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Abstract. We investigate the global character of the difference equation of the form

xn+1 = f(xn, xn−1), n = 0, 1, . . .

with several period-two solutions, where f is decreasing in the first variable and is increasing in the second variable.
We show that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium solutions
or period-two solutions are in fact the global stable manifolds of neighboring saddle or non-hyperbolic equilibrium
solutions or period-two solutions. We illustrate our results with the complete study of global dynamics of a certain
rational difference equation with quadratic terms.
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1 Introduction and Preliminaries

Let I be some interval of real numbers and let f ∈ C1[I × I, I] be such that f(I × I) ⊆ K where K ⊆ I is a compact
set. Consider the difference equation

xn+1 = f(xn, xn−1), n = 0, 1, . . . (1)

where f is a continuous and decreasing in the first variable and increasing in the second variable. The following result
gives a general information about global behavior of solutions of Equation (1).

Theorem 1 ([4])
Let I ⊆ R and let f ∈ C[I × I, I] be a function which is non-decreasing in first and non-increasing in second

argument. Then for every solution of Equation (1) the subsequences {x2n}∞n=0 and {x2n+1}∞n=−1 of even and odd
terms of the solution are eventually monotonic.

The consequence of Theorem 1 is that every bounded solution of (1) converges to either an equilibrium or period-
two solution or to the singular point on the boundary. Consequently, most important question becomes determining
the basins of attraction of these solutions as well as the unbounded solutions. The answer to this question follows
from an application of the theory of monotone maps in the plane which will be presented in Preliminaries.

In [1, 2, 3] authors consider difference equation (1) with several equilibrium solutions as well as the period-two
solutions and determine the basins of attraction of different equilibrium solutions and the period-two solutions. In
this paper we consider Equation (1) which has up to two equilibrium solutions and up to two minimal period-two
solutions which are in South-East ordering. More precisely, we will give sufficient conditions for the precise description
of the basins of attraction of different equilibrium solutions and period-two solutions. The results can be immediately
extended to the case of any number of the equilibrium solutions and the period-two solutions by replicating our main
results.

This paper is organized as follows. In the rest of this section we will recall several basic results on competitive
systems in the plane from [7, 15, 16, 17] which are included for completeness of presentation. Our main results
about some global dynamics scenarios for monotone systems in the plane and their application to global dynamics of
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Equation (1) are given in section 2. As an application of the results from section 2 in section 3 the global dynamics
of difference equation

xn+1 =
γxn−1

Ax2
n +Bxnxn−1 + Cxn−1

, n = 0, 1, . . . (2)

with all non-negative parameters and initial conditions is presented. All global dynamic scenarios for Equation (1)
will be illustrated in the case of Equation (2), which global dynamics can be shortly described as the sequence of
exchange of stability bifurcations between an equilibrium and one or two period-two solutions.

We now give some basic notions about monotone maps in the plane.

Definition 2 Let R be a subset of R2 with nonempty interior, and let T : R → R be a map (i.e., a continuous
function). Set T (x, y) = (f(x, y), g(x, y)). The map T is competitive if f(x, y) is non-decreasing in x and non-
increasing in y, and g(x, y) is non-increasing in x and non-decreasing in y. If both f and g are nondecreasing in x
and y, we say that T is cooperative. If T is competitive (cooperative), the associated system of difference equations{

xn+1 = f(xn, yn)
yn+1 = g(xn, yn)

, n = 0, 1, . . . , (x−1, x0) ∈ R (3)

is said to be competitive (cooperative). The map T and associated difference equations system are said to be strongly
competitive (strongly cooperative) if the adjectives non-decreasing and non-increasing are replaced by increasing and
decreasing.

Consider a partial ordering � on R2. Two points x, y ∈ R2 are said to be related if x � y or y � x. Also, a
strict inequality between points may be defined as x ≺ y if x � y and x 6= y. A stronger inequality may be defined
as x = (x1, x2)� y = (y1, y2) if x � y with x1 6= y1 and x2 6= y2.

The map T is monotone if x � y implies T (x) � T (y) for all x, y ∈ R, and it is strongly monotone on R if x ≺ y
implies that T (x)� T (y) for all x, y ∈ R. The map is strictly monotone on R if x ≺ y implies that T (x) ≺ T (y) for
all x, y ∈ R. Clearly, being related is invariant under iteration of a strongly monotone map.

Throughout this paper we shall use the North-East ordering (NE) for which the positive cone is the first quadrant,
i.e. this partial ordering is defined by (x1, y1) �ne (x2, y2) if x1 ≤ x2 and y1 ≤ y2 and the South-East (SE) ordering
defined as (x1, y1) �se (x2, y2) if x1 ≤ x2 and y1 ≥ y2. Now we can show that a map T on a nonempty set R ⊂ R2

which is monotone with respect to the North-East ordering is cooperative and a map monotone with respect to the
South-East ordering is competitive.

