S. S. DRAGOMIR^{1,2}

ABSTRACT. In this paper we obtain some new inequalities for Heinz operator mean.

1. INTRODUCTION

Throughout this paper A, B are positive invertible operators on a complex Hilbert space $(H, \langle \cdot, \cdot \rangle)$. We use the following notations for operators and $\nu \in [0, 1]$

$$A\nabla_{\nu}B := (1-\nu)A + \nu B,$$

the weighted operator arithmetic mean, and

$$A\sharp_{\nu}B := A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^{\nu} A^{1/2},$$

the weighted operator geometric mean [13]. When $\nu = \frac{1}{2}$ we write $A\nabla B$ and $A \sharp B$ for brevity, respectively.

Define the *Heinz operator mean* by

$$H_{\nu}(A,B) := \frac{1}{2} \left(A \sharp_{\nu} B + A \sharp_{1-\nu} B \right).$$

The following interpolatory inequality is obvious

(1.1)
$$A \sharp B \le H_{\nu} (A, B) \le A \nabla B$$

for any $\nu \in [0, 1]$.

The famous Young inequality for scalars says that if a, b > 0 and $\nu \in [0, 1]$, then

(1.2)
$$a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b$$

with equality if and only if a = b. The inequality (1.2) is also called ν -weighted arithmetic-geometric mean inequality.

We consider the Kantorovich's constant defined by

(1.3)
$$K(h) := \frac{(h+1)^2}{4h}, \ h > 0.$$

The function K is decreasing on (0, 1) and increasing on $[1, \infty)$, $K(h) \ge 1$ for any h > 0 and $K(h) = K\left(\frac{1}{h}\right)$ for any h > 0. In the recent paper [1] we have obtained the following additive and multiplicative

reverse of Young's inequality

(1.4)
$$0 \le (1-\nu)a + \nu b - a^{1-\nu}b^{\nu} \le \nu (1-\nu)(a-b)(\ln a - \ln b)$$

¹⁹⁹¹ Mathematics Subject Classification. 26D15; 26D10, 47A63, 47A30, 15A60.

Key words and phrases. Young's Inequality, Convex functions, Arithmetic mean-Geometric mean inequality, Heinz means.

and

2

(1.5)
$$1 \leq \frac{(1-\nu)a+\nu b}{a^{1-\nu}b^{\nu}} \leq \exp\left[4\nu\left(1-\nu\right)\left(K\left(\frac{a}{b}\right)-1\right)\right],$$

for any a, b > 0 and $\nu \in [0, 1]$, where K is Kantorovich's constant. The operator version of (1.4) is as follows [1]:

Theorem 1. Let A, B be two positive operators. For positive real numbers $m, m', M, M', put h := \frac{M}{m}, h' := \frac{M'}{m'}$ and let $\nu \in [0, 1]$.

(i) If
$$0 < mI \le A \le m'I < M'I \le B \le MI$$
, then

(1.6)
$$0 \le A\nabla_{\nu}B - A\sharp_{\nu}B \le \nu \left(1 - \nu\right) \left(h - 1\right) \ln hA$$

and, in particular

(1.7)
$$0 \le A\nabla B - A \sharp B \le \frac{1}{4} (h-1) \ln hA.$$

(ii) If $0 < mI \le B \le m'I < M'I \le A \le MI$, then

(1.8)
$$0 \le A\nabla_{\nu}B - A\sharp_{\nu}B \le \nu \left(1 - \nu\right)\frac{h - 1}{h}\ln hA$$

and, in particular

(1.9)
$$0 \le A\nabla B - A \sharp B \le \frac{1}{4} \frac{h-1}{h} \ln hA.$$

The operator version of (1.5) is [1]:

Theorem 2. For two positive operators A, B and positive real numbers m, m', M, M' satisfying either of the following conditions

 $\begin{array}{l} (i) \ 0 < mI \leq A \leq m'I < M'I \leq B \leq MI; \\ (ii) \ 0 < mI \leq B \leq m'I < M'I \leq A \leq MI; \end{array}$

 $we\ have$

(1.10)
$$A\nabla_{\nu}B \leq \exp\left[4\nu\left(1-\nu\right)\left(K\left(h\right)-1\right)\right]A\sharp_{\nu}B$$

and, in particular

(1.11)
$$A\nabla B \le \exp\left[K\left(h\right) - 1\right]A \sharp B$$

For other recent results on geometric operator mean inequalities, see [2]-[12], [14] and [16]-[17].

