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Abstract

In this paper, we study a nonlinear system of second order ordinary differ-
ential equations with nonlocal integral multi-strip coupled boundary conditions.
Leray-Schauder alternative criterion, Schauder fixed point theorem and Banach
contraction mapping principle are employed to obtain the desired results. Ex-
amples are constructed for the illustration of the obtained results. We emphasize
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1 Introduction

This paper is concerned with the following coupled system of nonlinear second-order
ordinary differential equations:

u'(t) = f(t,u(t),v(t)), t € [a,b],
{ V' (t) = g(t,u(t),v(t)), t € [a,b], (1.1)

supplemented with the nonlocal integral multi-strip coupled boundary conditions of
the form:

b m nj
/ u(s)ds = Z%/ v(s)ds + >\1,/ s)ds = ij/ s)ds + Ag,
a j 1

— 3
/ v(s)ds = Zaj/ u(s)ds + )\3,/ s)ds = Z(S / s)ds + A4,
a j=1 & j=1

where f,g : [a,b] x R x R — R are given continuous functions, a < § < 1 < & <
Mo < -+ <&n<Nym<b, and~;, pj, o andd; e Rt (j=1,2,....,m), \;, eR (i =
1,2,3,4).

Mathematical modeling of several real world phenomena lead to the occurrence
of nonlinear boundary value problems of differential equations. During the past few
decades, the topic of boundary value problems has evolved as an important and inter-
esting area of investigation in view of its extensive applications in diverse disciplines
such as fluid mechanics, mathematical physics, etc. For application details, we refer
the reader to the text [1], while some recent works on boundary value problems of
ordinary differential equations can be found in the papers ([2]-[5]).

Much of the literature on boundary value problems involve classical boundary con-
ditions. However, these conditions cannot cater the complexities of the physical and
chemical processes occurring within the domain. In order to cope with this situation,
the concept of nonlocal boundary conditions was introduced. Such conditions relate
the boundary values of the unknown function to its values at some interior positions
of the domain. For a detailed account of nonlocal nonlinear boundary value problems,
for instance, see ([6]-[16]) and the references cited therein.

Computational fluid dynamics (CFD) technique are directly concerned with the
boundary data [1]. However, the assumption of circular cross-section in the fluid flow
problems is not justifiable in many situations. The concept of integral boundary con-
ditions played a key role in resolving this issue as such conditions can be applied to
arbitrary shaped structures. Integral boundary conditions are also found to be quite
useful in the study of thermal and hydrodynamic problems. In fact, one can find numer-
ous applications of integral boundary conditions in the fields like chemical engineering,
thermoelasticity, underground water flow, population dynamics, etc. ([17]-[20]). For
some recent results on boundary value problems integral boundary conditions, we refer
the reader to a series of articles ([21]-[32]) and the references cited therein.
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Motivated by the importance of nonlocal and integral boundary conditions, we
introduce a new kind of coupled integral boundary conditions (1.2) and solve a nonlin-
ear coupled system of second-order ordinary differential equations (1.1) equipped with
these conditions. Our main results rely on Leray-Schauder alternative and Banach
contraction mapping principle.

The rest of the paper is organized as follows. In Section 2, we present an auxiliary
lemma. The main results for the problem (1.1) and (1.2) are discussed in Section 3.
We also construct examples illustrating the obtained results. The paper concludes with
some interesting observations.

2 An auxiliary lemma

The following lemma plays a key role in defining the solution for the problem (1.1) —
(1.2).

Lemma 2.1 For fi,g; € C([a,b],R), the solution of the linear system of differential
equations

u(t) = fit), t € a0,
V() = gi(t), t € [a,b], (2.1)

subject to the boundary conditions (1.2) is equivalent to the system of integral equations

u(t) = /(t—s)fl(s)ds

1 / it — )b -9 + L+ 0= a)dalt — )] 6= 5) (o)

+/a [Alb—sZ% —¢) +L2+A2t—azp] 5])]
<(b = $)gu(s)ds ) + A%,{Z /5 [ ae-ae-nent @2
+,0](b—a)A2(t—a)}gl dpds+2/ / UJAlz% —&)(s —p)

+6;L + 6;As(t — a) Zm: } ( )dpds} ),

o = fumamom [ g
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L,

Ly
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L+ Aot — a) D 85 — )] (b — 5) fa(s)ds