For x ∈ R2, define Q`(x) for ` = 1, . . . , 4 to be the usual four quadrants based at x = (x1, x2) and numbered in
a counterclockwise direction, for example, Q1(x) = {y = (y1, y2) ∈ R2 : x1 ≤ y1, x2 ≤ y2}. Basin of attraction of
a fixed point (x̄, ȳ) of a map T , denoted as B((x̄, ȳ)), is defined as the set of all initial points (x0, y0) for which the
sequence of iterates Tn((x0, y0)) converges to (x̄, ȳ). Similarly, we define a basin of attraction of a periodic point of
period p. The fixed point A(x, y) of the map T is said to be non-hyperbolic point of stable type if one of the roots of
characteristic equation evaluated in A is 1 or −1 and the second root is in (−1, 1).

The next four results, from [16, 17], are useful for determining basins of attraction of fixed points of competitive
maps. Related results have been obtained by H. L. Smith in [7, 19] and in [18].

Theorem 3 Let T be a competitive map on a rectangular region R ⊂ R2. Let x ∈ R be a fixed point of T such that
∆ := R ∩ int (Q1(x) ∪Q3(x)) is nonempty (i.e., x is not the NW or SE vertex of R), and T is strongly competitive
on ∆. Suppose that the following statements are true.

a. The map T has a C1 extension to a neighborhood of x.
b. The Jacobian JT (x) of T at x has real eigenvalues λ, µ such that 0 < |λ| < µ, where |λ| < 1, and the eigenspace

Eλ associated with λ is not a coordinate axis.
Then there exists a curve C ⊂ R through x that is invariant and a subset of the basin of attraction of x, such

that C is tangential to the eigenspace Eλ at x, and C is the graph of a strictly increasing continuous function of the
first coordinate on an interval. Any endpoints of C in the interior of R are either fixed points or minimal period-two
points. In the latter case, the set of endpoints of C is a minimal period-two orbit of T .

Theorem 4 For the curve C of Theorem 3 to have endpoints in ∂R, it is sufficient that at least one of the following
conditions is satisfied.

i. The map T has no fixed points nor periodic points of minimal period two in ∆.
ii. The map T has no fixed points in ∆, det JT (x) > 0, and T (x) = x has no solutions x ∈ ∆.
iii. The map T has no points of minimal period-two in ∆, det JT (x) < 0, and T (x) = x has no solutions x ∈ ∆.
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For maps that are strongly competitive near the fixed point, hypothesis b. of Theorem 3 reduces just to |λ| < 1.
This follows from a change of variables [19] that allows the Perron-Frobenius Theorem to be applied. Also, one can
show that in such case no associated eigenvector is aligned with a coordinate axis. The next result is useful for
determining basins of attraction of fixed points of competitive maps.

Theorem 5 Assume the hypotheses of Theorem 3, and let C be the curve whose existence is guaranteed by Theorem
3. If the endpoints of C belong to ∂R, then C separates R into two connected components, namely

W− := {x ∈ R \ C : ∃y ∈ C with x �se y}, W+ := {x ∈ R \ C : ∃y ∈ C with y �se x} , (4)

such that the following statements are true.
(i) W− is invariant, and dist(Tn(x), Q2(x))→ 0 as n→∞ for every x ∈ W−.
(ii) W+ is invariant, and dist(Tn(x), Q4(x))→ 0 as n→∞ for every x ∈ W+.
(B) If, in addition to the hypotheses of part (A), x is an interior point of R and T is C2 and strongly competitive

in a neighborhood of x, then T has no periodic points in the boundary of Q1(x)∪Q3(x) except for x, and the following
statements are true.

(iii) For every x ∈ W− there exists n0 ∈ N such that Tn(x) ∈ intQ2(x) for n ≥ n0.
(iv) For every x ∈ W+ there exists n0 ∈ N such that Tn(x) ∈ intQ4(x) for n ≥ n0.

If T is a map on a set R and if x is a fixed point of T , the stable set Ws(x) of x is the set {x ∈ R : Tn(x)→ x}
and unstable set Wu(x) of x is the set{

x ∈ R : there exists {xn}0n=−∞ ⊂ R s.t. T (xn) = xn+1, x0 = x, and lim
n→−∞

xn = x

}
When T is non-invertible, the set Ws(x) may not be connected and made up of infinitely many curves, or Wu(x)

may not be a manifold. The following result gives a description of the stable and unstable sets of a saddle point of
a competitive map. If the map is a diffeomorphism on R, the sets Ws(x) and Wu(x) are the stable and unstable
manifolds of x.

Theorem 6 In addition to the hypotheses of part (B) of Theorem 5, suppose that µ > 1 and that the eigenspace Eµ

associated with µ is not a coordinate axis. If the curve C of Theorem 3 has endpoints in ∂R, then C is the stable set
Ws(x) of x, and the unstable set Wu(x) of x is a curve in R that is tangential to Eµ at x and such that it is the
graph of a strictly decreasing function of the first coordinate on an interval. Any endpoints of Wu(x) in R are fixed
points of T .