We recall that *Specht's ratio* is defined by [15]

(1.12)
$$S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty), \\ 1 & \text{if } h = 1. \end{cases}$$

It is well known that $\lim_{h\to 1} S(h) = 1$, $S(h) = S(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function is decreasing on (0, 1) and increasing on $(1, \infty)$.

In the recent paper [6] we obtained amongst other the following result for the Heinz operator mean of A, B that are positive invertible operators that satisfy the condition $mA \leq B \leq MA$ for some constants M > m > 0,

(1.13)
$$\omega(m, M) A \sharp B \le H_{\nu}(A, B) \le \Omega(m, M) A \sharp B,$$

where

$$\Omega(m, M) := \begin{cases} S(m^{|2\nu-1|}) & \text{if } M < 1, \\\\ \max\{S(m^{|2\nu-1|}), S(M^{|2\nu-1|})\} & \text{if } m \le 1 \le M, \\\\ S(M^{|2\nu-1|}) & \text{if } 1 < m, \end{cases}$$

and

$$\omega\left(m,M\right) := \left\{ \begin{array}{l} S\left(M^{\left|\nu-\frac{1}{2}\right|}\right) \mbox{ if } M < 1, \\\\ 1 \mbox{ if } m \leq 1 \leq M, \\\\ S\left(m^{\left|\nu-\frac{1}{2}\right|}\right) \mbox{ if } 1 < m. \end{array} \right.$$

Motivated by the above results we establish in this paper some new additive and multiplicative reverse inequalities for the Heinz operator mean.

2. Additive Reverse Inequalities for Heinz Mean

We have the following generalization of Theorem 1:

Theorem 3. Assume that A, B are positive invertible operators and the constants M > m > 0 are such that

$$(2.1) mA \le B \le MA.$$

Then for any $\nu \in [0,1]$ we have

(2.2)
$$(0 \le) A \nabla_{\nu} B - A \sharp_{\nu} B \le \nu (1 - \nu) \Omega (m, M) A$$

where

(2.3)
$$\Omega(m,M) := \begin{cases} (m-1)\ln m & \text{if } M < 1, \\ \max\{(m-1)\ln m, (M-1)\ln M\} & \text{if } m \le 1 \le M, \\ (M-1)\ln M & \text{if } 1 < m. \end{cases}$$

In particular, we have

(2.4)
$$(0 \le) A\nabla B - A \sharp B \le \frac{1}{4} \Omega(m, M) A.$$

Proof. We consider the function $D: (0, \infty) \to [0, \infty)$ defined by $D(x) = (x - 1) \ln x$. We have that $D'(x) = \ln x + 1 - \frac{1}{x}$ and $D''(x) = \frac{x+1}{x^2}$ for $x \in (0, \infty)$. This shows that the function is convex on $(0, \infty)$, monotonic decreasing on (0, 1) and monotonic increasing on $[1, \infty)$ with the minimum 0 realized in x = 1.

From the inequality (1.4) we have

$$(0 \le) (1 - \nu) + \nu x - x^{\nu} \le \nu (1 - \nu) D(x)$$

for any $x > 0, \nu \in [0, 1]$ and hence

(2.5)
$$(0 \le) (1-\nu) I + \nu X - X^{\nu} \le \nu (1-\nu) \max_{m \le x \le M} D(x)$$

for the positive operator X that satisfies the condition $0 < mI \le X \le MI$ for 0 < m < M and $\nu \in [0, 1]$.

