tm

m!

)( ∞∑
l=0

(x|λ)l
tl

l!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
T

(h)
l,χ,q,ζ(λ)(x|λ)n−l

)
tn

n!
.

(2.2)
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By comparing coefficients of
tm

m!
in the above equation, we have the following theorem:

Theorem 1. For n ≥ 0, we have

T
(h)
n,χ,q,ζ(x|λ) =

n∑
l=0

(
n

l

)
T

(h)
l,χ,q,ζ(λ)(x|λ)n−l.

For χ = χ0, we have

∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!
=

2

ζqh(1 + λt)2/λ + 1
(1 + λt)x/λ

=
∞∑

m=0

T
(h)
n,q,ζ(x|λ)

tm

m!
.

(2.3)

Theorem 2. For n ≥ 0 and χ = χ0 , we have

T
(h)
n,χ,q,ζ(x|λ) = T

(h)
n,q,ζ(x|λ).

For d ∈ N with d ≡ 1(mod2), we have

∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!
=

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)2a/λ

ζdqdh(1 + λt)2d/λ + 1
(1 + λt)x/λ

=
2

ζqh(1 + λt)2d/λ + 1
(1 + λt)x/λ

d−1∑
l=0

(−1)lχ(l)(1 + λt)2l/λ

=
∞∑

n=0

(
dn

d−1∑
l=0

(−1)lχ(l)T
(h)

n,qd,ζd

(
2l + x

d

∣∣λ
d

))
tn

n!
.

(2.4)

By comparing coefficients of
tm

m!
in the above equation, we have the following theorem:

Theorem 3. Let χ be Dirichlet’s character with conductor d ∈ N with d ≡ 1(mod 2). Then

we have

(1) T
(h)
n,χ,q,ζ(x|λ) = dn

d−1∑
l=0

(−1)lχ(l)T
(h)

n,qd,ζd

(
2l + x

d

∣∣λ
d

)
,

(2) T
(h)
n,χ,q,ζ(λ) = dn

d−1∑
l=0

(−1)lχ(l)T
(h)

n,qd,ζd

(
2l + x

d

)
.

For m ∈ Z+, we obtain we can derive the following relation:

∞∑
m=0

ζdqhdT
(h)
m,χ,q,ζ(2d|λ)

tm

m!
+

∞∑
m=0

T
(h)
m,χ,q,ζ(2d|λ)

tm

m!

= 2
d−1∑
l=0

(−1)lχ(l)ζlqhl(1 + λt)2l/λ

=

∞∑
m=0

(
2

d−1∑
l=0

(−1)n−1−lχ(l)ζlqhl(2l|λ)m

)
tm

m!
.

(2.5)

By comparing of the coefficients tm

m! on the both sides of (2.5), we have the following theorem.
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Theorem 4. For m ∈ Z+, we have

ζdqhdT
(h)
m,χ,q,ζ(2d|λ) + T

(h)
m,χ,q,ζ(λ) = 2

d−1∑
l=0

(−1)lχ(l)ζlqhl(2l|λ)m.

From (2.1), we have

∞∑
n=0

T
(h)
n,χ,q,ζ(x+ y|λ) t

n

n!
=

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)2a/λ

ζdqdh(1 + λt)2d/λ + 1
(1 + λt)(x+y)/λ

=
2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)(2a+x)/λ

ζdqdh(1 + λt)2d/λ + 1
(1 + λt)y/λ

=

( ∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!

)( ∞∑
n=0

(y|λ)n
tn

n!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
T

(h)
l,χ,q,ζ(x|λ)(y|λ)n−l

)
tn

n!
.

(2.6)

Therefore, by (2.6), we have the following theorem.

Theorem 5. For n ∈ Z+, we have

T
(h)
m,χ,q,ζ(x+ y|λ) =

n∑
k=0

(
n

k

)
T

(h)
kχ,q,ζ(x|λ)(y|λ)n−k.

From Theorem 5, we note that T
(h)
n,χ,q,ζ(x|λ) is a Sheffer sequence.

By replacing t by
eλt − 1

λ
in (2.1), we obtain

2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1
ext =

∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

(
eλt − 1

λ

)n
1

n!

=
∞∑

n=0

T
(h)
n,χ,q,ζ(x|λ)λ

−n
∞∑

m=n

S2(m,n)λm tm

m!

=
∞∑

m=0

(
m∑

n=0

T
(h)
n,χ,q,ζ(x|λ)λ

m−nS2(m,n)

)
tm

m!
.

(2.7)

Thus, by (2.7) and (1.2), we have the following theorem.

Theorem 6. For n ∈ Z+, we have

T
(h)
m,χ,q,ζ(x) =

m∑
n=0

λm−nT
(h)
n,χ,q,ζ(x|λ)S2(m,n).

By replacing t by log(1 + λt)1/λ in (1.2), we have

∞∑
n=0

T
(h)
n,χ,q,ζ(x)

(
log(1 + λt)1/λ

)n 1

n!
=

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)(2a+x)/λ

ζdqhd(1 + λt)2d/λ + 1

=
∞∑

m=0

T
(h)
m,χ,q,ζ(x|λ)

tm

m!
,

(2.8)

and

∞∑
n=0

T
(h)
n,χ,q,ζ(x)

(
log(1 + λt)1/λ

)n 1

n!
=

∞∑
m=0

(
m∑

n=0

T
(h)
n,χ,q,ζ(x)λ

m−nS1(m,n)

)
tm

m!
. (2.9)
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Thus, by (2.8) and (2.9), we have the following theorem.

Theorem 8. For n ∈ Z+, we have

T
(h)
m,χ,q,ζ(x|λ) =

m∑
n=0

T
(h)
n,χ,q,ζ(x)λ

m−nS1(m,n).
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