Remark 7 We say that f(u, v) is strongly decreasing in the first argument and strongly increasing in the second
argument if it is differentiable and has first partial derivative D1f negative and first partial derivative D2f positive
in a considered set. The connection between the theory of monotone maps and the asymptotic behavior of Equation
(1) follows from the fact that if f is strongly decreasing in the first argument and strongly increasing in the second
argument, then the second iterate of a map associated to Equation (1) is a strictly competitive map on I × I, see
[16].

Set xn−1 = un and xn = vn in Equation (1) to obtain the equivalent system

un+1 = vn
vn+1 = f(vn, un)

, n = 0, 1, . . . .

Let T (u, v) = (v, f(v, u)). The second iterate T 2 is given by

T 2(u, v) = (f(v, u), f(f(v, u), v))

and it is strictly competitive on I × I, see [16].

Remark 8 The characteristic equation of Equation (1) at an equilibrium solution (x̄, x̄):

λ2 −D1f(x̄, x̄)λ−D2f(x̄, x̄) = 0, (5)

has two real roots λ, µ which satisfy λ < 0 < µ, and |λ| < µ, whenever f is strictly decreasing in first and increasing in
second variable. Thus the applicability of Theorems 3-6 depends on the nonexistence of minimal period-two solution.
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2 Main Results

In this section we present some global dynamics scenarios which feasibility will be illustrated in Section 3.

Theorem 9 Consider the competitive map T generated by the system (3) on a rectangular region R with nonempty
interior. Suppose T has no minimal period-two solutions in R, is strongly competitive on intR, is C2 in a neighbor-
hood of any fixed point and b. of Theorem 3 holds.

(a) Assume that T has a saddle fixed points E1, E3 and locally asymptotically stable fixed point E2, such that
E1 �se E2 �se E3, and E0, which is South-west corner of the region R is either repeller or singular point.
Furthermore assume that E1 �se E0 �se E3 and that the ray through E0 and E1 (resp. E0 and E2) is stable
manifold of E1 (resp. E2). If T has no period-two solutions then every solution which starts in the interior of
the region bounded by the global stable manifolds Ws(E1) and Ws(E3) converges to E2.

(b) Assume that T has locally asymptotically stable fixed points E1, E3 and a saddle fixed point E2, such that
E1 �se E2 �se E3, and E0, which is South-west corner of the region R is either repeller or singular point.
Furthermore assume that E1 �se E0 �se E3 and that the ray through E0 and E1 (resp. E0 and E3) is attracted
to E1 (resp. E3). If T has no period-two solutions then every solution which starts below (resp. above) the
stable manifold Ws(E2) converges to E1 (resp. E3).

(c) Assume that T has exactly five fixed points E1, . . . , E5, E1 �se E2 �se E3 �se E4 �se E5 where E1, E3, E5 are
saddle points, and E2, E4 are locally asymptotically stable points. Assume that E0, which is South-west corner
of the region R, is either repeller or singular point such that E1 �se E0 �se E5 and that the ray through E0

and E1 (resp. E0 and E5) is part of the basin of attraction of E1 (resp. E5). If T has no period-two solutions
then every solution which starts in the interior of the region bounded by the global stable manifolds Ws(E1) and
Ws(E3) converges to E2 while every solution which starts in the interior of the region bounded by the global
stable manifolds Ws(E3) and Ws(E5) converges to E4.

(d) Assume that T has exactly five fixed points E1, . . . , E5, E1 �se E2 �se E3 �se E4 �se E5 where E1, E3, E5 are
locally asymptotically stable points, and E2, E4 are saddle points. Assume that E0, which is South-west corner
of the region R, is either repeller or singular point such that E1 �se E0 �se E5 and that the ray through E0

and E1 (resp. E0 and E5) is part of the basin of attraction of E1 (resp. E5). If T has no period-two solutions
then every solution which starts below (resp. above) the stable manifold Ws(E4) (resp. Ws(E2)) converges to
E5 (resp. E1). Every solution which starts between the stable manifolds Ws(E2) and Ws(E4) converges to E3.

Proof.

(a) The existence of the global stable and unstable manifolds of the saddle point equilibria E1 and E3 is guaranteed
by Theorems 3 - 6. In view of uniqueness of these manifolds we have that Ws(E1) has end points in E0 and
(0,∞) while Ws(E3) has end points in E0 and (∞, 0). Furthermore Wu(E1) and Wu(E3) have end points in
E2. Now, by Corollary 2 in [16] every solution which starts in the interior of the ordered interval [[E1, E2]]
is attracted to E2 and similarly every solution which starts in the interior of the ordered interval [[E2, E3]]
is attracted to E2. Furthermore, for every (x0, y0) ∈ [[E1, E3]] \ ([[E1, E2]] ∪ [[E2, E3]] ∪ {E0}) one can find
the points (xl, yl) ∈ [[E1, E2]] and (xu, yu) ∈ [[E1, E2]] such that (xl, yl) �se (x0, y0) �se (xu, yu) and so
Tn((xl, yl)) �se Tn((x0, y0)) �se Tn((xu, yu)), n ≥ 1, which implies that Tn((x0, y0))→ E2. Finally, for every
(x0, y0) ∈ R \ ([[E1, E3]] ∪ {E0})) one can find the points (xL, yL) ∈ Wu(E1), (xU , yU ) ∈ Wu(E3) such that
(xL, yL) �se (x0, y0) �se (xU , yU ) which implies that Tn((x0, y0)) will eventually enter [[E1, E3]] and so it will
converge to E2.

(b) The existence of the stable and unstable manifolds of the saddle point equilibrium E2 is guaranteed by The-
orems 3-6. The endpoints of the unstable manifold are E1 and E3. First one can assume that the initial
point (x0, y0) ∈ [[E1, E2]] \ {E0}. In view of Corollary 2 in [16] the interior of [[E1, E2]] is subset of the basin
of attraction of E1. If the initial point (x0, y0) /∈ [[E1, E2]] but it is betweenWs(E1) and the ray through
E0 and E1 then one can find te points (xl, yl) the ray through E0 and E1 and (xu, yu) ∈ Ws(E1) such that
(xl, yl) �se (x0, y0) �se (xu, yu) and so Tn((xl, yl)) �se Tn((x0, y0)) �se Tn((xu, yu)), n ≥ 1, which means
Tn((x0, y0)) will eventually enter [[E1, E2]] and so Tn((x0, y0))→ E2.

The proof when the initial point (x0, y0) is below Ws(E2) is similar.

(c) The proof is similar to the one in case (a) and will be ommitted. This dynamic scenario is a replication of
dynamic scenario in (a).
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(d) The proof is similar to the one in case (b) and will be ommitted. This dynamic scenario is exactly replication
of dynamic scenario in (b).

In the case of Equation (1) we have the following results which are direct application of Theorem 9.

Theorem 10 Consider Equation (1) and assume that f is decreasing in first and increasing in the second variable
on the set (a, b)2, where a is either the repeller or a singular point of f , such that f is C2 in a neighborhood of any
fixed point.

(a) Assume that Equation (1) has locally asymptotically stable equilibrium solutions x̄ > a and the unique saddle
point minimal period-two solution {P1, Q1}, P1 �se (a, a) �se Q1. Assume that the stable manifold of P1

(resp. Q1) is the line through (a, a) and P1 (resp. the line through (a, a) and Q1). Then the equilibrium x̄ is
globally asymptotically stable for all x−1, x0 > a.

(b) Assume that Equation (1) has the saddle equilibrium solution x̄ > a and the unique locally asymptotically stable
minimal period-two solution {P1, Q1}, P1 �se (a, a) �se Q1. Assume that the stable manifold of P1 (resp. Q1)
is the line through (a, a) and P1 (resp. the line through (a, a) and Q1). Then the period-two solution {P1, Q1}
attracts all initial points off the global stable manifold Ws(E(x̄, x̄)).

(c) Assume that Equation (1) has a saddle equilibrium solution x̄ > a. Assume that Equation (1) has two minimal
period-two solutions {P1, Q1} and {P2, Q2} such that P1 �se P2 �se E(x̄, x̄) �se Q2 �se Q1, where {P2, Q2}
is locally asymptotically stable and {P1, Q1} is a saddle point and assume that the global stable manifold of P1

(resp. Q1) is the line through (a, a) and P1 (resp. the line through (a, a) and Q1). Then every solution which
starts off the union of global stable manifolds Ws(E(x̄, x̄)) ∪ Ws(P1) ∪ Ws(Q1) converges to the period-two
solution {P2, Q2}.

(d) Assume that Equation (1) has locally asymptotically stable equilibrium solution x̄ > a. Asume that Equation (1)
has two minimal period-two solutions {P1, Q1} and {P2, Q2} such that P1 �se P2 �se E(x̄, x̄) �se Q2 �se Q1,
where {P1, Q1} is locally asymptotically stable and {P2, Q2} is a saddle point. If the line through (a, a) and P1

(resp. the line through (a, a) and Q1) is a part of the basin of attraction of {P1, Q1} then every solution which
starts between the stable manifolds Ws(P2) and Ws(Q2) converges to x̄ while every solution which starts below
Ws(Q2) (resp. above Ws(P2)) converges to the period-two solution {P1, Q1}.

Proof.

(a) In view of Remark 7 the second iterate T 2 of the map T associated with Equation (1) is strictly competitive.
Applying Theorem 9 part (a) to T 2, where we set E1 = P1, E2 = (x̄, x̄), E3 = Q1 we complete the proof.

(b) The proof follows from Theorem 9 part (b) applied to T 2, where we set E1 = P1, E2 = (x̄, x̄), E3 = Q1 and
observation that locally asymptotically stable fixed point (resp. saddle point) for T has the same character for
T 2.

(c) The proof is similar to the proof in case (a) and will be ommitted.

(d) The proof follows from Theorem 9 part (d) applied to T 2, where we set E1 = P1, E2 = P2, E3 = (x̄, x̄), E4 =
Q2, E5 = Q1 and the observation that locally asymptotically stable fixed point (resp. saddle point) for T has
the same character for T 2.