If the condition (2.1) holds true, then by multiplying in both sides with $A^{-1/2}$ we get $mI \leq A^{-1/2}BA^{-1/2} \leq MI$ and by taking $X = A^{-1/2}BA^{-1/2}$ in (2.5) we get

(2.6)
$$(1-\nu)I + \nu A^{-1/2}BA^{-1/2} - \left(A^{-1/2}BA^{-1/2}\right)^{\nu} \le \nu (1-\nu) \max_{m \le x \le M} D(x)$$

Now, if we multiply (2.6) in both sides with $A^{1/2}$ we get

(2.7)
$$(0 \le) (1 - \nu) A + \nu B - A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^{\nu} A^{1/2} \\ \le \nu (1 - \nu) \max_{m \le x \le M} D(x) A$$

for any $\nu \in [0, 1]$.

Finally, since

$$\max_{m \le x \le M} D(x) = \begin{cases} (m-1) \ln m \text{ if } M < 1, \\\\ \max\{(m-1) \ln m, (M-1) \ln M\} \text{ if } m \le 1 \le M, \\\\ (M-1) \ln M \text{ if } 1 < m, \end{cases}$$

then by (2.7) we get the desired result (2.2).

Corollary 1. With the assumptions of Theorem 3 we have

(2.8)
$$(0 \le) A\nabla B - H_{\nu}(A, B) \le \nu (1 - \nu) \Omega(m, M) A.$$

Proof. From (2.2) we have by replacing ν with $1 - \nu$ that

(2.9)
$$(0 \leq) A \nabla_{1-\nu} B - A \sharp_{1-\nu} B \leq \nu (1-\nu) \Omega(m, M) A.$$

Adding (2.2) with (2.9) and dividing by 2 we get (2.8).

Corollary 2. Let A, B be two positive operators. For positive real numbers m, $m', M, M', \text{ put } h := \frac{M}{m}, h' := \frac{M'}{m'} \text{ and let } \nu \in [0, 1].$ (i) If $0 < mI \le A \le m'I < M'I \le B \le MI$, then

(2.10)
$$(0 \le) A\nabla B - H_{\nu}(A, B) \le \nu (1 - \nu) (h - 1) \ln hA.$$

(ii) If $0 < mI \le B \le m'I < M'I \le A \le MI$, then

(2.11)
$$(0 \le) A\nabla B - H_{\nu}(A, B) \le \nu (1-\nu) \left(\frac{h-1}{h}\right) \ln hA.$$

Proof. If the condition (i) is valid, then we have

$$I < \frac{M'}{m'}I = h'I \le X \le hI = \frac{M}{m}I,$$

which, by (2.8) gives the desired result (2.10).

If the condition (ii) is valid, then we have

$$0 < \frac{1}{h}I \le X \le \frac{1}{h'}I < I,$$

which, by (2.8) gives

$$(0 \le) A\nabla B - H_{\nu}(A, B) \le \nu (1 - \nu) \left(\frac{1}{h} - 1\right) \ln \frac{1}{h}$$

that is equivalent to (2.11).

Theorem 4. With the assumptions of Theorem 3 we have

(2.12)
$$(0 \le) H_{\nu}(A, B) - A \sharp B \le \frac{1}{4m^{1-\nu}} \max_{x \in [m, M]} D(x^{2\nu-1}) A,$$

where the function $D: (0,\infty) \to [0,\infty)$ is defined by $D(x) = (x-1) \ln x$ (see the proof of Theorem 3).

Proof. From the inequality (1.4) we have for $\nu = \frac{1}{2}$

(2.13)
$$(0 \le) \frac{c+d}{2} - \sqrt{cd} \le \frac{1}{4} (c-d) (\ln c - \ln d)$$

for any c, d > 0.

If we take in (2.13) $c = a^{1-\nu}b^{\nu}$ and $d = a^{\nu}b^{1-\nu}$ then we get

(2.14)
$$\frac{a^{1-\nu}b^{\nu} + a^{\nu}b^{1-\nu}}{2} - \sqrt{ab} \le \frac{1}{4} \left(a^{1-\nu}b^{\nu} - a^{\nu}b^{1-\nu} \right) \left(\ln a^{1-\nu}b^{\nu} - \ln a^{\nu}b^{1-\nu} \right)$$

for any a, b > 0 and $\nu \in [0, 1]$.

This inequality is of interest in itself.

