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ABSTRACT 
The aim of authors in this manuscript is to establish the sufficient condition to determine the fixed points 
for continuous mappings under (𝛼, 𝛽)-weakly contraction mapping of type 𝐴 and 𝐵 in fuzzy metric 
spaces. To demonstrate the established result an example is also given. Our result is generalization of [5, 
Theorem 2.1] from metric spaces to fuzzy metric spaces. 
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1. INTRODUCTION 
The concept of fuzzy set was introduced by Zadeh [6] in 1965 to obtain a more accurate and natural 
method for mathematical modeling of situations which involve vagueness and uncertainty because of the 
existence of non-probabilistic elements. This concept was thoroughly investigated by several authors in 
the form of fuzzy metric space, which was originally introduced by Kramosil and Michalek [2]. Kramosil 
and Michalek further developed this theory since then and have shown quite a number of interesting 
applications for it, mostly in topology and analysis. The formal definition of the concept is as follows: 
 
Definition 1.1: [2] A fuzzy metric space is a triple (𝑋, 𝑀,∗), where 𝑋 ≠ 𝜙, ∗ is a continuous 𝑡-norm and 𝑀 
is a fuzzy set on 𝑋2 × [0, ∞) such that following properties hold: 
1. 𝑀 𝑥, 𝑦, 0 = 0, ∀ 𝑥, 𝑦 ∈ 𝑋; 
2. 𝑀 𝑥, 𝑦, 𝑡 = 1, ∀ 𝑡 > 0 iff 𝑥 = 𝑦; 
3. 𝑀 𝑥, 𝑦, 𝑡 = 𝑀 𝑦, 𝑥, 𝑡 ,   ∀ 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0; 
4. 𝑀(𝑥, 𝑦,⋅): [0, ∞) → [0,1] is left continuous for all 𝑥, 𝑦 ∈ 𝑋; 
5. 𝑀(𝑥, 𝑧, 𝑡 + 𝑠) ≥ 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠)for all 𝑥, 𝑦, 𝑧 ∈ 𝑋&𝑠, 𝑡 > 0. 
This space is referred as 𝐾𝑀 - Fuzzy metric space and has been generalized by George and Veeramani [1] 
in the following manner: 
 
Definition 1.2: A fuzzy metric space is a triple (𝑋, 𝑀,∗), where 𝑋 ≠ 𝜙, ∗ is a continuous 𝑡-norm and 𝑀 is a 
fuzzy set on 𝑋2 × (0, ∞) such that following properties hold: 
1. 𝑀 𝑥, 𝑦, 𝑡 > 0, ∀ 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0; 
2. 𝑀 𝑥, 𝑦, 𝑡 = 1, ∀ 𝑡 > 0 iff 𝑥 = 𝑦; 
3. 𝑀 𝑥, 𝑦, 𝑡 = 𝑀 𝑦, 𝑥, 𝑡 , ∀ 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0; 
4. 𝑀(𝑥, 𝑦,⋅): (0, ∞) → (0,1] is continuous for all 𝑥, 𝑦 ∈ 𝑋; 
5. 𝑀(𝑥, 𝑧, 𝑡 + 𝑠) ≥ 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑠, 𝑡 > 0. 
Value of 𝑀(𝑥, 𝑦, 𝑡) is known as degree of nearness between 𝑥 and 𝑦 with respect to‘𝑡’ and from axiom (2) 
we can relate the value 0 & 1 of a fuzzy metric to the notions of ∞ and 0 of classical metric, respectively. 
The condition (5) is a fuzzy version of triangular inequality. 
 
Example 1.3:Consider the metric space  ℝ, 𝑑 , where 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| is the usual Euclidean distance on 