Remark 11 The term ”saddle point” in formulation of statements of Theorems 9 and 10 can be replaced by the
term ”non-hyperbolic point of stable type”. Results related to Theorem 9 were obtained in [1, 2] and the results
related to Theorem 10 were obtained in [6, 9, 10]. Furthermore Cases (b) and (c) of Theorem 9 can be extended to the
case when we have any odd number of the equilibrium points which alternate its stability between two types: locally
asymptotically stable and saddle points or non-hyperbolic equilibrium points of the stable type. The transition from
Case (a) to Case (b) and from Case (c) to Case (d) in Theorem 9 is an exchange of stability bifurcation, while in the
case of Theorem 10 these two bifurcations are two global period doubling bifurcations.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.1, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

176 Kalabusic 172-184



3 Case study: Equation xn+1 =
γxn−1

Ax2n+Bxnxn−1+Cxn−1

We investigate global behavior of Equation (2), where the parameters γ,A,B,C are positive numbers and the initial
conditions x−1, x0 are arbitrary nonnegative numbers such that x−1 + x0 > 0. Equation (2) is a special case of
equations

xn+1 =
αx2

n + βxnxn−1 + γxn−1

Ax2
n +Bxnxn−1 + Cxn−1

, n = 0, 1, . . . (6)

and

xn+1 =
Ax2

n +Bxnxn−1 + Cx2
n−1 +Dxn + Exn−1 + F

ax2
n + bxnxn−1 + cx2

n−1 + dxn + exn−1 + f
, n = 0, 1, . . . (7)

The comprehensive linearized stability analysis of Equation (6) was given in [9] and some special cases were considered
in [10]. Some special cases of Equation (7) have been considered in the series of papers [5, 6, 11, 12, 19]. Describing
the global dynamics of Equation (7) is a formidable task as this equation contains as a special cases many equations
with complicated dynamics, such as the linear fractional difference equation

xn+1 =
Dxn + Exn−1 + F

dxn + exn−1 + f
, n = 0, 1, .... (8)

Equation (2) has 0 as a singular point and the first quadrant as the region R.

3.1 Local stability analysis

By using the substitution yn = C
γ
xn Equation (2) is reduced to the equation

xn+1 =
xn−1

A′x2
n +B′xnxn−1 + xn−1

, n = 0, 1, ... (9)

where A′ = γ2

C2A and B′ = γ2

C2B. In the sequel we consider Equation (9) where A′ and B′ will be replaced with A
and B respectively.

First, we notice that under the conditions on parameters all solutions of Equation (9) are in interval (0, 1] and
that 0 is a singular point.

Equation (9) has the unique positive equilibrium x̄ given by

x̄ =
−1+
√

1+4(A+B)

2(A+B)
. (10)

The partial derivatives associated to Equation (9) at the equilibrium x̄ are

f ′x = −y(2Ax+By)

(Ax2+Bxy+y)2

∣∣∣
x̄

= − 4(2A+B)

(1+
√

1+4A+4B)2 , f ′y = Ax2

(Ax2+Bxy+y)2

∣∣∣
x̄

= 4A

(1+
√

1+4A+4B)2 .

Characteristic equation associated to Equation (9) at the equilibrium is

λ2 + 4(2A+B)

(1+
√

1+4A+4B)2 λ− 4A

(1+
√

1+4A+4B)2 = 0.

By applying the linearized stability Theorem, see [13], we obtain the following result.

Theorem 12 The unique positive equilibrium solution x̄ of Equation (9) is:

i) locally asymptotically stable when B + 3A > 4A2;

ii) a saddle point when B + 3A < 4A2;

iii) a non-hyperbolic point of stable type (with eigenvalues λ1 = −1 and λ2 = 1
4A

< 1) when B + 3A = 4A2.

In the next lemma we prove the existence of period two solutions of Equation (9).

Lemma 13 Equation (9) has the minimal period-two solution {(0, 1), (1, 0)} and the minimal period-two solution
{P (φ, ψ), Q(ψ, φ)}, where

φ =
A−
√

(A−B)(A(−3+4A)−B−B
2A(A−B)

and ψ =
A+
√

(A−B)(A(−3+4A)−B−B
2A(A−B)

(11)

if and only if
3

4
< A < 1 and B + 3A < 4A2 or A > 1 and B + 3A > 4A2.
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Proof. A minimal period-two solution is a positive solution of the following system{
x+ (B −A)y − 1 = 0
−Axy + y = 0.

(12)

where φ+ ψ = x and φψ = y. The system (12) has two solutions x = 1, y = 0 and

x =
1

A
, y =

A− 1

A(B −A)
.

For second solution we have that x, y, x2 − 4y > 0 if and only if

3

4
< A < 1 and B + 3A < 4A2 or A > 1 and B + 3A > 4A2.

Now, φ and ψ are solution of equation

t2 − 1

A
t− A− 1

A(B −A)
= 0,

and the proof is complete.
The following theorem describes the local stability nature of the period-two solutions.

Theorem 14 Consider Equation (9).

i) The minimal period two solution {(0, 1), (1, 0)} is:

a) locally asymptotically stable when A > 1;

b) a saddle point when A < 1;

c) a non-hyperbolic point of the stable type when A = 1.

ii) The minimal period two solution {P (φ, ψ), Q(ψ, φ)}, given by (11) is:

a) locally asymptotically stable when 3
4
< A < 1 and B + 3A < 4A2;

b) a saddle point when A > 1 and B + 3A > 4A2.

iii) If A = B = 1 the minimal period two solution {φ, 1− φ} (0 < φ < 1) is non-hyperbolic.

Proof. In order to prove this theorem, we associate the second iterate map to Equation (9). We have

T 2

(
u
v

)
=

(
g(u, v)
h(u, v)

)
where

g(u, v) =
u

Av2 +Buv + u
, h(u, v) =

v

v + Au2

(Av2+Buv+u)2 + Buv
Av2+Buv+u

.

The Jacobian of the map T 2 has the following form

JT2

(
φ
ψ

)
=

(
g′u(φ, ψ) g′v(φ, ψ)
h′u(φ, ψ) h′v(φ, ψ)

)
where

g′u =
Av2

(Av2 +Buv + u)2 , g′v = − u(Bu+ 2Av)

(Av2 +Buv + u)2 ,

h′u = − Av3(u+Buv+Av2)(Buv(1+Bv)+A(2u+Bv3))

(A2v5+u2v(1+Bv)(1+B+Bv)+Au(u+v3(2+B+2Bv))2
,

h′v = u(u+Buv+Av2)(B2u2v2(1+Bv)+A2v2(5u+2Bv3)+Au(u+3Buv+Bv3(2+3Bv3)))

(A2v5+u2v(1+Bv)(1+B+Bv)+Au(u+v3(2+B+2Bv))2
.

Set
S = g′u(φ, ψ) + h′v(φ, ψ)

and
D = g′u(φ, ψ)h′v(φ, ψ)− g′v(φ, ψ)h′u(φ, ψ).

After some lengthy calculation one can see that:
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i) for the minimal period-two solution {(0, 1), (1, 0)} we have

S =
1

A
and D = 0

and applying the linearized stability Theorem [13] we obtain that the minimal period-two solution {(0, 1), (1, 0)}
of Equation (9) is:

a) locally asymptotically stable when A > 1;

b) a saddle point when A < 1;

c) a non-hyperbolic point of the stable type when A = 1.

ii) For the positive minimal period two solution {P (φ, ψ), Q(ψ, φ)} we have

S = 6A4+A(B−2)B−B2−3A3(3+2B)+A2(4+B(6+B))

A2(A−B)2
, D = (A−1)2

(A−B)2
.

Applying the linearized stability Theorem [13] we obtain that the minimal period-two solution {P (φ, ψ), Q(ψ, φ)}
of Equation (9) is:

a) locally asymptotically stable when 3
4
< A < 1 and B + 3A < 4A2;

b) a saddle point when A > 1 and B + 3A > 4A2.

iii) If A = B = 1 then
S = 1 + φ2(1− φ)2, D = φ2(1− φ)2

from which the proof follows.

3.2 Global results and basins of attraction

In this section we present global dynamics results for Equation (9).

Theorem 15 If B + 3A > 4A2 and 0 < A < 1 then Equation (9) has a unique equilibrium solution E(x, x) given
by (10) which is locally asymptotically stable and the minimal period-two solution {P (0, 1), Q(1, 0)} which is a saddle
point. Furthermore, the global stable manifold of the period-two solution {P,Q} is given by Ws({P,Q}) = Ws(P ) ∪
Ws(Q) where Ws(P ) and Ws(Q) are the coordinate axes. The basin of attraction B(E) = {(x, y) : x ≥ 0, y ≥ 0}.
More precisely

i) If (u0, v0) ∈ Ws(P ) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted to P , and the subse-
quence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to Q.

ii) If (u0, v0) ∈ Ws(Q) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted to Q, and the subse-
quence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P .

iii) If (u0, v0) ∈ R�(Ws(P ) ∪ Ws(Q)) (the region between Ws(P ) and Ws(Q)) then the sequence {(un, vn)} is
attracted to E(x, x).

See Figure 1 for visual illustration.

Proof. The proof is direct application of Theorem 10 part (a).

Theorem 16 If B + 3A > 4A2 and A = 1 then Equation (9) has a unique equilibrium solution E(x, x) which is
locally asymptotically stable and the minimal period-two solution, {P (0, 1), Q(1, 0)} which is a non-hyperbolic point
of stable type. Furthermore, the global stable manifold of the period-two solution {P,Q} is given by Ws({P,Q}) =
Ws(P ) ∪Ws(Q) where Ws(P ) and Ws(Q) are the coordinate axes. The global dynamics is given in Theorem 15.

Proof. In view of Remark 11 the proof is direct application of Theorem 10 part (a).
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Figure 1: Visual illustration of Theorem 15.

Theorem 17 If B + 3A > 4A2 and A > 1 then Equation (9) has a unique equilibrium solution E(x, x) which is
locally asymptotically stable and two minimal period-two solutions {P1(0, 1), Q1(1, 0)} which is locally asymptotically
stable and {P2(φ, ψ), Q2(ψ, φ)} given by (11), which is a saddle point. Furthermore, the global stable manifold of
the period-two solution {P2, Q2} is given by Ws({P2, Q2}) = Ws(P2) ∪ Ws(Q2) where Ws(P2) and Ws(Q2) are
continuous increasing curves, that divide the first quadrant into two connected components, namely
W+

1 := {x ∈ R\Ws(P2) : ∃y ∈ Ws(P2) with y �se x} and W−1 := {x ∈ R\Ws(P2) : ∃y ∈ Ws(P2) with x �se y}
W+

2 := {x ∈ R \ Ws(Q2) : ∃y ∈ Ws(Q2) with y �se x} and W−2 = {x ∈ R \ Ws(Q2) : ∃y ∈ Ws(Q2) with
x �se y}

respectively such that the following statements are true.

i) If (u0, v0) ∈ Ws(P2) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted to P2 and the subse-
quence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to Q2.

ii) If (u0, v0) ∈ Ws(Q2) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted to Q2 and the
subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P2.

iii) If (u0, v0) ∈ W−1 (the region aboveWs(P2)) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted
to P1 and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to Q1.

iv) If (u0, v0) ∈ W+
2 (the region below Ws(Q2)) then the subsequence of even-indexed terms {(u2n, v2n)} tends to

Q1 and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to P1.

v) If (u0, v0) ∈ W+
1 ∩W

−
2 (the region between Ws(P2) and Ws(Q2)) then the sequence {(un, vn)} is attracted to

E(x, x).

Shortly the basin of attraction of E is the region between Ws(P2) and Ws(Q2) while the rest of the first quadrant
without Ws(P2) ∪Ws(Q2) ∪ (0, 0) is the basin of attraction of {P1, Q1}.

See Figure 2 for visual illustration.

Proof. The proof is direct application of Theorem 10 part (d).

Theorem 18 If B+ 3A < 4A2 and 3
4
< A < 1 then Equation (9) has a unique equilibrium solution E(x, x) which is

a saddle point and minimal period-two solution {P1(0, 1), Q1(1, 0)} which is a saddle point and {P2(φ, ψ), Q2(ψ, φ)},
given by (11) which is locally asymptotically stable. Furthermore, there exists a set CE which is an invariant subset
of the basin of attraction of E. The set CE is a graph of a strictly increasing continues function of the first variable
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Figure 2: Visual illustration of Theorem 17.

on (0,∞) interval and separates R�(0, 0), where R = (0,∞)× (0,∞) into two connected and invariant components
W−(x, x) and W+(x, x). The global stable manifold of the period-two solution {P1, Q1} is given by Ws({P1, Q1}) =
Ws(P1) ∪ Ws(Q1) where Ws(P1) and Ws(Q1) are continuous nondecreasing curves which represent the coordinate
axes. The basin of attraction of {P2, Q2} is the first quadrant without Ws(P1)∪Ws(Q1)∪ (0, 0)∪CE. More precisely

i) Every initial point (u0, v0) in CE is attracted to E.

ii) If (u0, v0) ∈ Ws(P1) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted to P1 and the subse-
quence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to Q1.

iii) If (u0, v0) ∈ Ws(Q1) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted to Q1 and the
subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P1.

iv) If (u0, v0) ∈ W−(x, x) (the region between CE and Ws(P1)) then the subsequence of even-indexed terms
{(u2n, v2n)} is attracted to P2 and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to Q2.

v) If (u0, v0) ∈ W+(x, x) (the region between CE and Ws(Q1)) then the subsequence of even-indexed terms
{(u2n, v2n)} tends to Q2 and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to P2.

See Figure 3 for visual illustration.

Proof. Theorem 12 implies that there exists a unique equilibrium solution E(x, x) which is a saddle point and
Theorem 14 implies that minimal period-two solution {P1(0, 1), Q1(1, 0)} is a saddle point and {P2(φ, ψ), Q2(ψ, φ)}
is locally asymptotically stable. Now the proof is direct application of Theorem 10 part (c).

Figure 3: Visual illustration of Theorem 18.

Theorem 19 If B + 3A < 4A2 and A = 1 then Equation (9) has a unique equilibrium solution E(x, x), which is a
saddle point and the minimal period-two solution {P1(0, 1), Q1(1, 0)} which is a non-hyperbolic point of stable type.
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Furthermore, the global stable manifoldWs(E) is continuous increasing curve which divides first quadrant and the
global stable manifold of the period-two solution {P1, Q1} is given byWs({P1, Q1}) =Ws(P1)∪Ws(Q1) whereWs(P1)
andWs(Q1) are the coordinate axes. The basin of attraction B({P1, Q1}) = {(x, y) : x ≥ 0, y ≥ 0}�(Ws(E)∪(0, 0))}.
More precisely

i) Every initial point (u0, v0) in Ws(E) is attracted to E.

i) If (u0, v0) ∈ W+(E) (the region below Ws(E)) then the subsequence of even-indexed terms {(u2n, v2n)} is
attracted to Q1 and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P1.

iii) If (u0, v0) ∈ W−(E) (the region above Ws(E)) then the subsequence of even-indexed terms {(u2n, v2n)} is
attracted to P1 and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to Q1.

See Figure 4 for visual illustration.

Proof. From Theorem 12 Equation (9) has a unique equilibrium point E(x, x) which is a saddle point. Theorem
14 implies that the period-two solution {P,Q} is a non-hyperbolic point. In view of Remark 11 the proof is direct
application of Theorem 10 part (b).

Figure 4: Visual illustration of Theorem 19.

Theorem 20 If B + 3A < 4A2 and A > 1 then Equation (9) has a unique equilibrium solution E(x, x) which is a
saddle point and the minimal period-two solution {P (0, 1), Q(1, 0)} which is locally asymptotically stable. The global
behavior is the same as in Theorem 19.

Proof. The proof is direct application of Theorem 10 part (b).

Theorem 21 Assume that B + 3A = 4A2.

a) If 3
4
< A < 1 then Equation (9) has a unique equilibrium point E(x, x) which is a non-hyperbolic point of stable

type and the minimal period-two solution {P (0, 1), Q(1, 0)} which is a saddle point. Then every initial point
(u0, v0) in R is attracted to E.

b) If A > 1 then Equation (9) has a unique equilibrium solution E(x, x) which is a non-hyperbolic point of the
stable type and the minimal period-two solution {P (0, 1), Q(1, 0)} which is locally asymptotically stable. The
global behavior is the same as in Theorem 19.

c) If A = 1 then Equation (9) has a unique equilibrium solution E(x, x) and infinitely many minimal period-two
solution {P (φ, 1− φ), Q(1− φ, φ)} (0 < φ < 1) which are a non-hyperbolic points of stable type.

i) There exists a continuous increasing curve CE which is a subset of the basin of attraction of E

ii) For every minimal period-two solution {P (φ, 1−φ), Q(1−φ, φ)} (0 < φ < 1) there exists the global stable
manifold given by Ws({P,Q}) = Ws(P ) ∪Ws(Q) where Ws(P ) and Ws(Q) are continuous increasing
curves. If (u0, v0) ∈ Ws(P ) then the subsequence of even-indexed terms {(u2n, v2n)} tends to P and the
subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to Q. If (u0, v0) ∈ Ws(Q) then the subsequence
of even-indexed terms {(u2n, v2n)} tends to Q and the subsequence of odd-indexed terms {(u2n+1, v2n+1)}
tends to P. The union of these stable manifolds and CE foliates the first quadrant without the singular
point (0, 0).
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See Figure 5 for visual illustration.

Proof.

a) From Theorem 12 Equation (9) has a unique equilibrium point E(x, x) = ( 1
2A
, 1

2A
) which is non-hyperbolic

of stable type. From Theorem 14 Equation (9) has a unique minimal period-two solution {P1(0, 1), Q1(1, 0)}
which is a saddle point. In view of Remark 11 the proof is direct application of Theorem 10 part (a).

b) From Theorem 12 Equation (9) has a unique equilibrium point E(x, x) = ( 1
2A
, 1

2A
), which is non-hyperbolic

of stable type. From Theorem 14 Equation (9) has a unique minimal period-two solution {P1(0, 1), Q1(1, 0)}
which is locally asymptotically stable point. In view of Remark 11 the proof is direct application of Theorem
10 part (b).

c) From Theorem 12 Equation (9) has a unique equilibrium point E(x, x) = ( 1
2A
, 1

2A
) which is non-hyperbolic.

All conditions of Theorem 5 are satisfied, which yields the existence a continuous increasing curve CE which
is a subset of the basin of attraction of E. The proof of the statement ii) follows from Theorems 3, 5, 14 and
Theorem 5 in [8].

Remark 22 The global dynamics of Equation (9) can be described in the language of bifurcation theory as follows:
when B + 3A 6= 4A2, then the period-doubling bifurcation happens when A is passing through the value 1 in such a
way that for A > 1 new interior period-two solution emerges and exchange stability with already existing period-two
solution on the boundary. Another bifurcation happens when B+ 3A < 4A2 in which case the stability of the unique
equilibrium changes from local attractor to the saddle point. Finally, there is a bifurcation at another critical value
B + 3A = 4A2 when A is passing through the critical value 1, which is one of exchange stability between the unique
equilibrium and unique period-two solution, with specific dynamics at A = 1, when there is an infinite number of
period-two solutions which basins of attraction filled up the first quadrant without the origin. See [16] for similar
results.

Figure 5: Visual illustration of Theorem 21.
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[9] S. Kalabušić, M. R. S. Kulenović and M. Mehuljić, Global Period-doubling Bifurcation of Quadratic Fractional
Second Order Difference Equation, Discrete Dyn. Nat. Soc., (2014), Art. ID 920410, 13p.
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