Fixed Point Theorems for Admissible Mappings in Fuzzy Metric Spaces

Satya Narayan¹, Amit Kumar²

^{1,2}Department of Mathematics, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India. Email: amitsu48@gmail.com¹, snarayan1192@gmail.com²

Received: 20.06.2024 Revised: 18.10.2024 Accepted: 04.11.2024

ABSTRACT

The aim of authors in this manuscript is to establish the sufficient condition to determine the fixed points for continuous mappings under (α, β) -weakly contraction mapping of type A and B in fuzzy metric spaces. To demonstrate the established result an example is also given. Our result is generalization of [5, Theorem 2.1] from metric spaces to fuzzy metric spaces.

Keywords: Fixed point theorem; Weak contraction.

1. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [6] in 1965 to obtain a more accurate and natural method for mathematical modeling of situations which involve vagueness and uncertainty because of the existence of non-probabilistic elements. This concept was thoroughly investigated by several authors in the form of fuzzy metric space, which was originally introduced by Kramosil and Michalek [2]. Kramosil and Michalek further developed this theory since then and have shown quite a number of interesting applications for it, mostly in topology and analysis. The formal definition of the concept is as follows:

Definition 1.1: [2] A fuzzy metric space is a triple (X, M, *), where $X \neq \phi$, * is a continuous t-norm and M is a fuzzy set on $X^2 \times [0, \infty)$ such that following properties hold:

- 1. M(x, y, 0) = 0, $\forall x, y \in X$;
- 2. $M(x, y, t) = 1, \forall t > 0 \text{ iff } x = y;$
- 3. $M(x, y, t) = M(y, x, t), \forall x, y \in X, t > 0;$
- 4. $M(x, y, \cdot): [0, \infty) \to [0,1]$ is left continuous for all $x, y \in X$;
- 5. $M(x,z,t+s) \ge M(x,y,t) * M(y,z,s)$ for all $x,y,z \in X\&s,t > 0$.

This space is referred as KM - Fuzzy metric space and has been generalized by George and Veeramani [1] in the following manner:

Definition 1.2: A fuzzy metric space is a triple (X, M, *), where $X \neq \phi$, * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ such that following properties hold:

- 1. M(x,y,t) > 0, $\forall x,y \in X, t > 0$;
- 2. $M(x, y, t) = 1, \forall t > 0 \text{ iff } x = y;$
- 3. $M(x, y, t) = M(y, x, t), \forall x, y \in X, t > 0;$
- 4. $M(x, y, \cdot): (0, \infty) \to (0,1]$ is continuous for all $x, y \in X$;
- 5. $M(x,z,t+s) \ge M(x,y,t) * M(y,z,s)$ for all $x,y,z \in X$ and s,t > 0.

Value of M(x, y, t) is known as degree of nearness between x and y with respect to t' and from axiom (2) we can relate the value 0 & 1 of a fuzzy metric to the notions of ∞ and 0 of classical metric, respectively. The condition (5) is a fuzzy version of triangular inequality.

Example 1.3:Consider the metric space (\mathbb{Z},d) , where d(x,y)=|x-y| is the usual Euclidean distance on the real line. Now, let us define the fuzzy set M(x,y,t) as $M(x,y,t)=\frac{t}{t+|x-y|}$ for t>0. Now, let the maximum norm * be defined as $a*b=\max\{a,b\}$. Then the triplet $(\mathbb{Z},M,*)$ forms a fuzzy metric space. Recently, in the reeling notion of weak contraction mapping of type A and B, Tiwari and Som [5] have established a fixed-point result for (ϕ,ψ) -weak contraction in fuzzy metric space.

Definition 1.4: [4] Let X be a nonempty set and $\alpha: X \times X \to [0, \infty)$. We say a self mapping f on X is α admissible if $\alpha(x,y) \ge 1$, then $\alpha(fx,fy) \ge 1$, for all $x,y \in X$. To understand the aforementioned concept, we have the following example:

Example 1.5: [4] Let $X = [0, \infty)$. Then define $f: X \to X$ such that $f(x) = \frac{x}{2}$ for all $x \in X$ and $\alpha: X \times X \to X$ $[0, \infty)$ such that

$$\alpha(x,y) = \begin{cases} 0, & x < y \\ \frac{1}{1 + |x - y|}, & x \ge y \end{cases}$$

Clearly for $\alpha(x, y) \ge 1$, we have $\alpha(fx, fy) \ge 1$. Therefore, f is α -admissible.

The concept of generalized (α, β) -weakly contraction mapping of type A is as follow:

Definition 1.6: Let (X, M, *) be a fuzzy metric space and let $\alpha, \beta: X \times X \to [0, \infty)$ be two given mappings. Assume f is a self mapping on X and ψ , $\phi: [0, \infty) \to [0, \infty)$, where ψ is altering distance function and ϕ is a continuous function such that $\phi(t) = 0$ iff t = 0. We say f is generalized (α, β) -weakly contraction mapping

$$\psi\left(\frac{1}{M(fx,fy,t)}-1\right) \le \beta(x,y)\psi(m(x,y)) - \alpha(x,y)\phi\left(\max\left\{\frac{1}{M(x,y,t)}-1\right\},\left\{\frac{1}{M(y,fy,t)}-1\right\}\right)$$
(1)

where

$$m(x,y) = \max \left\{ \left(\frac{1}{M(x,y,t)} - 1 \right), \left(\frac{1}{M(x,fx,t)} - 1 \right), \left(\frac{1}{M(y,fy,t)} - 1 \right), \frac{1}{2} \left[\left(\frac{1}{M(x,fy,t)} - 1 \right) + \left(\frac{1}{M(y,fx,t)} - 1 \right) \right] \right\}$$

concept of generalized (α, β) -weakly contraction mapping of type B is as follow:

Definition 1.7: Let (X, M, *) be a fuzzy metric space $\alpha, \beta: X \times X \to [0, \infty)$ be two given mapping. Assume that f is a self-mapping on X and $\phi: [0, \infty) \to [0, \infty)$, where ψ is altering distance function and $\phi(t) = 0 \Leftrightarrow t = 0$. We say f is generalized (α, β) -weakly contraction mapping of type B, if $\forall x, y \in X$, $\psi\left(\frac{1}{M(fx, fy, t)} - 1\right) \leq \beta(x, y)\psi(m(x, y)) - \phi\left(\max\left\{\left(\frac{1}{M(x, y, t)} - 1\right), \left(\frac{1}{M(y, fy, t)} - 1\right)\right\}\right)$, (2)

$$\psi\left(\frac{1}{M(fx, fy, t)} - 1\right) \le \beta(x, y)\psi(m(x, y)) - \phi\left(\max\left\{\left(\frac{1}{M(x, y, t)} - 1\right), \left(\frac{1}{M(y, fy, t)} - 1\right)\right\}\right), (2)$$

$$m(x,y) = \max \left\{ \left(\frac{1}{M(x,y,t)} - 1 \right), \left(\frac{1}{M(x,fx,t)} - 1 \right), \left(\frac{1}{M(y,fy,t)} - 1 \right), \frac{1}{2} \left(\left(\frac{1}{M(x,fy,t)} - 1 \right) + \frac{1}{M(y,fx,t)} - 1 \right) \right) \right\}.$$

Definition 1.8:Let X be a nonempty set and $\beta: X \times X \to [0, \infty)$. We say a mapping $f: X \to X$ is β_0 subadmissible if for all $x, y \in X$ it satisfies the following inequalities

$$0 < \beta(x, y) \le 1 \Longrightarrow 0 < \beta(fx, fy) \le 1 \tag{3}$$

Definition 1.9: [3] Let *X* be a nonempty set. The mapping $\alpha: X \times X \to [0, \infty)$ is called forwarded transitive $\alpha(y,z) \geq 1$, then $\alpha(x,z) \geq 1$,

Definition 1.10: [3] Let X be a nonempty set. The mapping $\alpha: X \times X \to [0, \infty)$ is called 0 –backward transitive if $0 < \alpha(x, y) \le 1$ and $0 < \alpha(y, z) \le 1$, then $0 < \alpha(x, z) \le 1$, for all $x, y, z \in X$.

Main Results

Theorem 2.1: Suppose (X, M, *) is fuzzy metric space and $\alpha, \beta: X \times X \to [0, \infty)$ be two given mappings such that β is 0 –backward transitive and α is forward transitive. Assumethat f is generalized (α, β) weakly contraction mapping of type A. If f is continuous, α -admissible, β_0 sub-admissible, and there exist $x_0 \in X$ such that $(x_0, fx_0) \ge 1 \ge \beta(x_0, fx_0) > 0$, then f has fixed point in X.

Proof: If we consider an arbitrary element $x_0 \in X$, then in view of the forward transitiveness of α along with the sequence $x_{n+1} = fx_n$, $\forall n \in \mathbb{Z} \cup \{0\}$, one can find an element $n_0 \in \mathbb{Z} \cup \{0\}$ such that $x_{n_0} = x_{n_0+1}$. Thus x_{n_0} is fixed point of f.

Now suppose that $x_n \neq x_{n+1} \forall n \in \mathbb{Z} \cup \{0\}$. Using the condition that there exist $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1 \ge \beta(x_0, fx_0) > 0$ one have

$$\alpha(x_0, x_1) \ge 1 \ge \beta(x_0, x_1) > 0 \tag{4}$$

Since f is α -admissible,

$$\alpha(fx_0, fx_1) \ge 1 \ge \beta(fx_0, fx_1) > 0 \tag{5}$$

and hence

$$\alpha(x_1, x_2) \ge 1 \ge \beta(x_1, x_2) > 0 \tag{6}$$

 $\alpha(x_1,x_2) \geq 1 \geq \beta(x_1,x_2) > 0$ Proceeding as above, we get a sequence $\{x_n\}$ in X such that $x_{n+1} = fx_n$ and $\alpha(x_n,x_{n+1}) \geq 1 \geq \beta(x_n,x_{n+1}) > 0 \forall n \in \mathbb{Z} \cup \{0\}$ Clearly, for all $n \in \mathbb{Z} \cup \{0\}$, one has

$$\alpha(x_n, x_{n+1}) \ge 1 \ge \beta(x_n, x_{n+1}) > 0 \,\forall n \in \mathbb{Z} \cup \{0\}$$

$$\tag{7}$$

$$\psi\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right) = \psi\left(\frac{1}{M(fx_n, fx_{n+1}, t)}\right) \le \beta(x_n, x_{n+1})\psi(m(x_n, x_{n+1}))$$

$$-\alpha(x_n, x_{n+1})\phi\left(\max\left\{\left(\frac{1}{M(x_n, x_n, t)} - 1\right), \left(\frac{1}{M(x_{n+1}, fx_{n+1}, t)} - 1\right)\right\}\right)$$

$$\le \psi\left(m(x_n, x_{n+1})\right) - \phi\left(\max\left\{\left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right), \left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right)\right\}\right)$$

where

$$m(x_{n}, x_{n+1}) = \max \left\{ \left(\frac{1}{M(x_{n}, x_{n+1}, t)} - 1 \right), \left(\frac{1}{M(x_{n}, fx_{n}, t)} - 1 \right), \left(\frac{1}{M(x_{n+1}, fx_{n+1}, t)} - 1 \right), \frac{1}{2} \left(\left(\frac{1}{M(x_{n}, fx_{n+1}, t)} - 1 \right) + \frac{1}{M(x_{n+1}, fx_{n}, t)} - 1 \right) \right) \right\}$$

$$= \max \left\{ \left(\frac{1}{M(x_{n}, x_{n+1}, t)} - 1 \right), \left(\frac{1}{M(x_{n}, x_{n+1}, t)} - 1 \right), \left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1 \right), \frac{1}{2} \left(\left(\frac{1}{M(x_{n}, x_{n+1}, t)} - 1 \right) + \frac{1}{M(x_{n+1}, x_{n+1}, t)} - 1 \right) \right) \right\}$$

$$= \max \left\{ \left(\frac{1}{M(x_{n}, x_{n+1}, t)} - 1 \right), \left(\frac{1}{M(x_{n}, x_{n+1}, t)} - 1 \right), \frac{1}{2} \left(\frac{1}{M(x_{n}, x_{n+2}, t)} - 1 \right) \right\}$$

$$(8)$$

Equations (7) and (8) can be utilized to obt

$$\psi\left(\frac{1}{M(x_{n+1},x_{n+2},t)}-1\right)\right)\leq\psi\left(\max\left\{\left(\frac{1}{M(x_n,x_{n+1},t)}-1\right),\left(\frac{1}{M(x_{n+1},x_{n+2},t)}-1\right)\right\}\right)\\ -\phi\left(\max\left\{\left(\frac{1}{M(x_n,x_{n+1},t)}-1\right),\left(\frac{1}{M(x_{n+1},x_{n+2},t)}-1\right)\right\}\right),\forall n\in\mathbb{Z}\cup\{0\}$$
 We now aim to demonstrate that the sequence
$$\left\{\frac{1}{M(fx_n,fx_{n+1},t)}-1\right\} \text{ is monotonic decreasing. On contrary,}$$

for some n

$$\left(\frac{1}{M(fx_{n-1}, fx_n, t)} - 1\right) < \left(\frac{1}{M(fx_n, fx_{n+1}, t)} - 1\right)$$
(10)

In light of equation (9), one obtains
$$\psi\left(\frac{1}{M(fx_{n-1},fx_n,t)}-1\right) \leq \leq \psi\left(\max\left\{\left(\frac{1}{M(fx_{n-1},fx_n,t)}-1\right),\left(\frac{1}{M(fx_n,fx_{n+1},t)}-1\right)\right\}\right) (11)$$

$$\psi\left(\frac{1}{M(fx_{n-1}, fx_n, t)} - 1\right) \le \psi\left(\frac{1}{M(fx_n, fx_{n+1}, t)} - 1\right) - \phi\left(\frac{1}{M(fx_n, fx_{n+1}, t)} - 1\right) (12)$$

$$\Rightarrow \phi\left(\frac{1}{M(fx_n, fx_{n+1}, t)} - 1\right) \le 0$$

this provides that $\left(\frac{1}{M(x_{n+1},x_{n+2},t)}-1\right)=0$, and hence $x_{n+1}=x_{n+2}$, a contradiction. Therefore, the sequence $\left\{\frac{1}{M(fx_n,fx_{n+1},t)}-1\right\}$ is monotonic decreasing. We will now prove that $\{x_n\}$ is a Cauchy sequence. To do this suppose that

$$\lim_{n\to\infty}\left(\frac{1}{M(x_{n+1},x_{n+2},t)}-1\right)=\Lambda(t)$$

 $\lim_{n\to\infty}\left(\frac{1}{M(x_{n+1},x_{n+2},t)}-1\right)=\Lambda(t)$ Now we shall prove that $\Lambda(t)=0,\ \forall t>0.$ On contrary there corresponds some t>0 such that $\Lambda(t)<0.$ Assuming that limit $n \to \infty$ in (12), we get

$$\psi(\Lambda(t)) \le \psi(\Lambda(t)) - \phi(\Lambda(t))$$

this implies that $\phi(\Lambda(t)) \leq 0$, a contradiction. Therefore, $\{x_n\}$ is a Cauchy Since *X* is complete metric space, there exist x^* such that $x_n \to x^*$ as $n \to \infty$. By continuity of *f*,

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f x_n = f x^*$$

$$f x^* = x^*.$$

Therefore, one conclude that

Theorem 2.2: Suppose (X, M, *) is fuzzy metric space and $\alpha, \beta: X \times X \to [0, \infty)$ be two given mappings such that β is 0 -backward transitive and α is forward transitive. Assume that f is generalized (α, β) weakly contraction mapping of type B. If f is continuous, α -admissible, β_0 sub-admissible, and there exist $x_0 \in X$ such that $(x_0, fx_0) \ge 1 \ge \beta(x_0, fx_0) > 0$, then f has fixed point in X.

Proof: Suppose that for any element $x_0 \in X$, owing to the forward transitiveness of α and sequence $x_{n+1} = fx_n \forall n \in \mathbb{Z} \cup \{0\}$, we get an element $n_0 \in \mathbb{Z} \cup \{0\}$ with the property that $x_{n_0} = x_{n_0+1}$. Therefore, x_{n_0} is fixed point of f.

Let $x_n \neq x_{n+1}, \forall n \in \mathbb{Z} \cup \{0\}$. Using the condition that $x_0 \in X$ exists such that $\alpha(x_0, fx_0) \geq 1 \geq \beta(x_0, fx_0) > 1$ 0 is satisfied, one have

$$\alpha(x_0, x_1) \ge 1 \ge \beta(x_0, x_1) > 0 \tag{13}$$

Since f is α -admissible,

$$\alpha(fx_0, fx_1) \ge 1 \ge \beta(fx_0, fx_1) > 0 \tag{14}$$

and hence

$$\alpha(x_1, x_2) \ge 1 \ge \beta(x_1, x_2) > 0 \tag{15}$$

In the similar vein, we get $\{x_n\}$ is sequence in X such that $x_{n+1} = fx_n$ and

$$\alpha(x_n, x_{n+1}) \ge 1 \ge \beta(x_n, x_{n+1}) \text{ for all } n \in \mathbb{Z} \cup \{0\}$$

$$\tag{16}$$

Moreover, for each $n \in \mathbb{Z} \cup \{0\}$,

$$m(x_n, x_{n+1}, y) = \max \left\{ \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1 \right), \left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1 \right) \right\}$$

Moreover, for each
$$n \in \mathbb{Z} \cup \{0\}$$
, $m(x_n, x_{n+1}, y) = \max\left\{\left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right), \left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right)\right\}$
Since f is generalized (α, β) -weakly contraction mapping of type B , for all $n \in \mathbb{Z} \cup \{0\}$, we get
$$\psi\left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right) = \psi\left(\frac{1}{Mfx_n, fx_{n+1}, t} - 1\right) \leq \alpha(x_n, x_{n+1})\psi\left(\frac{1}{M(fx_n, fx_{n+1}, t)} - 1\right)$$

$$\leq \beta(x_n, x_{n+1})\psi(m(x_n, x_{n+1})) - \phi\left(\max\left\{\left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right), \left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right)\right\}\right)$$

$$\leq \psi\left(\max\left\{\left(\frac{1}{M(x_n, x_n, t)} - 1\right), \left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right)\right\}\right)$$

$$\leq \psi\left(\max\left\{\left(\frac{1}{M(x_n, x_n, t)} - 1\right), \left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right)\right\}\right)$$

$$-\phi\left(\max\left\{\left(\frac{1}{M(x_n, x_n, t)} - 1\right), \left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right)\right\}\right).$$

This indicates that

$$\psi\left(\frac{1}{M(x_{n+1},x_{n+2},t)}-1\right) \leq \psi\left(\max\left\{\left(\frac{1}{M(x_n,x_{n+1},t)}-1\right),\left(\frac{1}{M(x_{n+1},x_{n+2},t)}-1\right)\right\}\right)$$

$$-\phi\left(\max\left\{\left(\frac{1}{M(x_n,x_{n+1},t)}-1\right),\left(\frac{1}{M(x_{n+1},x_{n+2},t)}-1\right)\right\}\right)$$
 We have now demonstrated that the sequence
$$\left\{\frac{1}{M(x_{n+1},x_{n+2},t)}-1\right\} \text{ is monotonically decreasing sequence.}$$

On contrary, for some n,

$$\left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right) < \left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1\right) \tag{17}$$

By inequality (16), we have
$$\psi\left(\frac{1}{M(fx_{n-1},fx_n,t)}-1\right) \leq \psi\left(\max\left\{\left(\frac{1}{M(fx_{n-1},fx_n,t)}-1\right),\left(\frac{1}{M(fx_n,fx_{n+1},t)}-1\right)\right\}\right) (18)$$
Using (17) and (18),

$$\psi\left(\frac{1}{M(fx_{n-1},fx_n,t)}-1\right) \leq \psi\left(\frac{1}{M(fx_n,fx_{n+1},t)}-1\right) - \phi\left(\frac{1}{M(fx_n,fx_{n+1},t)}-1\right)(19)$$

$$\Rightarrow \phi\left(\frac{1}{M(fx_n,fx_{n+1},t)}-1\right) \leq 0$$

$$\Rightarrow M(x_{n+1},x_{n+2},t)-1)=1 \text{ that implies } x_{n+1}=x_{n+2}$$
a contradiction. Therefore $\left\{\frac{1}{M(fx_n,fx_{n+1},t)}-1\right\}$ is monotonically decreasing

Now, we shall prove that $\{x_n\}$ is a Cauchy sequence. To do this first suppose that

decreasing

$$\lim_{n \to \infty} \left(\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1 \right) = \Lambda(t)$$
 (20)

Now our aim is to show that $\Lambda(t) = 0, \forall t > 0$. On the contrary there corresponds some t > 0 such that $\Lambda(t) < 0$. Taking limit $n \to \infty$ in (17), we get

$$\psi(\Lambda(t)) \le \psi(\Lambda(t)) - \phi(\Lambda(t)) \tag{21}$$

This implies $\phi(\Lambda(t)) \leq 0$, a contradiction, and hence $\{x_n\}$ is Cauchy sequence. Since X is complete metric space, $\exists x^*$ such that $x_n \to x^*$ when $n \to \infty$. By the continuity of f, we have $\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f x_n = f x^*$.

Therefore, we conclude that x^* is a fixed point.

Example 2.3: Let X = [0,1] and (X, M, *) be a complete fuzzy metric space. Consider $M(x, y, t) = e^{\frac{-|x-y|}{t}}$, $\phi(t) = \frac{t}{2}$, $\psi(t) = t$, and $f(x) = \frac{x}{2}$. Clearly, these functions satisfy all conditions of Theorem 2.1. Without loss of generality assume that x > y. Since f is contraction mapping of type A, equation (1) holds. Clearly,

$$\max = \left\{ |x - y|, \frac{|x|}{2}, \frac{|y|}{2}, \frac{1}{2} \left(\left| x - \frac{y}{2} \right| + \left| y - \frac{x}{2} \right| \right) \right\} = \begin{cases} x - y, & 0 \le y \le \frac{x}{2} \\ \frac{x}{2}, & \frac{x}{2} \le y \le x \end{cases}.$$

We shall consider the cases separately;

Case1: Let $0 \le y \le \frac{x}{2}$. Then

$$\psi\left(e^{\frac{|x-y|}{2t}}-1\right) = \left(e^{\frac{|x-y|}{2t}}-1\right) \tag{22}$$

and

$$m(x,y) = \left(e^{\frac{|x-y|}{t}} - 1\right) \tag{23}$$

employing (23) in (22), we get

$$\psi(m(x,y)) = \left(e^{\frac{|x-y|}{t}} - 1\right) \tag{24}$$

Since $\phi(t) = \frac{t}{2}$,

$$\phi \left(\max \left\{ \left(\frac{1}{M(x,y,t)} - 1 \right), \left(\frac{1}{M(y,fy,t)} - 1 \right) \right\} \right) = \left(e^{\frac{|x-y|}{t}} - 1 \right)$$

$$\phi \left(e^{\frac{|x-y|}{t}} - 1 \right) = \frac{\left(e^{\frac{|x-y|}{t}} - 1 \right)}{2}$$
(25)

Using (1), (22) and (23), we get

$$\left(e^{\frac{|x-y|}{2t}} - 1\right) \le \left(e^{\frac{|x-y|}{t}} - 1\right) - \frac{1}{2}\left(e^{\frac{|x-y|}{t}} - 1\right) = \frac{1}{2}\left(e^{\frac{|x-y|}{t}} - 1\right) \tag{27}$$

Case2:Let $\frac{x}{2} \le y \le x$. Then

$$m(x,y) = \left(e^{\frac{|x|}{2t}} - 1\right)$$

$$\psi(m(x,y)) = \left(e^{\frac{|x|}{2t}} - 1\right)$$

$$\max\left\{\left(\frac{1}{M(x,y,t)} - 1\right), \left(\frac{1}{M(y,fy,t)} - 1\right)\right\} = \left(e^{\frac{|x|}{2t}} - 1\right)$$

$$\phi\left(e^{\frac{|y|}{2t}} - 1\right) = \frac{\left(e^{\frac{|y|}{2t}} - 1\right)}{2}$$
(31)

Using (28), (29), (30), (31), we get

$$\left(e^{\frac{|x-y|}{2t}} - 1\right) \le \left(e^{\frac{|x|}{2t}} - 1\right) - \frac{1}{2}\left(e^{\frac{|y|}{2t}} - 1\right) = e^{\frac{|x|}{2t}} - 1 - \frac{1}{2}e^{\frac{|y|}{2t}} - \frac{1}{2} = e^{\frac{|x|}{2t}} - \frac{1}{2} - \frac{1}{2}e^{\frac{|y|}{2t}} \tag{32}$$

Hence, in both cases (1) inequality holds. Therefore f has a fixed point.

CONFLICTS OF INTEREST

Authors do not have conflicts of interest.

ACKNOWLEDGEMENT

The authors express their gratitude to anonymous referees for careful reading of the manuscript and for providing valuable suggestions. The first author is thankful to the Council of Scientific & Industrial Research (CSIR) for providing the research grant vide sanctioned letter number 09/0862(16414)/2023 - EMR - I

REFERENCES

- [1] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems.,**64** (1994), 395-399.
- [2] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, **11** (1975), 336-344.
- [3] A. Latif, C. Mongkolkeha and W. Sintunavarat, Fixed point theorems for generalized $\alpha-\beta$ -weakly contraction mappings in metric spaces and applications, The Scientific World Journal, 2014 (2014), Article ID 784207.
- [4] B. Samet, C. Vetro and P. Vetro, Fixed Point Theorem for (α, ϕ) -Contraction type mappings, Nonlinear Analysis, Theory, Methods and Applications, **75**(4), 2012.
- [5] V. Tiwari and T. Som, Fixed Point Results For (ψ, ϕ) -weak contraction in fuzzy metric spaces, In: Ghosh, D., Giri, D., Mohapatra, R., Savas, E., Sakurai, K., Singh, L. (eds) Mathematics and Computing. ICMC 2018. Communications in Computer and Information Science, **834**(2018), (278-285). Springer, Singapore.
- [6] L.A. Zadeh, Fuzzy Sets, Inform. and Control, **89** (1965), 338-353.