Now, if we take in (2.14) a = 1 and b = x, then we get

(2.15)
$$0 \leq \frac{x^{\nu} + x^{1-\nu}}{2} - \sqrt{x} \leq \frac{1}{4} \left(x^{\nu} - x^{1-\nu} \right) \left(\ln x^{\nu} - \ln x^{1-\nu} \right) \\ = \frac{2\nu - 1}{4} \left(x^{\nu} - x^{1-\nu} \right) \ln x = \frac{1}{4x^{1-\nu}} \left(x^{2\nu-1} - 1 \right) \ln x^{2\nu-1} \\ = \frac{1}{4x^{1-\nu}} D \left(x^{2\nu-1} \right)$$

for any x > 0 and $\nu \in [0, 1]$.

Now, if $x \in [m, M] \subset (0, \infty)$, then by (2.15) we get the upper bound

$$(0 \le) \frac{x^{\nu} + x^{1-\nu}}{2} - \sqrt{x} \le \frac{1}{4m^{1-\nu}} \max_{x \in [m,M]} D\left(x^{2\nu-1}\right).$$

Using the continuous functional calculus, we then have

(2.16)
$$(0 \le) \frac{X^{\nu} + X^{1-\nu}}{2} - X^{1/2} \le \frac{1}{4m^{1-\nu}} \max_{x \in [m,M]} D\left(x^{2\nu-1}\right)$$

If the condition (2.1) holds true, then by multiplying in both sides with $A^{-1/2}$ we get $mI \leq A^{-1/2}BA^{-1/2} \leq MI$ and by taking $X = A^{-1/2}BA^{-1/2}$ in (2.16) we get

(2.17)
$$0 \le \frac{\left(A^{-1/2}BA^{-1/2}\right)^{\nu} + \left(A^{-1/2}BA^{-1/2}\right)^{1-\nu}}{2} - \left(A^{-1/2}BA^{-1/2}\right)^{1/2} \\ \le \frac{1}{4m^{1-\nu}} \max_{x \in [m,M]} D\left(x^{2\nu-1}\right)$$

for any $\nu \in [0, 1]$.

Now, if we multiply (2.17) in both sides with $A^{1/2}$ we get the desired result (2.12).

Corollary 3. Let A, B be as in Corollary 2.

 $\mathbf{5}$

(i) If
$$0 < mI \le A \le m'I < M'I \le B \le MI$$
, then
(2.18) $(0 \le) H_{\nu}(A, B) - A \ddagger B$
 $\le \frac{1}{4(h')^{1-\nu}} \begin{cases} (h^{2\nu-1}-1) \ln h^{2\nu-1} & \text{if } \nu \in \left[\frac{1}{2},1\right], \\ ((h')^{2\nu-1}-1) \ln (h')^{2\nu-1} & \text{if } \nu \in \left[0,\frac{1}{2}\right) \end{cases}$

(ii) If $0 < mI \le B \le m'I < M'I \le A \le MI$, then

(2.19)
$$(0 \leq) H_{\nu}(A, B) - A \sharp B \leq \frac{1}{4} h^{1-\nu} \begin{cases} (h^{-2\nu+1} - 1) \ln h^{-2\nu+1} & \text{if } \nu \in \left[\frac{1}{2}, 1\right], \\ ((h')^{-2\nu+1} - 1) \ln (h')^{-2\nu+1} & \text{if } \nu \in \left[0, \frac{1}{2}\right). \end{cases}$$

Proof. If the condition (i) is valid, then we have

$$I < \frac{M'}{m'}I = h'I \le X \le hI = \frac{M}{m}I,$$

which, by (2.12) gives

6

(2.20)
$$0 \le H_{\nu}(A,B) - A \sharp B \le \frac{1}{4(h')^{1-\nu}} \max_{x \in [h',h]} D(x^{2\nu-1}) A.$$

Observe that, if $\nu \in \left[\frac{1}{2}, 1\right]$, then

$$\max_{x \in [h',h]} D\left(x^{2\nu-1}\right) = D\left(h^{2\nu-1}\right) = \left(h^{2\nu-1}-1\right) \ln h^{2\nu-1}.$$

If $\nu \in \left[0, \frac{1}{2}\right]$, then

$$\max_{x \in [h',h]} D\left(x^{2\nu-1}\right) = D\left(\left(h'\right)^{2\nu-1}\right) = \left(\left(h'\right)^{2\nu-1} - 1\right) \ln\left(h'\right)^{2\nu-1}.$$

By (2.20) we get the desired result (2.18).