the real line. Now, let us define the fuzzy set 𝑀(𝑥, 𝑦, 𝑡) as 𝑀(𝑥, 𝑦, 𝑡) =
𝑡

𝑡+|𝑥−𝑦|
for 𝑡 > 0. Now, let the 

maximum norm ∗ be defined as 𝑎 ∗ 𝑏 = max{𝑎, 𝑏}. Then the triplet (ℝ, 𝑀,∗) forms a fuzzy metric space. 
Recently, in the reeling notion of weak contraction mapping of type 𝐴and 𝐵, Tiwari and Som [5] have 
established a fixed-point result for (𝜙, 𝜓)-weak contraction in fuzzy metric space. 
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Definition 1.4: [4] Let 𝑋 be a nonempty set and 𝛼: 𝑋 × 𝑋 → [0, ∞). We say a self mapping 𝑓 on 𝑋 is 𝛼-
admissible if 𝛼(𝑥, 𝑦) ≥ 1, then 𝛼(𝑓𝑥, 𝑓𝑦) ≥ 1, for all 𝑥, 𝑦 ∈ 𝑋.To understand the aforementioned concept, 
we have the following example: 

Example 1.5: [4] Let 𝑋 = [0, ∞). Then define 𝑓: 𝑋 → 𝑋 such that 𝑓(𝑥) =
𝑥

2
 for all 𝑥 ∈ 𝑋 and 𝛼: 𝑋 × 𝑋 →

[0, ∞) such that 

𝛼(𝑥, 𝑦) =  

0, 𝑥 < 𝑦
1

1 + |𝑥 − 𝑦|
, 𝑥 ≥ 𝑦

  

Clearly for 𝛼(𝑥, 𝑦) ≥ 1, we have 𝛼(𝑓𝑥, 𝑓𝑦) ≥ 1. Therefore, 𝑓 is 𝛼-admissible. 
The concept of generalized (𝛼, 𝛽)-weakly contraction mapping of type 𝐴 is as follow: 
 
Definition 1.6: Let (𝑋, 𝑀,∗) be a fuzzy metric space and let 𝛼, 𝛽: 𝑋 × 𝑋 → [0, ∞) be two given mappings. 
Assume 𝑓 is a self mapping on 𝑋and 𝜓, 𝜙: [0, ∞) → [0, ∞), where 𝜓 is altering distance function and 𝜙 is a 
continuous function such that 𝜙(𝑡) = 0 iff 𝑡 = 0. We say 𝑓 is generalized (𝛼, 𝛽)-weakly contraction 
mapping of type 𝐴, if ∀𝑥, 𝑦 ∈ 𝑋, 

𝜓  
1

𝑀(𝑓𝑥 ,𝑓𝑦 ,𝑡)
− 1 ≤ 𝛽(𝑥, 𝑦)𝜓(𝑚(𝑥, 𝑦)) − 𝛼(𝑥, 𝑦)𝜙  max  

 
1

𝑀 𝑥,𝑦,𝑡 
− 1 ,

 
1

𝑀(𝑦,𝑓𝑦 ,𝑡)
− 1 

   (1) 

where  

𝑚(𝑥, 𝑦) = max   
1

𝑀(𝑥, 𝑦, 𝑡)
− 1 ,  

1

𝑀(𝑥, 𝑓𝑥, 𝑡)
− 1 ,  

1

𝑀(𝑦, 𝑓𝑦, 𝑡)
− 1 ,

1

2
  

1

𝑀(𝑥, 𝑓𝑦, 𝑡)
− 1 

+      
1

𝑀(𝑦, 𝑓𝑥, 𝑡)
− 1     

The concept of generalized (𝛼, 𝛽)-weakly contraction mapping of type 𝐵 is as follow: 
 
Definition 1.7: Let (𝑋, 𝑀,∗) be a fuzzy metric space 𝛼, 𝛽: 𝑋 × 𝑋 → [0, ∞) be two given mapping. Assume 
that 𝑓 is a self-mapping on 𝑋and 𝜙: [0, ∞) → [0, ∞), where 𝜓 is altering distance function and 
𝜙(𝑡) = 0 ⟺ 𝑡 = 0. We say 𝑓 is generalized (𝛼, 𝛽)-weakly contraction mapping of type 𝐵, if ∀𝑥, 𝑦 ∈ 𝑋, 

𝜓  
1

𝑀(𝑓𝑥, 𝑓𝑦, 𝑡)
− 1 ≤ 𝛽 𝑥, 𝑦 𝜓 𝑚 𝑥, 𝑦  − 𝜙  max   

1

𝑀 𝑥, 𝑦, 𝑡 
− 1 ,  

1

𝑀 𝑦, 𝑓𝑦, 𝑡 
− 1   , (2)  

where 

𝑚(𝑥, 𝑦) = max   
1

𝑀(𝑥,𝑦 ,𝑡)
− 1 ,  

1

𝑀(𝑥,𝑓𝑥 ,𝑡)
− 1 ,  

1

𝑀(𝑦,𝑓𝑦 ,𝑡)
− 1 ,

1

2
  

1

𝑀(𝑥,𝑓𝑦 ,𝑡)
− 1 +      1

𝑀(𝑦,𝑓𝑥 ,𝑡)
− 1    . 