7=1

_|_/b[ Ar(b—a)(b—s) + Ly + Az(b—a)(t — a)}(b—s)gl(s)ds}
A3 Z/ / b i A2>+ij3 (2:3)

g iy — &)

+0;A2(t — a Zp] 1 — 5])}91( )dpds

j=1

. i /;77 /as [ojAl(b —a)(s — p) + 0;Ls + 6;As(b — a)(t — a)} fl(p)dpds}

+Q2 (t)a

(b—a)? - (ﬁ;m)(i@(m—sn?), (2.4)
(b - o)’ (ﬁ: )(zw E7). A= Aids 20, (25
=020 W T BT (e 2s)

S (S Shg) s

jf:%<(77j;a) §j—a ><<;p]><zm: (s — 5’]) (b—a)2>

m

)(pi + 7)) (2.7)

i <(77j ; a)? (5] : a)? ) ((b —a)?*(0; +6;) — A25j)

(b — (1)3 A2
* [Z] 17](”] gj Zd L fj } (2.8)

%Z:(OBQG) (fj a) )[%Zp]nj 6]
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+(b—a)2—Ag] - (b—a) Zp ( —(b—a) ) (2.9)
2 2 Z] 1 ] j=1 ’
) = o {Al(b — @)+ [ Ly + Ag(b— a)(t - )] do + 4 ;% — &)

[L2+A2 (t—a) zj: ] } (2.10)

Ar((0—a)* — Ay
() = A—3{ z(]mﬂj(nj@R

FA(b—a)hs + [L4 + Ag(b—a)(t — a)]

Ms

Mot Lo Aalt = a) Y- 8,00, — )| 2o

1

4} (2.11)

.
Il

>~

Proof. Integrating the linear system (2.1) twice from a to t, we get

u(t) =c1 + ot —a) + / (t —s)fi(s)ds, (2.12)

v(t) = cs+cu(t —a) + / (t —s)g1(s)ds, (2.13)

where c1, co, c3 and ¢4 are arbitrary real constants.
Using the boundary conditions (1.2) in (2.12) and (2.13), together with notations (2.4),
we obtain

(b—a)er + ¢ b_& Z% i7j<(nj;a)2—(€j;a)2>c4
- / (b— f1 ds—i—Z’y]/nj/ (s —p)g1(p)dpds + A1,

. (2.14)
(b—a)cg—z pi(m;—&j)ca = / (b—s)fi(s ds—i—z pJ/ / g1(p)dpds+ o, (2.15)
- i%’(m —&)e — igj(('f?j ; a)2 - (gj ; a)2)02 + (b —a)cs + © _2a)204

- _/ab (b—28)2gl(3)d3-|—za]/ / s —p)fi(p)dpds + As,
) ~ (2.16)
N ;53(% §)ea+ (b —a)ey /a (b—s)gi(s)ds + ;5 /gj / J1(p)dpds + Ay
(2.17)
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Solving the equations (2.15) and (2.17) for ¢y and ¢4, we find that

Co :Ail[_/ab(b_s)(b—afl —i-z,o] —&)ai(s )>d
+Zr_n:f’j ;j /S <(b—a)91(P)+Z5j(nj—ﬁj)ﬁ(p))dpds

(b= a)de + Z pi(m; — &) A4} (2.18)

-l [o- s>(2m?6j<m ~E)(6) + (0= a)or(s))ds

+Z§/m/ ip] = &)a(p) + (b= ) fi(p)) dpds

+Z (0 — &) + (b — @)a). (2.19)

J=1

h
,_.

Using (2.18) and (2.19) in (2.14) and (2.16) and then solving the resulting equations
for ¢; and c¢3, we obtain

- Aig{—/ab [l(b—a)Al(b—s)+L1}(b—s)f1(s)ds

_/a E Alb_si )+ L (b~ $)ar(s)ds
_|_Z/€ /a ij(b—a)(s—p)%—ijl}gl(p)dpdS
_|_§m:/£nj /: [Alf:yjaj(nj—§j)(s—p)+5jL2]f1(p)dpd3

+A1(b — a)A\ + L1y + Ay Z%(m —&)As + L2A4}7

j=1

R N e

)
_/ab [%Al(b —a)(b—s)+ L4} (b—s)g1(s)ds
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S Al b—a, —A2> m
+Z/ / Z% +/)JLS g1(p)dpds

_] i1 iy —

; Z /g / (5416 = a)(s = p) + 6] u(p)dpds

A&@—aP—AQ
> i i — &)

Inserting the values of ¢, ¢a, c3 and ¢4 in (2.12) and (2.13), we get the solutions (2.2)
and (2.3). The converse follows by direct computation. This completes the proof. O

_|_

A+ Lo + Ar(b— a)ds + L4)\4}.

3 Main results

Let us introduce the space X = {u(t)|u(t) € C([a,b])} equipped with norm |ul =
sup{|u(t)|,t € [a,b]}. Obviously (&,| - ||) is a Banach space and consequently, the
product space (X x X, ||u,v||) is a Banach space with norm ||(u,v)|| = ||u|| + ||v|| for
(u,v) € X X X.

By Lemma 2.1, we define an operator 7 : X x X - X x X as

T(U,U)(t) = (ﬂ(uav)(t)775(uvv)(t))7
where
Ti(u, o)) = /(t—s)f(s,u(s),v(s))dHAig{—/ [%Al(b—a)(b—s)

L+ (b—a)As(t — aﬂ (b— ) f(s,u(s), v(s))ds

m

—/ [ Ai(b—s Z% — &) +L2+A2(t—a)zp(nj—€j)]

a ]:l

<= gtssaoenas+ Y [* [ o=t
o5l + pi(b = ) Aa(t = )| g(p, u(p), v(p))dpds

+Z/ / UaAleJ —&)(s —p) + ;L

+53Aa(t =) S py(n; — )] £ (o), o(p)pds | + )

i=1

T = | t — s)gls,u(s), o(8))ds + { - / b [fz((f_,yzn__éz - s)

221 AHMAD 215-235



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

8 B. Ahmad, A. Alsaedi, M. Alsulami and S.K. Ntouyas
Ly + Ax(t —a) D 855 — &)| (b= 9) (5, uls), v(s))ds
j=1

_ /ab [%Al(b —a)(b = )+ Lo+ As(b — a)(t — a)| (b 5)

Xg(s,u<s),v(s))ds+§: /{ n / S (s - p)Alg,lZ(zj __;2) (3.2)

il + 85 Ax(t = a) D pi(n; = )| 9(p, ulp), v(p))dpds

j=1

% f (. ulp), v(p))dpds | + Qa(t)

In order to prove our main results, we need the following assumptions.

(H1) There exist real constants m;,n; > 0, (i = 1,2) and mg > 0, ng > 0 such that
Yu,v € R, we have
\f(t,u,v)| < mo + m1|u] + m2|v|,

lg(t, u,v)| < ng+ nqylul + nafvl.
(H2) There exist nonnegative functions «(t), B(t) € L(0,1) and u,v € R, such that
|f(t,u,0)] < alt) + er|ulP* + e]v|P?, €1,e2 >0, 0 < py,pe <1,
(¢, u,v)| < B(t) + difu|* + do|v]?, di,do >0, 0<ly,ly <1.
(H3) There exist ¢; and /5 such that for all ¢ € [a,b] and u;,v; € R, i = 1,2, we have
|f(tur,v1) = ft uz, v2)] < G(Jur — uo| + [or = va]),
|9(t, w1, v1) = g(t, uz, v2)| < Lo(fur — uaz| + |1 — val).
For the sake of convenience in the forthcoming analysis, we set

(b—a)* (b—a)
2 2

+ |L4| + |Ag|

- (b—a)2+ 1 {|A1|(b—a)4

2 | A 6
Had () (oo g (B G

+§:6j|L2|<(m;Q)2 (& - G)Q)

2
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+[A2| (b — a)(iﬂj) (i@'(m - é}-)) (wj ; & ; a)2> }7 (3.3)

n = i 3iw g+ 18 >2+|A2|(b;“)3gpj<nj—§j>
\A1\<b—a>§;w(<m’;a>3 -+ Zmﬂl( N
x| (b a>2§;pj((”j;a)2 - (@;“)2)}, (3.4)
@ = VL‘{ Alz(ib;ji:’;)\(b;a)g+\L3|M+1Azr@
+,z;w4|< "ﬂ';“z - (5];@) )
- 3o, (Ml Gy (35)
S A{lAl(b USRI SO
e
B SR
+|A2|<b-a>(§;aj>(§;pj<m gt -Gy 3:5)
= sup (0], 3 = sup 19500 37)
Morcover, we set
QA=q+@ Q=0a+q I=XM+\, (3.8)

where ¢;, G; and ); (i=1,2) are given in the equations (3.3) — (3.7) and

Qo = min{l - (lel + Q2n1)7 1- (Q1m2 + anz)}, mg,n; > 0 (Z =1, 2)- (3-9)
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3.1 Existence of solutions

In this subsection, we discuss the existence of solutions for the problem (1.1)-(1.2) by
using standard fixed poit theorems.

Lemma 3.1 (Leray-Schauder alternative [33]). Let T : K — K be a completely con-
tinuous operator (i.e., a map that restricted to any bounded set in K is compact). Let
wT) ={xr e K:x = ¢Il(x) for some 0 < ¢ < 1}. Then either the set w(T) is
unbounded, or T has at least one fized point.

Theorem 3.2 Assume that condition (Hy) holds. In addition it is assumed that
lel + anl <1 and leg + ang <1, (310)

where Q1 and Qs are given by (3.8). Then there exist at least one solution for problem
(1.1) — (1.2) on [a, b

Proof. First of all, we show that the operator 7 : X x X — X x X’ is completely
continuous. Notice that the operator T is continuous as the functions f and g are
continuous. Let T C X x X be bounded. Then there exist positive constants ~; and
ky such that |f(t,u(t),v(t))| < &y, |g(t, u(t),v(t))| < Ky, V(u,v) € T. Then, for any
(u,v) € T, we can obtain

|71 (u,v)(t)] =  sup ‘/ (t —s)f(s,u(s), ())ds—Aig{/ab [%Al(b—a)(b—s)

te(a,b)

Lo+ (b—a)Ag(t — a)} (b— ) f(s,u(s), v(s))ds

+/[Alb—si £]+L2+A2t—ai - &)]

<(b = 5)g(s. u(s), (s)) Z// (b= a)(s— p)
piLa -+ py(b— @) As(t — a)] 9(p. ulp), o(p))dpds

+Z/ / ajAlz% —&)(s —p) + &; L

+53alt = )Y s — )] £ ulp). op)ipds} + 94 0)

j=1

SK’f{(b—Qa) ’A||:‘Al‘¥+u/1’(b_2a> —|—’A2’(b_2a)

+|A1|<§%‘> (;aj(ﬁj - fj)) (mj ;!a)g -& ;!a)3>
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+§:5j|L2|((77j;a)2 B (fj;a)2>

e <ij><
+"””9{|A ,[lAl
ip
A - a) f;%( a)? (gjg!a)3>
*;mm( oo &=y

+\A2\(b—a)2ipj<(m;a)2 (& - a)2>]}+A1

< Krq1 + kgqa + A,

)((m;a) _(&;a) ]}

(b—a)?
2

5] + ’L2|

+|A2

which implies that -
[Ti(u, 0)|| < Krar + Kg@r + A1

Similarly, it can be found that
[ T2(u, V)| < Kfg2 + kgl + Ao
Consequently, we get || T (u,v)(t)]] < k;Q1 + kyQa + A (Q1 , Qo and \ are given by

(3.8)), which implies that the operator 7 is uniformly bounded. Next, we show that
T is equicontinuous. For t,ty € [a,b] with ¢; < t5, we have

!ﬂ(u,tv)@z) = Ti(u, v)(t1))| t
/a 1 |:(t2 —8)—(t; — s)}ds + /tlQ(tQ — s)ds

+(t2|A_1|tl){ [/(b—a b—sds+ Zé /n/ ij — &) dpds]
+mg[/a ij — &) b—sds+Z/ /pjb—adpds}

b—a)\z—l—Zp] - &) >\4}

IN

kf
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(t2 — t1>2] n (t2 —tl){ﬁf[(b— a)®

< Ky [(tQ )t —a) +

2 | A 2
(S0 (St - (52 - 55
+mg[gpj(77j—€j)(b 5 @) +(b—a) i < 2 (gj;a)Q)]

+(b—a)\s + Zp] - &) )\4} — 0 independent of u and v as (ty —t1) — 0.

Similarly, one can obtain
| Ta(u, 0)(t2) = Ta(u, v)(t1)|

= g [(tQ —t)(thh —a) + < _2t1)2] - (t7;1f1) {/ff [i&(ﬁj - &) (o)

- a)i(sj((m _ a)? ; a>2)]

[ (£0) (Snin-0) (252 - 5]

+Z d;(nj — &) A+ (b— a))\4} — 0 independent of v and v as (ty —t1) — 0.
Finally, we will verify that the set w = {(u,v) € X x X|(u,v) = ¢T (u,v),0 < p < 1}
is bounded. Let (u,v) € w. Then (u,v) = ¢T (u,v) and for any t € [a, b], we have

u(t) = ¢Ti(u,v)(t), v(t) = ¢Ta(u, v)(t).
Then

lu(®)] < qi(mo + ma[ull +ma||v]]) + G (no + naflull +naflvll) + A
q1mo + @ + (ma + @una) [[ul] + (qume + G@ng) [|v]| + A,

and

()] < qa(mo +mallull + mallvl]) + G2(no + nallull + nallv]]) + A
Gamo + @no + (gemi + Gna) |[ull + (gama + G@na)|[v|| + .

Hence, we have

lull + vl < (¢ +q2)mo + (@ + @2)no + [(q1 + g2)ma + (@1 + G2)na]||ul|
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+H(a1 + g2)ma + (G + G)nall|v]l + M+ Ao,
which, in view of (3.9) and (3.10), yields

Q1mo + Qang + A
Qo ’
for any ¢ € [a, b], which proves that the set w is bounded. Hence, by Lemma 3.1, the

operator T has at least one fixed point. Therefore, the problem (1.1) — (1.2) has at
least one solution on [a, b]. This completes the proof. a

I, )] <

Next, we apply Schauder fixed point theorem to prove the existence of solutions
for the problem (1.1)-(1.2) by imposing the the sub-growth condition on the nonlinear
functions involved in the problem.

Theorem 3.3 Assume that (Hs) holds. Then, there exist at least one solution on [a, D]
for the problem (1.1) — (1.2).

Proof. Define a set Y in the Banach space X x X by
V={(u,v) € ¥ x X :||(u,0)] <y},
where
y = max{7A, 7Q1a(t), 7Qa8(1), (TQ1e1) =71, (TQ1€5) =7 , (TQady) =7 , (TQads) =11 }.

In order to show that 7 : Y — Y. We have

T o)) =  sup ‘/ (t = ) f(s, u(s), ())ds—Aig{/: [%Al(b—a)(b—s)

te(a,b]

Lo+ (b—a)As(t — a)} (b— ) f(s,u(s), v(s))ds

m

w [ a9 Z% ~6)+ Lt Aalt =) Dty )
X(b—s)g(s,u(s),v(s)) Z/ / v;A1(b—a)(s —p)

oyl + py(b — a) Aot - a)] 9(p. u(p), v(p))dpds

+zm:/:j /as [UjAlzmz%( — &) (s —p) +0;L
+0;A2(t — a) iﬂj(m - é})} f(p,u(p), v(p))dpds} + Ql(t))
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< (al) +arlul + vl g+ (B0) + dful" +dolol?) g + A,
which implies that
172 0)ll < (o) + rful” + exfo] ) + (B() + diful + dafo]* )@ + A
Analogously, we have
1T, )| < (at) + exful” + el ) g + (B0) + diful + dofo]* ) g + o
In consequence,
17w, o)l < (alt) + eul™ + eafol) Qu + (B(E) + diful® + dafv]*) Qs + X < y,

where @, , Q@ and ) are given by (3.8). Therefore, we conclude that 7 : Y — Y, where
Ti(u,v)(t) and Tz(u,v)(t) are continuous on [a, b].
Now we prove that 7 is completely continuous operator by fixing that

G = max |f(t,u(t),v(t))|, H = max |g(t,u(t),v(t))|.

t€(a,b] t€(a,b]
Letting t, 7 € [a,b] with a <t < 7 < b and (u,v) € Y, we get
| T (u, 0)(7) = Ta(u, 0)(1))]

gG[(T—t)(t—a)Jr(T;t) o

+<ilpj) (il@'(m - @-)) ((m ; & ; a)Q)}

+H[Zm:ﬂj(77j —§j)<b_2a)2 + (b - a>§:pﬂ'<(m B a>2>}

=1

|+

+(b — CL))\Q + Zp](m — @))\4} — 0 as (7' — t) — 0.
j=1

In a similar manner, one can obtain
| Ta(u, 0) (1) = Ta(u, v)(t)]
<alir - -a+ T E 6 g - )0

b a)i;éj((m ; a)?® (& ; a)2>]
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b = & —a)? (& —a)?
[ E5 (0) (Snn ) (5 - 5]
j=1 j=1

+Za —g) )\2+(b—a))\4}—>0as(7'—t)—>0.

Thus the operator 7Y C Y is equicontinuous and uniformaly bounded set. Hence T
is a completely continuous operator. So, by Schauder fixed point theorem, there exist
a solution to the problem (1.1) — (1.2). O

3.2 Uniqueness of solutions

Here we establish the uniqueness of solutions for the problem (1.1) — (1.2) by means
of Banach’s contraction mapping principle.

Theorem 3.4 Assume that (Hs) holds and that
ngl + QQEQ < 1, (3.11)

where Q1 and Qo are given by (3.8). Then the problem (1.1)—(1.2) has a unique solution
on [a, b].

Proof. Define sup;c(, | f(t,0,0)] = Ni,sup,eiy 19(¢,0,0)] = Nz and
> Q1N1 + Q;Ny + X
T 1= (Qly + Qaln)
Then we show that 7B, C B,, where B, = {(u,v) € X x X : ||(u,v)|| < r}. For any
(u,v) € By, t € [a,b], we find that

’f(S,U(S),U(S)” = |f(s,u(s),v(s)) - f(87070) + f(37070)|
|f (s, u(s), v(s)) — f(s,0,0)| + [f(s,0,0)]
Gl[ull + [vll) + Ny < G| (u, 0)[| + Ni < b + Ny,

and

l9(s,u(s),v(s))] = lg(s, uls),v(s)) = g(s,0,0) + g(s,0,0)|
19(s,u(s),v(s)) = g(s,0,0)| +|g(s,0,0)]

<
< O([lull +lvll) + N2 < bf|(u, 0)[| + Na < bor + N

Then, for (u,v) € B,., we obtain

17, (u, 0)(1)] < sup ]/ (t — ) f (s, uls), ())dHAig{—/: [%Al(b—a)(b—s)

t€(a,b]
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Lo+ (b—a)As(t — a)} (b— ) f(s,u(s), v(s))ds

m

—/a [ Ai(b—s) Z% — &) +L2+A2(t—a)zf0(m—§j)}

J=1

o= gts, oo+ Y [ [ o=t
oyl + py(b = a) Aot - a>] 9(p. u(p), v(p))dpds

+Z/ / UaAleJ —p)+0,;Lo

+55Aa(t — 0) 3 3l — )] £ o). o(p))dpds ) + )

j=1

< [lr+ NJ] % {(b;“) {|A1|(b 6“) +|L1|(b_2&)

NGk +Z<5 L) (s Gy

+|A1|<§%>< ' o;(n; —€j)><(77j ;!&)3 (& ;!a)?,)

Jj=1

+]A2|(b — a)(zmjpg) (iéj(m - 5;’)) ((TU ; LG ; a)2>}

Jj=1 J=1

e+ 3 { o (AP S - ) 4 1205

Xﬁ;vj((m ;'a)3 B (& . ) >+§PJ|L1|<(UJ 5 a)? - (& ;a)2>
T ] (iU Rl ) B

< q(tsr + Ny) + @i (bar + No) + Ay

|77 (u, ) || < qu(lar + Ny) + @ (bar + No) + Ay

Likewise, we find that

”75<u7 U)H < QQ(&T + Nl) + Cj2(€27’ -+ NQ) + 5\2.
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From the above estimates, it follows that that || 7 (u,v)|| < 7.

Next we show that the operator T is a contraction. For (uy,v1), (ug,v3) € X X X,
we have

|71 (ur, v1)(t) — Ti(uz, v2)(t)]
< t?{% {/a (t = s)|f(s,ui(s),vi(s)) — f(s,ua(s), va(s))

4%{AT§Ama—@w—@+Ja+w—a»%w—aﬂw—@

+’A3
x| Flsw(5), 0a(s) = £ (5, ua(s), va(s))
/b[ 1A, ( b—si §]+L2+|A2t—a§: }
x(b—s) ’g s, up($), vl(s)) — g(s,us(s), va(s) ‘ds}
|A3 Z/ / AN B = a)(s =) + pyLa + py(b— a)| Aot — )]
% |9, w1 (0), v1(0)) = gp. wa(p), v2(0)) | dpds
+é/€jﬂ'/:[aj‘j41|g;%(nj—§j p) + 0; L + §;| As t—ai:: }
% | £ (), 01 (0) = F(p (), ()| dpds |

i

—|—|A2|( + | A1 (Z%) <in:aj(77j - fj)> (mj ; L& ;!a)?))
+i6ju:z!( e

+[A2[ (b — a)(ipj) (iéj(m‘ - ﬁj)) <(nj ; BN ; a)2>]}

ds

ds

(b—a)*
6

(b—a)?

bh— 2
61(]u1—u2|+\111—02]) X {( 2@)

IN

+ [ L]

j=1 j=1
3 m (b a)2
+62<|ul—u2|+|v1—vz|>><{|A [l 1 2;% + Ll
]:
. ((—a)® (§—a)
—|—|A2 Zp] 5] —|—|A1 b—a ny]< J 33' >
7j=1
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+§5wwﬂ6m;af_(€— ))+M2b_a E:%< aV_(&;aVﬂ}

< (bag + 6a)(Jur — us| + v — va]),
which yields
171 (ur, v1) = Tiuz, v2)|| < (Guqy + Laqu)(Jur — uz| + [v1 — v2]).
Similarly,
[ T2(ur, v1) — Ta(uz, va)|| < (brga + lada)(|ur — ua| + |v1 — v2l).
So, it follows from the above inequalities that
[T (ur, v1) = T (ug, v2) || < (Quly + Q2la)([[ur — us| + [lvr — val]),

where )1 and Q2 are given by (3.8). By the given assumption (3.11), it follows that
the operator T is a contraction. Thus, by Banach’s contraction mapping principle, we
deduce that the operator 7 has a fixed point, which corresponds to a unique solution
of the problem (1.1)-(1.2) on |a, b]. O

Example 3.5 Consider the following second order system of ordinary differential equa-
tions

| ) —t
( vet,  te[2,3]

V'(t) = +tan 1v(t)> +cos (t—2), t €[2,3],

V32 + 12 (
subject to the boundary conditions

3

3 nj
/ dS—Z%/ ds+2/ u'(s)ds:ij/ v'(s)ds + 1,
2 = &
; S . B13)
/ dS—ZO'J/ s)ds + — /2 U’(s)ds:;dj/gj u’(s)ds+§,
where a = 2,0 = 3;m = 3,0\ = 2,0 = 1,A3 = 3/2,\y = 1/2,71 = 2/5,7% =
21/40773 = 13/20701 = 1/3702 = 1/2>P3 = 2/370—1 = 3/7702 = 5/7703 = 17(51 =
3/8,0, = 5/8,05 = 7/8,61 = 15/7,1 = 16/7,65 = 177,10 = 18/7,& = 197,15 =
20/7.

Using the given data, we find that ¢; = %, ly = %, Ay ~ 0.827806 # 0, Ay ~ 0.793367 #
0, A3 =~ 0.656754, |L,| = 0.03337, |Ls| ~ 0.225389, |Ls| ~ 0.027121,|L4| ~ 0.185097,
¢~ 1.963984, ¢ ~ 1.422591, 1 ~ 1.290164 and ¢ ~ 1.851349. Also Q101 + Q205 =~
0.832853 < 1 (@1 and @)y are given by (3.8)). Thus, all the conditions of Theorem
3.4 are satisfied. Hence it follows by the conclusion of Theorem 3.4 that the problem
(3.12) — (3.13) has a unique solution on |2, 3].
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4 Conclusions

The salient features of this work includes (i) considering a coupled system of nonlinear
ordinary differential equations on an arbitrary domain (7i) a new kind of integral multi-
strip coupled boundary conditions. The results obtained for the given problem are new
and significantly contribute to the existing literature on the topic. As a special case,
our results correspond to the uncoupled integral boundary conditions of the form:

b b b b
/ u(s)ds = /\1,/ u'(s)ds = Ag; / v(s)ds = )\3,/ v'(s)ds = Ay,

if we take all v, =0,p; =0,0;, =0,6; =0 (j = 1,...,m) in the results of this paper.
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