If the condition (ii) is valid, then we have

$$0 < \frac{1}{h}I \le X \le \frac{1}{h'}I < I,$$

which, by (2.12) gives

(2.21)
$$0 \le H_{\nu}(A,B) - A \sharp B \le \frac{1}{4\left(\frac{1}{h}\right)^{1-\nu}} \max_{x \in \left[\frac{1}{h}, \frac{1}{h'}\right]} D\left(x^{2\nu-1}\right) A.$$

If $\nu \in \left[\frac{1}{2}, 1\right]$, then

$$\max_{x \in \left[\frac{1}{h}, \frac{1}{h'}\right]} D\left(x^{2\nu-1}\right) = D\left(\left(\frac{1}{h}\right)^{2\nu-1}\right) = D\left((h)^{-2\nu+1}\right).$$

If $\nu \in \left[0, \frac{1}{2}\right]$, then

$$\max_{x \in \left[\frac{1}{h}, \frac{1}{h'}\right]} D\left(x^{2\nu-1}\right) = D\left(\left(\frac{1}{h'}\right)^{2\nu-1}\right) = D\left(\left(h'\right)^{-2\nu+1}\right).$$

By (2.21) we get the desired result (2.19).

7

3. Multiplicative Reverse Inequalities for Heinz Mean

We have the following generalization of Theorem 2:

Theorem 5. Assume that A, B are positive invertible operators and the constants M > m > 0 are such that the condition (2.1) is valid. Then for any $\nu \in [0, 1]$ we have

(3.1)
$$A\nabla_{\nu}B \le A\sharp_{\nu}B\exp\left[4\nu\left(1-\nu\right)\left(F\left(m,M\right)-1\right)\right]$$

where

$$F(m, M) := \begin{cases} K(m) & \text{if } M < 1, \\\\ \max \{K(m), K(M)\} & \text{if } m \le 1 \le M, \\\\ K(M) & \text{if } 1 < m, \end{cases}$$

In particular, we have

(3.2)
$$A\nabla B \le A \sharp B \exp\left[F\left(m, M\right) - 1\right].$$

Proof. From the inequality (1.5) we have for a = 1 and b = x that

(3.3)
$$(1-\nu) + \nu x \le x^{\nu} \exp\left[4\nu \left(1-\nu\right) \left(K\left(\frac{1}{x}\right)-1\right)\right] = x^{\nu} \exp\left[4\nu \left(1-\nu\right) \left(K\left(x\right)-1\right)\right]$$

for any x > 0 and hence

(3.4)
$$(1-\nu) I + \nu X \leq X^{\nu} \max_{m \leq x \leq M} \exp \left[4\nu \left(1 - \nu \right) \left(K \left(x \right) - 1 \right) \right] \\ = X^{\nu} \exp \left[4\nu \left(1 - \nu \right) \left(\max_{m \leq x \leq M} K \left(x \right) - 1 \right) \right]$$

for any operator X with the property that $0 < mI \leq X \leq MI$ and for any $\nu \in [0, 1]$.

If the condition (2.1) holds true, then by multiplying in both sides with $A^{-1/2}$ we get $mI \leq A^{-1/2}BA^{-1/2} \leq MI$ and by taking $X = A^{-1/2}BA^{-1/2}$ in (3.4) we get

(3.5)
$$(1-\nu) I + \nu A^{-1/2} B A^{-1/2} \\ \leq \left(A^{-1/2} B A^{-1/2}\right)^{\nu} \max_{m \leq x \leq M} \exp\left[4\nu \left(1-\nu\right) \left(K\left(x\right)-1\right)\right] \\ = \left(A^{-1/2} B A^{-1/2}\right)^{\nu} \exp\left[4\nu \left(1-\nu\right) \left(\max_{m \leq x \leq M} K\left(x\right)-1\right)\right]$$

for any $\nu \in [0,1]$.