 
Definition 1.8:Let 𝑋 be a nonempty set and 𝛽: 𝑋 × 𝑋 → [0, ∞). We say a mapping 𝑓: 𝑋 → 𝑋 is 𝛽0 sub-
admissible if for all 𝑥, 𝑦 ∈ 𝑋 it satisfies the following inequalities 

0 < 𝛽 𝑥, 𝑦 ≤ 1 ⟹ 0 < 𝛽 𝑓𝑥, 𝑓𝑦 ≤ 1  (3) 
Definition 1.9: [3] Let 𝑋 be a nonempty set. The mapping 𝛼: 𝑋 × 𝑋 → [0, ∞) is called forwarded transitive 
if 𝛼(𝑥, 𝑦) ≥ 1and 𝛼(𝑦, 𝑧) ≥ 1, then 𝛼(𝑥, 𝑧) ≥ 1, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
 
Definition 1.10: [3] Let 𝑋 be a nonempty set. The mapping 𝛼: 𝑋 × 𝑋 → [0, ∞) is called 0 −backward 
transitive if 0 < 𝛼(𝑥, 𝑦) ≤ 1and 0 < 𝛼(𝑦, 𝑧) ≤ 1, then 0 < 𝛼(𝑥, 𝑧) ≤ 1, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
 
2. Main Results 
Theorem 2.1: Suppose (𝑋, 𝑀,∗) is fuzzy metric space and 𝛼, 𝛽: 𝑋 × 𝑋 → [0, ∞) be two given mappings 
such that 𝛽 is 0 −backward transitive and 𝛼 is forward transitive. Assumethat 𝑓 is generalized (𝛼, 𝛽)-
weakly contraction mapping of type 𝐴. If 𝑓 is continuous, 𝛼-admissible, 𝛽0 sub-admissible, and there exist 
𝑥0 ∈ 𝑋 such that  𝑥0 , 𝑓𝑥0 ≥ 1 ≥ 𝛽 𝑥0, 𝑓𝑥0 > 0, then 𝑓 has fixed point in 𝑋. 
Proof:If we consider an arbitrary element𝑥0 ∈ 𝑋, then in view of the forward transitiveness of 𝛼 along 
with the sequence 𝑥𝑛+1 = 𝑓𝑥𝑛 , ∀𝑛 ∈ ℝ∪ {0}, one can find an element 𝑛0 ∈ ℝ∪ {0} such that 𝑥𝑛0

= 𝑥𝑛0+1. 

Thus 𝑥𝑛0
 is fixed point of 𝑓. 

Now suppose that 𝑥𝑛 ≠ 𝑥𝑛+1∀𝑛 ∈ ℝ∪ {0}. Using the condition that there exist 𝑥0 ∈ 𝑋 such that 
𝛼 𝑥0 , 𝑓𝑥0 ≥ 1 ≥ 𝛽 𝑥0, 𝑓𝑥0 > 0 one have 

𝛼 𝑥0 , 𝑥1 ≥ 1 ≥ 𝛽 𝑥0 , 𝑥1 > 0 (4) 
Since 𝑓 is 𝛼-admissible, 

𝛼 𝑓𝑥0, 𝑓𝑥1 ≥ 1 ≥ 𝛽 𝑓𝑥0, 𝑓𝑥1 > 0  (5) 
and hence 
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𝛼 𝑥1 , 𝑥2 ≥ 1 ≥ 𝛽 𝑥1 , 𝑥2 > 0  (6) 
Proceeding as above, we get a sequence  𝑥𝑛   in 𝑋 such that 𝑥𝑛+1 = 𝑓𝑥𝑛  and 

𝛼 𝑥𝑛 , 𝑥𝑛+1 ≥ 1 ≥ 𝛽 𝑥𝑛 , 𝑥𝑛+1 > 0∀𝑛 ∈ ℝ∪  0  (7) 
Clearly, for all 𝑛 ∈ ℝ∪ {0}, one has 

𝜓  
1

𝑀 𝑥𝑛+1 , 𝑥𝑛+2 , 𝑡 
− 1 = 𝜓  

1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1, 𝑡 
 ≤ 𝛽 𝑥𝑛 , 𝑥𝑛+1 𝜓 𝑚 𝑥𝑛 , 𝑥𝑛+1  

−𝛼 𝑥𝑛 , 𝑥𝑛+1 𝜙  max   
1

𝑀 𝑥𝑛 , 𝑥𝑛 , 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1, 𝑓𝑥𝑛+1, 𝑡 
− 1   

≤ 𝜓 𝑚 𝑥𝑛 , 𝑥𝑛+1  − 𝜙  max   
1

 𝑀𝑥𝑛 , 𝑥𝑛+1, 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1 , 𝑥𝑛+2, 𝑡 
− 1   

 

where 

𝑚 𝑥𝑛 , 𝑥𝑛+1 =max   
1

𝑀 𝑥𝑛 , 𝑥𝑛+1, 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛 , 𝑓𝑥𝑛 , 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1, 𝑓𝑥𝑛+1, 𝑡 
− 1 , 

   1

2
  

1

𝑀 𝑥𝑛 , 𝑓𝑥𝑛+1 , 𝑡 
− 1 +

1

𝑀 𝑥𝑛+1 , 𝑓𝑥𝑛 , 𝑡 
− 1    

=max   
1

𝑀 𝑥𝑛 , 𝑥𝑛+1, 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛 , 𝑥𝑛+1 , 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1 , 

   1

2
  

1

𝑀 𝑥𝑛 , 𝑥𝑛+2, 𝑡 
− 1 +

1

𝑀 𝑥𝑛+1, 𝑥𝑛+1, 𝑡 
− 1    

=max   
1

𝑀 𝑥𝑛 , 𝑥𝑛+1, 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛 , 𝑥𝑛+1 , 𝑡 
− 1 , 

  1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1 ,

1

2
 

1

𝑀 𝑥𝑛 , 𝑥𝑛+2 , 𝑡 
− 1                                                  (8)

 

Equations (7) and (8) can be utilized to obtain the following 

 𝜓  
1

𝑀 𝑥𝑛+1 , 𝑥𝑛+2 , 𝑡 
− 1  ≤ 𝜓  max   

1

𝑀 𝑥𝑛 , 𝑥𝑛+1, 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1   

−𝜙  max   
1

𝑀 𝑥𝑛 , 𝑥𝑛+1, 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1   , ∀𝑛 ∈ ℝ∪ {0}

 (9)  

We now aim to demonstrate that the sequence  
1

𝑀 𝑓𝑥𝑛 ,𝑓𝑥𝑛 +1 ,𝑡 
− 1  is monotonic decreasing. On contrary, 

for some 𝑛 

 
1

𝑀 𝑓𝑥𝑛−1, 𝑓𝑥𝑛 , 𝑡 
− 1 <  

1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1, 𝑡 
− 1 (10) 

In light of equation (9), one obtains 

𝜓  
1

𝑀 𝑓𝑥𝑛−1 , 𝑓𝑥𝑛 , 𝑡 
− 1 ≤≤ 𝜓  max   

1

𝑀 𝑓𝑥𝑛−1, 𝑓𝑥𝑛 , 𝑡 
− 1 ,  

1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1 , 𝑡 
− 1   (11) 

By employing equations (10) and (11), one has 

𝜓  
1

𝑀 𝑓𝑥𝑛−1, 𝑓𝑥𝑛 , 𝑡 
− 1 ≤ 𝜓  

1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1 , 𝑡 
− 1 − 𝜙  

1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1, 𝑡 
− 1 (12)  

⟹ 𝜙  
1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1, 𝑡 
− 1 ≤ 0 

this provides that  
1

𝑀 𝑥𝑛 +1 ,𝑥𝑛 +2 ,𝑡 
− 1 = 0, and hence 𝑥𝑛+1 = 𝑥𝑛+2 , a contradiction. Therefore, the 

sequence  
1

𝑀 𝑓𝑥𝑛 ,𝑓𝑥𝑛+1 ,𝑡 
− 1  is monotonic decreasing. 

We will now prove that  𝑥𝑛   is a Cauchy sequence. To do this suppose that 

lim
𝑛→∞

   
1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1 = Λ(𝑡) 

Now we shall prove that Λ 𝑡 = 0, ∀𝑡 > 0. On contrary there corresponds some 𝑡 > 0 such that Λ(𝑡) < 0. 
Assuming that limit 𝑛 → ∞ in (12), we get 

𝜓(Λ(𝑡)) ≤ 𝜓(Λ(𝑡)) − 𝜙(Λ(𝑡)) 
this implies that 𝜙(Λ(𝑡)) ≤ 0, a contradiction. Therefore,  𝑥𝑛   is a Cauchy sequence. 
Since 𝑋 is complete metric space, there exist 𝑥∗ such that 𝑥𝑛 → 𝑥∗as 𝑛 → ∞. By continuity of 𝑓, 
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lim
𝑛→∞

 𝑥𝑛+1 = lim
𝑛→∞

 𝑓𝑥𝑛 = 𝑓𝑥∗ 

Therefore, one conclude that          𝑓𝑥∗ = 𝑥∗. 
 
Theorem 2.2: Suppose (𝑋, 𝑀,∗) is fuzzy metric space and 𝛼, 𝛽: 𝑋 × 𝑋 → [0, ∞) be two given mappings 
such that 𝛽 is 0 −backward transitive and 𝛼 is forward transitive. Assume that 𝑓 is generalized (𝛼, 𝛽)-
weakly contraction mapping of type 𝐵. If 𝑓 is continuous, 𝛼-admissible, 𝛽0 sub-admissible, and there exist 
𝑥0 ∈ 𝑋 such that  𝑥0 , 𝑓𝑥0 ≥ 1 ≥ 𝛽 𝑥0, 𝑓𝑥0 > 0, then 𝑓 has fixed point in 𝑋. 
Proof: Suppose that for any element 𝑥0 ∈ 𝑋, owing to the forward transitiveness of 𝛼 and sequence 
𝑥𝑛+1 = 𝑓𝑥𝑛∀𝑛 ∈ ℝ∪ {0}, we get an element 𝑛0 ∈ ℝ∪ {0} with the property that 𝑥𝑛0

= 𝑥𝑛0+1 . Therefore, 

𝑥𝑛0
 is fixed point of 𝑓. 

Let 𝑥𝑛 ≠ 𝑥𝑛+1,∀𝑛 ∈ ℝ∪ {0}. Using the condition that 𝑥0 ∈ 𝑋 exists such that 𝛼 𝑥0 , 𝑓𝑥0 ≥ 1 ≥ 𝛽 𝑥0 , 𝑓𝑥0 >

0 is satisfied, one have 
𝛼 𝑥0 , 𝑥1 ≥ 1 ≥ 𝛽 𝑥0 , 𝑥1 > 0 (13) 

Since 𝑓 is 𝛼-admissible, 
𝛼 𝑓𝑥0, 𝑓𝑥1 ≥ 1 ≥ 𝛽 𝑓𝑥0, 𝑓𝑥1 > 0 (14) 

and hence 
𝛼 𝑥1 , 𝑥2 ≥ 1 ≥ 𝛽 𝑥1 , 𝑥2 > 0 (15) 

In the similar vein, we get  𝑥𝑛  is sequence in 𝑋 such that 𝑥𝑛+1 = 𝑓𝑥𝑛  and 
𝛼 𝑥𝑛 , 𝑥𝑛+1 ≥ 1 ≥ 𝛽 𝑥𝑛 , 𝑥𝑛+1  for all 𝑛 ∈ ℝ∪  0 (16) 

Moreover, for each 𝑛 ∈ ℝ∪ {0}, 

𝑚 𝑥𝑛 , 𝑥𝑛+1 , 𝑦 = max   
1

𝑀 𝑥𝑛 , 𝑥𝑛+1, 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1 , 𝑥𝑛+2 , 𝑡 
− 1   

Since 𝑓 is generalized (𝛼, 𝛽)-weakly contraction mapping of type 𝐵, for all 𝑛 ∈ ℝ∪ {0}, we get 

𝜓  
1

𝑀 𝑥𝑛+1, 𝑥𝑛+2 , 𝑡 
− 1 = 𝜓  

1
 𝑀𝑓𝑥𝑛 , 𝑓𝑥𝑛+1, 𝑡 

− 1 ≤ 𝛼 𝑥𝑛 , 𝑥𝑛+1 𝜓  
1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1, 𝑡 
− 1 

≤ 𝛽 𝑥𝑛 , 𝑥𝑛+1 𝜓 𝑚 𝑥𝑛 , 𝑥𝑛+1  − 𝜙  max   
1

𝑀 𝑥𝑛 , 𝑥𝑛 , 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1 , 𝑥𝑛+2, 𝑡 
− 1   

≤ 𝜓 𝑚 𝑥𝑛 , 𝑥𝑛+1  − 𝜙  max   
1

𝑀 𝑥𝑛 , 𝑥𝑛+1 , 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1   

≤ 𝜓  max   
1

𝑀 𝑥𝑛 , 𝑥𝑛 , 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1   

− 𝜙  max   
1

𝑀 𝑥𝑛 , 𝑥𝑛 , 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1   .

 

This indicates that 

𝜓  
1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1 ≤𝜓  max   

1

𝑀 𝑥𝑛 , 𝑥𝑛+1 , 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1   

−𝜙  max   
1

𝑀 𝑥𝑛 , 𝑥𝑛+1 , 𝑡 
− 1 ,  

1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1   

 

We have now demonstrated that the sequence  
1

𝑀 𝑥𝑛 +1 ,𝑥𝑛+2 ,𝑡 
− 1  is monotonically decreasing sequence. 

On contrary, for some 𝑛, 

 
1

𝑀 𝑥𝑛 , 𝑥𝑛+1, 𝑡 
− 1 <  

1

𝑀 𝑥𝑛+1 , 𝑥𝑛+2, 𝑡 
− 1 (17) 

By inequality (16), we have 

𝜓  
1

𝑀 𝑓𝑥𝑛−1, 𝑓𝑥𝑛 , 𝑡 
− 1 ≤𝜓  max   

1

𝑀 𝑓𝑥𝑛−1 , 𝑓𝑥𝑛 , 𝑡 
− 1 ,  

1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1, 𝑡 
− 1   (18) 

Using (17) and (18), 

𝜓  
1

𝑀 𝑓𝑥𝑛−1, 𝑓𝑥𝑛 , 𝑡 
− 1 ≤ 𝜓  

1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1 , 𝑡 
− 1 − 𝜙  

1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1, 𝑡 
− 1 (19)

⟹ 𝜙  
1

𝑀 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1, 𝑡 
− 1 ≤ 0

 ⟹ 𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 − 1 = 1 that implies 𝑥𝑛+1 = 𝑥𝑛+2

 

a contradiction. Therefore  
1

𝑀 𝑓𝑥𝑛 ,𝑓𝑥𝑛 +1 ,𝑡 
− 1  is monotonically decreasing sequence. 

Now, we shall prove that  𝑥𝑛   is a Cauchy sequence. To do this first suppose that 

lim
𝑛→∞

   
1

𝑀 𝑥𝑛+1, 𝑥𝑛+2, 𝑡 
− 1 = Λ 𝑡 (20) 
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Now our aim is to show that Λ 𝑡 = 0, ∀𝑡 > 0. On the contrary there corresponds some 𝑡 > 0 such that 
Λ(𝑡) < 0. Taking limit 𝑛 → ∞ in (17), we get 

𝜓 Λ 𝑡  ≤ 𝜓 Λ 𝑡  − 𝜙 Λ 𝑡  (21)

This implies 𝜙(Λ(𝑡)) ≤ 0, a contradiction, and hence  𝑥𝑛   is Cauchy sequence. Since 𝑋 is complete metric 
space, ∃𝑥∗ such that 𝑥𝑛 → 𝑥∗when 𝑛 → ∞. By the continuity of 𝑓, we have 
lim
𝑛→∞

 𝑥𝑛+1 = lim
𝑛→∞

 𝑓𝑥𝑛 = 𝑓𝑥∗. 

Therefore, we conclude that 𝑥∗ is a fixed point. 
 
Example 2.3: Let 𝑋 = [0,1] and (𝑋, 𝑀,∗) be a complete fuzzy metric space. Consider 𝑀(𝑥, 𝑦, 𝑡) =

𝑒
−|𝑥−𝑦|

𝑡 , 𝜙(𝑡) =
𝑡

2
, 𝜓(𝑡) = 𝑡, and 𝑓(𝑥) =

𝑥

2
. Clearly, these functions satisfy all conditions of Theorem 2.1. 

Without loss of generality assume that 𝑥 > 𝑦. Since 𝑓 is contraction mapping of type 𝐴, equation (1) holds. 
Clearly, 

max =  |𝑥 − 𝑦|,
|𝑥|

2
,

|𝑦|

2
,

1

2
  𝑥 −

𝑦

2
 +  𝑦 −

𝑥

2
   =  

𝑥 − 𝑦, 0 ≤ 𝑦 ≤
𝑥

2
𝑥

2
,

𝑥

2
≤ 𝑦 ≤ 𝑥

 . 

We shall consider the cases separately; 

Case1: Let 0 ≤ 𝑦 ≤
𝑥

2
. Then 

𝜓  𝑒
|𝑥−𝑦|

2𝑡 − 1 =  𝑒
|𝑥−𝑦|

2𝑡 − 1 (22) 

and 

𝑚 𝑥, 𝑦 =  𝑒
 𝑥−𝑦 

𝑡 − 1 (23) 

employing (23) in (22), we get 

𝜓 𝑚 𝑥, 𝑦  =  𝑒
 𝑥−𝑦 

𝑡 − 1 (24) 

Since 𝜙(𝑡) =
𝑡

2
, 

𝜙  max   
1

𝑀(𝑥, 𝑦, 𝑡)
− 1 ,  

1

𝑀(𝑦, 𝑓𝑦, 𝑡)
− 1   =  𝑒

|𝑥−𝑦|

𝑡 − 1                                 (25)

𝜙  𝑒
|𝑥−𝑦|

𝑡 − 1 =
 𝑒

|𝑥−𝑦|

𝑡 − 1 

2
                                                                          (26)

 

Using (1), (22) and (23), we get 

 𝑒
|𝑥−𝑦|

2𝑡 − 1 ≤  𝑒
 𝑥−𝑦 

𝑡 − 1 −
1

2
 𝑒

 𝑥−𝑦 

𝑡 − 1 =
1

2
 𝑒

 𝑥−𝑦 

𝑡 − 1 (27) 

Case2:Let 
𝑥

2
≤ 𝑦 ≤ 𝑥. Then 

𝑚 𝑥, 𝑦 =  𝑒
 𝑥 

2𝑡 − 1                                                            (28)

𝜓 𝑚 𝑥, 𝑦  =  𝑒
 𝑥 

2𝑡 − 1                                                             (29)

 max   
1

𝑀(𝑥, 𝑦, 𝑡)
− 1 ,  

1

𝑀(𝑦, 𝑓𝑦, 𝑡)
− 1   =  𝑒

|𝑥|

2𝑡 − 1 (30)

𝜙  𝑒
|𝑦 |

2𝑡 − 1 =
 𝑒

|𝑦 |

2𝑡 − 1 

2
   (31)

 

Using (28), (29), (30), (31), we get 

 𝑒
|𝑥−𝑦|

2𝑡 − 1 ≤  𝑒
 𝑥 

2𝑡 − 1 −
1

2
 𝑒

 𝑦  

2𝑡 − 1 = 𝑒
 𝑥 

2𝑡 − 1 −
1

2
𝑒

 𝑦  

2𝑡 −
1

2
= 𝑒

 𝑥 

2𝑡 −
1

2
−

1

2
𝑒

 𝑦  

2𝑡        (32)  

Hence, in both cases (1) inequality holds. Therefore 𝑓 has a fixed point.  
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