Now, if we multiply (3.5) in both sides with $A^{1/2}$ we get

(3.6)
$$(1-\nu)A + \nu BA \leq A^{1/2} \left(A^{-1/2}BA^{-1/2}\right)^{\nu} A^{1/2} \max_{m \le x \le M} \exp\left[4\nu \left(1-\nu\right) \left(K\left(x\right)-1\right)\right] = A^{1/2} \left(A^{-1/2}BA^{-1/2}\right)^{\nu} A^{1/2} \exp\left[4\nu \left(1-\nu\right) \left(\max_{m \le x \le M} K\left(x\right)-1\right)\right]$$

for any $\nu \in [0,1]$.

Since

8

$$\max_{m \le x \le M} K(x) = \begin{cases} K(m) \text{ if } M < 1, \\ \max\{K(m), K(M)\} \text{ if } m \le 1 \le M, \\ K(M) \text{ if } 1 < m, \end{cases}$$

then by (3.6) we get the desired result (3.1).

Corollary 4. With the assumptions of Theorem 5 we have

(3.7)
$$A\nabla B \le \exp\left[4\nu \left(1-\nu\right) \left(F\left(m,M\right)-1\right)\right] H_{\nu}\left(A,B\right).$$

Corollary 5. For two positive operators A, B and positive real numbers m, m', M, M' satisfying either of the following conditions:

(i) $0 < mI \le A \le m'I < M'I \le B \le MI;$ (ii) $0 < mI \le B \le m'I < M'I \le A \le MI;$

 $we\ have$

(3.8)
$$A\nabla B \le \exp[4\nu (1-\nu) (K(h)-1)] H_{\nu} (A, B).$$

We also have:

Theorem 6. Assume that A, B are positive invertible operators and the constants M > m > 0 are such that the condition (2.1) is valid. Then for any $\nu \in [0, 1]$ we have

(3.9)
$$H_{\nu}(A,B) \le \exp\left[\Theta_{\nu}(m,M) - 1\right]A \sharp B$$

where

$$(3.10) \qquad \Theta_{\nu}(m,M) := \begin{cases} K\left(m^{|2\nu-1|}\right) & \text{if } M < 1, \\\\ \max\left\{K\left(m^{|2\nu-1|}\right), K\left(M^{|2\nu-1|}\right)\right\} & \text{if } m \le 1 \le M, \\\\ K\left(M^{|2\nu-1|}\right) & \text{if } 1 < m. \end{cases}$$

Proof. From the inequality (1.5) we have for $\nu = \frac{1}{2}$

(3.11)
$$\frac{\frac{c+d}{2}}{\sqrt{cd}} \le \exp\left(K\left(\frac{c}{d}\right) - 1\right)$$

for any c, d > 0.

If we take in (3.11) $c = a^{1-\nu}b^{\nu}$ and $d = a^{\nu}b^{1-\nu}$ then we get

(3.12)
$$\frac{a^{1-\nu}b^{\nu} + a^{\nu}b^{1-\nu}}{2} \le \exp\left(K\left(\left(\frac{a}{b}\right)^{1-2\nu}\right) - 1\right)\sqrt{ab}$$

for any a, b > 0 for any $\nu \in [0, 1]$.

This is an inequality of interest in itself.

If we take in (2.19) a = x and b = 1, then we get

(3.13)
$$\frac{x^{1-\nu} + x^{\nu}}{2} \le \exp\left(K\left(x^{1-2\nu}\right) - 1\right)\sqrt{x},$$

for any x > 0.

Now, if $x \in [m, M] \subset (0, \infty)$ then by (2.20) we have

(3.14)
$$\frac{x^{1-\nu} + x^{\nu}}{2} \le \sqrt{x} \exp\left(\max_{x \in [m,M]} K\left(x^{1-2\nu}\right) - 1\right)$$

for any $x \in [m, M]$. If $\nu \in (0, \frac{1}{2})$, then

$$\max_{x \in [m,M]} K\left(x^{1-2\nu}\right) = \begin{cases} K\left(m^{1-2\nu}\right) \text{ if } M < 1, \\\\ \max\left\{K\left(m^{1-2\nu}\right), K\left(M^{1-2\nu}\right)\right\} \text{ if } m \le 1 \le M, \\\\ K\left(M^{1-2\nu}\right) \text{ if } 1 < m. \end{cases}$$

If $\nu \in \left(\frac{1}{2}, 1\right)$, then

$$\max_{x \in [m,M]} K(x^{1-2\nu}) = \max_{x \in [m,M]} K(x^{2\nu-1})$$

$$= \begin{cases} K(m^{2\nu-1}) & \text{if } M < 1, \\ \max \{K(m^{2\nu-1}), K(M^{2\nu-1})\} & \text{if } m \le 1 \le M, \\ K(M^{2\nu-1}) & \text{if } 1 < m. \end{cases}$$

Therefore, by (3.14) we have

(3.15)
$$\frac{x^{1-\nu} + x^{\nu}}{2} \le \exp\left[\Theta\left(m, M\right) - 1\right]\sqrt{x}$$

for any $x \in [m, M] \subset (0, \infty)$ and for any $\nu \in [0, 1]$.

If X is an operator with $mI \leq X \leq MI$, then by (3.15) we have

$$\frac{X^{1-\nu} + X^{\nu}}{2} \le \exp\left[\Theta\left(m, M\right) - 1\right] X^{1/2}.$$

If the condition (2.1) holds true, then by multiplying in both sides with $A^{-1/2}$ we get $mI \leq A^{-1/2}BA^{-1/2} \leq MI$ and by taking $X = A^{-1/2}BA^{-1/2}$ in (3.15) we get

(3.16)
$$\frac{1}{2} \left[\left(A^{-1/2} B A^{-1/2} \right)^{1-\nu} + \left(A^{-1/2} B A^{-1/2} \right)^{\nu} \right] \\ \leq \exp \left[\Theta \left(m, M \right) - 1 \right] \left(A^{-1/2} B A^{-1/2} \right)^{1/2}.$$

Now, if we multiply (3.16) in both sides with $A^{1/2}$ we get the desired result (3.9).

Finally, we have

Corollary 6. For two positive operators A, B and positive real numbers m, m', M, M' satisfying either of the following conditions:

(i) $0 < mI \le A \le m'I < M'I \le B \le MI$, (ii) $0 < mI \le B \le m'I < M'I \le A \le MI$, we have for $h = \frac{M}{m}$ and $h' = \frac{M'}{m'}$ that

(3.17)
$$H_{\nu}(A,B) \leq \exp\left[K\left(h^{|2\nu-1|}\right) - 1\right]A\sharp B,$$

where $\nu \in [0, 1]$.

References

- S. S. Dragomir, Some new reverses of Young's operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 130. [http://rgmia.org/papers/v18/v18a130.pdf].
- [2] S. S. Dragomir, On new refinements and reverses of Young's operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 135. [http://rgmia.org/papers/v18/v18a135.pdf].
- [3] S. S. Dragomir, Some inequalities for operator weighted geometric mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 139. [http://rgmia.org/papers/v18/v18a139.pdf].
- [4] S. S. Dragomir, Refinements and reverses of Hölder-McCarthy operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 143. [http://rgmia.org/papers/v18/v18a143.pdf].
- [5] S. S. Dragomir, Some reverses and a refinement of Hölder operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 147. [http://rgmia.org/papers/v18/v18a147.pdf].
- [6] S. S. Dragomir, Some inequalities for Heinz operator mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 163. [http://rgmia.org/papers/v18/v18a163.pdf].
- [7] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21-31.
- [8] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.
- [9] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [10] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, *Lin. Multilin. Alg.*, **59** (2011), 1031-1037.
- [11] F. Kittaneh, M. Krnić, N. Lovričević and J. Pečarić, Improved arithmetic-geometric and Heinz means inequalities for Hilbert space operators, *Publ. Math. Debrecen*, 2012, 80(3-4), 465–478.
- [12] M. Krnić and J. Pečarić, Improved Heinz inequalities via the Jensen functional, Cent. Eur. J. Math. 11 (9) 2013,1698-1710.
- [13] F. Kubo and T. Ando, Means of positive operators, Math. Ann. 264 (1980), 205-224.
- [14] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* 19 (2015), No. 2, pp. 467-479.
- [15] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
- [16] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.H.
- [17] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa