
FURTHER INEQUALITIES FOR HEINZ OPERATOR MEAN

S. S. DRAGOMIR1;2

Abstract. In this paper we obtain some new inequalities for Heinz operator
mean.

1. Introduction

Throughout this paper A; B are positive invertible operators on a complex
Hilbert space (H; h�; �i) : We use the following notations for operators and � 2 [0; 1]

Ar�B := (1� �)A+ �B;

the weighted operator arithmetic mean, and

A]�B := A
1=2
�
A�1=2BA�1=2

��
A1=2;

the weighted operator geometric mean [13]. When � = 1
2 we write ArB and A]B

for brevity, respectively.
De�ne the Heinz operator mean by

H� (A;B) :=
1

2
(A]�B +A]1��B) :

The following interpolatory inequality is obvious

(1.1) A]B � H� (A;B) � ArB

for any � 2 [0; 1]:
The famous Young inequality for scalars says that if a; b > 0 and � 2 [0; 1]; then

(1.2) a1��b� � (1� �) a+ �b

with equality if and only if a = b. The inequality (1.2) is also called �-weighted
arithmetic-geometric mean inequality.
We consider the Kantorovich�s constant de�ned by

(1.3) K (h) :=
(h+ 1)

2

4h
; h > 0:

The function K is decreasing on (0; 1) and increasing on [1;1) ; K (h) � 1 for any
h > 0 and K (h) = K

�
1
h

�
for any h > 0:

In the recent paper [1] we have obtained the following additive and multiplicative
reverse of Young�s inequality

(1.4) 0 � (1� �) a+ �b� a1��b� � � (1� �) (a� b) (ln a� ln b)
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and

(1.5) 1 � (1� �) a+ �b
a1��b�

� exp
h
4� (1� �)

�
K
�a
b

�
� 1
�i
;

for any a; b > 0 and � 2 [0; 1] ; where K is Kantorovich�s constant.
The operator version of (1.4) is as follows [1]:

Theorem 1. Let A; B be two positive operators. For positive real numbers m; m0;

M; M 0, put h := M
m ; h

0 := M 0

m0 and let � 2 [0; 1] :
(i) If 0 < mI � A � m0I < M 0I � B �MI; then

(1.6) 0 � Ar�B �A]�B � � (1� �) (h� 1) lnhA

and, in particular

(1.7) 0 � ArB �A]B � 1

4
(h� 1) lnhA:

(ii) If 0 < mI � B � m0I < M 0I � A �MI; then

(1.8) 0 � Ar�B �A]�B � � (1� �)
h� 1
h

lnhA

and, in particular

(1.9) 0 � ArB �A]B � 1

4

h� 1
h

lnhA:

The operator version of (1.5) is [1]:

Theorem 2. For two positive operators A; B and positive real numbers m; m0; M;
M 0 satisfying either of the following conditions
(i) 0 < mI � A � m0I < M 0I � B �MI;
(ii) 0 < mI � B � m0I < M 0I � A �MI;

we have

(1.10) Ar�B � exp [4� (1� �) (K (h)� 1)]A]�B

and, in particular

(1.11) ArB � exp [K (h)� 1]A]B:

For other recent results on geometric operator mean inequalities, see [2]-[12], [14]
and [16]-[17].
We recall that Specht�s ratio is de�ned by [15]

(1.12) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
In the recent paper [6] we obtained amongst other the following result for the

Heinz operator mean of A; B that are positive invertible operators that satisfy the
condition mA � B �MA for some constants M > m > 0;

(1.13) ! (m;M)A]B � H� (A;B) � 
 (m;M)A]B;
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where


 (m;M) :=

8>>>><>>>>:
S
�
mj2��1j� if M < 1;

max
�
S
�
mj2��1j� ; S �M j2��1j�	 if m � 1 �M;

S
�
M j2��1j� if 1 < m;

and

! (m;M) :=

8>>>>>><>>>>>>:

S
�
M j�� 1

2 j
�
if M < 1;

1 if m � 1 �M;

S
�
mj�� 1

2 j
�
if 1 < m:

Motivated by the above results we establish in this paper some new additive and
multiplicative reverse inequalities for the Heinz operator mean.

2. Additive Reverse Inequalities for Heinz Mean

We have the following generalization of Theorem 1:

Theorem 3. Assume that A; B are positive invertible operators and the constants
M > m > 0 are such that

(2.1) mA � B �MA:
Then for any � 2 [0; 1] we have
(2.2) (0 �)Ar�B �A]�B � � (1� �) 
 (m;M)A
where

(2.3) 
 (m;M) :=

8>>>><>>>>:
(m� 1) lnm if M < 1;

max f(m� 1) lnm; (M � 1) lnMg if m � 1 �M;

(M � 1) lnM if 1 < m:

In particular, we have

(2.4) (0 �)ArB �A]B � 1

4

 (m;M)A:

Proof. We consider the functionD : (0;1)! [0;1) de�ned byD (x) = (x� 1) lnx:
We have that D0 (x) = lnx + 1 � 1

x and D
00 (x) = x+1

x2 for x 2 (0;1) : This shows
that the function is convex on (0;1) ;monotonic decreasing on (0; 1) and monotonic
increasing on [1;1) with the minimum 0 realized in x = 1:
From the inequality (1.4) we have

(0 �) (1� �) + �x� x� � � (1� �)D (x)
for any x > 0; � 2 [0; 1] and hence
(2.5) (0 �) (1� �) I + �X �X� � � (1� �) max

m�x�M
D (x)

for the positive operator X that satis�es the condition 0 < mI � X � MI for
0 < m < M and � 2 [0; 1] :
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If the condition (2.1) holds true, then by multiplying in both sides with A�1=2

we get mI � A�1=2BA�1=2 � MI and by taking X = A�1=2BA�1=2 in (2.5) we
get

(2.6) (1� �) I + �A�1=2BA�1=2 �
�
A�1=2BA�1=2

��
� � (1� �) max

m�x�M
D (x)

Now, if we multiply (2.6) in both sides with A1=2 we get

(0 �) (1� �)A+ �B �A1=2
�
A�1=2BA�1=2

��
A1=2(2.7)

� � (1� �) max
m�x�M

D (x)A

for any � 2 [0; 1] :
Finally, since

max
m�x�M

D (x) =

8>>>><>>>>:
(m� 1) lnm if M < 1;

max f(m� 1) lnm; (M � 1) lnMg if m � 1 �M;

(M � 1) lnM if 1 < m;

then by (2.7) we get the desired result (2.2). �

Corollary 1. With the assumptions of Theorem 3 we have

(2.8) (0 �)ArB �H� (A;B) � � (1� �)
 (m;M)A:

Proof. From (2.2) we have by replacing � with 1� � that
(2.9) (0 �)Ar1��B �A]1��B � � (1� �) 
 (m;M)A:
Adding (2.2) with (2.9) and dividing by 2 we get (2.8). �

Corollary 2. Let A; B be two positive operators. For positive real numbers m;
m0;M; M 0, put h := M

m ; h
0 := M 0

m0 and let � 2 [0; 1] :
(i) If 0 < mI � A � m0I < M 0I � B �MI; then

(2.10) (0 �)ArB �H� (A;B) � � (1� �) (h� 1) lnhA:
(ii) If 0 < mI � B � m0I < M 0I � A �MI; then

(2.11) (0 �)ArB �H� (A;B) � � (1� �)
�
h� 1
h

�
lnhA:

Proof. If the condition (i) is valid, then we have

I <
M 0

m0 I = h
0I � X � hI = M

m
I;

which, by (2.8) gives the desired result (2.10).
If the condition (ii) is valid, then we have

0 <
1

h
I � X � 1

h0
I < I;

which, by (2.8) gives

(0 �)ArB �H� (A;B) � � (1� �)
�
1

h
� 1
�
ln
1

h

that is equivalent to (2.11). �
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Theorem 4. With the assumptions of Theorem 3 we have

(2.12) (0 �)H� (A;B)�A]B �
1

4m1�� max
x2[m;M ]

D
�
x2��1

�
A;

where the function D : (0;1) ! [0;1) is de�ned by D (x) = (x� 1) lnx (see the
proof of Theorem 3).

Proof. From the inequality (1.4) we have for � = 1
2

(2.13) (0 �) c+ d
2

�
p
cd � 1

4
(c� d) (ln c� ln d)

for any c; d > 0:
If we take in (2.13) c = a1��b� and d = a�b1�� then we get

(2.14)
a1��b� + a�b1��

2
�
p
ab � 1

4

�
a1��b� � a�b1��

� �
ln a1��b� � ln a�b1��

�
for any a; b > 0 and � 2 [0; 1] :
This inequality is of interest in itself.
Now, if we take in (2.14) a = 1 and b = x; then we get

0 � x� + x1��

2
�
p
x � 1

4

�
x� � x1��

� �
lnx� � lnx1��

�
(2.15)

=
2� � 1
4

�
x� � x1��

�
lnx =

1

4x1��
�
x2��1 � 1

�
lnx2��1

=
1

4x1��
D
�
x2��1

�
for any x > 0 and � 2 [0; 1] :
Now, if x 2 [m;M ] � (0;1), then by (2.15) we get the upper bound

(0 �) x
� + x1��

2
�
p
x � 1

4m1�� max
x2[m;M ]

D
�
x2��1

�
:

Using the continuous functional calculus, we then have

(2.16) (0 �) X
� +X1��

2
�X1=2 � 1

4m1�� max
x2[m;M ]

D
�
x2��1

�
If the condition (2.1) holds true, then by multiplying in both sides with A�1=2 we
get mI � A�1=2BA�1=2 �MI and by taking X = A�1=2BA�1=2 in (2.16) we get

0 �
�
A�1=2BA�1=2

��
+
�
A�1=2BA�1=2

�1��
2

�
�
A�1=2BA�1=2

�1=2
(2.17)

� 1

4m1�� max
x2[m;M ]

D
�
x2��1

�
for any � 2 [0; 1] :
Now, if we multiply (2.17) in both sides with A1=2 we get the desired result

(2.12). �

Corollary 3. Let A; B be as in Corollary 2.
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(i) If 0 < mI � A � m0I < M 0I � B �MI; then

(0 �)H� (A;B)�A]B(2.18)

� 1

4 (h0)
1��

8><>:
�
h2��1 � 1

�
lnh2��1 if � 2

�
1
2 ; 1
�
;�

(h0)
2��1 � 1

�
ln (h0)

2��1 if � 2
�
0; 12
�
:

(ii) If 0 < mI � B � m0I < M 0I � A �MI; then

(0 �)H� (A;B)�A]B(2.19)

� 1

4
h1��

8><>:
�
h�2�+1 � 1

�
lnh�2�+1 if � 2

�
1
2 ; 1
�
;�

(h0)
�2�+1 � 1

�
ln (h0)

�2�+1 if � 2
�
0; 12
�
:

Proof. If the condition (i) is valid, then we have

I <
M 0

m0 I = h
0I � X � hI = M

m
I;

which, by (2.12) gives

(2.20) 0 � H� (A;B)�A]B �
1

4 (h0)
1�� max

x2[h0;h]
D
�
x2��1

�
A:

Observe that, if � 2
�
1
2 ; 1
�
; then

max
x2[h0;h]

D
�
x2��1

�
= D

�
h2��1

�
=
�
h2��1 � 1

�
lnh2��1:

If � 2
�
0; 12
�
; then

max
x2[h0;h]

D
�
x2��1

�
= D

�
(h0)

2��1
�
=
�
(h0)

2��1 � 1
�
ln (h0)

2��1
:

By (2.20) we get the desired result (2.18).
If the condition (ii) is valid, then we have

0 <
1

h
I � X � 1

h0
I < I;

which, by (2.12) gives

(2.21) 0 � H� (A;B)�A]B �
1

4
�
1
h

�1�� max
x2[ 1h ;

1
h0 ]
D
�
x2��1

�
A:

If � 2
�
1
2 ; 1
�
; then

max
x2[ 1h ;

1
h0 ]
D
�
x2��1

�
= D

 �
1

h

�2��1!
= D

�
(h)

�2�+1
�
:

If � 2
�
0; 12
�
; then

max
x2[ 1h ;

1
h0 ]
D
�
x2��1

�
= D

 �
1

h0

�2��1!
= D

�
(h0)

�2�+1
�
:

By (2.21) we get the desired result (2.19). �
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3. Multiplicative Reverse Inequalities for Heinz Mean

We have the following generalization of Theorem 2:

Theorem 5. Assume that A; B are positive invertible operators and the constants
M > m > 0 are such that the condition (2.1) is valid. Then for any � 2 [0; 1] we
have

(3.1) Ar�B � A]�B exp [4� (1� �) (z (m;M)� 1)]
where

z (m;M) :=

8>>>><>>>>:
K (m) if M < 1;

max fK (m) ;K (M)g if m � 1 �M;

K (M) if 1 < m;

In particular, we have

(3.2) ArB � A]B exp [z (m;M)� 1] :

Proof. From the inequality (1.5) we have for a = 1 and b = x that

(1� �) + �x � x� exp
�
4� (1� �)

�
K

�
1

x

�
� 1
��

(3.3)

= x� exp [4� (1� �) (K (x)� 1)]
for any x > 0 and hence

(1� �) I + �X � X� max
m�x�M

exp [4� (1� �) (K (x)� 1)](3.4)

= X� exp

�
4� (1� �)

�
max

m�x�M
K (x)� 1

��
for any operator X with the property that 0 < mI � X � MI and for any
� 2 [0; 1] :
If the condition (2.1) holds true, then by multiplying in both sides with A�1=2

we get mI � A�1=2BA�1=2 � MI and by taking X = A�1=2BA�1=2 in (3.4) we
get

(1� �) I + �A�1=2BA�1=2(3.5)

�
�
A�1=2BA�1=2

��
max

m�x�M
exp [4� (1� �) (K (x)� 1)]

=
�
A�1=2BA�1=2

��
exp

�
4� (1� �)

�
max

m�x�M
K (x)� 1

��
for any � 2 [0; 1] :
Now, if we multiply (3.5) in both sides with A1=2 we get

(1� �)A+ �BA(3.6)

� A1=2
�
A�1=2BA�1=2

��
A1=2 max

m�x�M
exp [4� (1� �) (K (x)� 1)]

= A1=2
�
A�1=2BA�1=2

��
A1=2 exp

�
4� (1� �)

�
max

m�x�M
K (x)� 1

��
for any � 2 [0; 1] :
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Since

max
m�x�M

K (x) =

8>>>><>>>>:
K (m) if M < 1;

max fK (m) ;K (M)g if m � 1 �M;

K (M) if 1 < m;

then by (3.6) we get the desired result (3.1). �
Corollary 4. With the assumptions of Theorem 5 we have

(3.7) ArB � exp [4� (1� �) (z (m;M)� 1)]H� (A;B) :
Corollary 5. For two positive operators A; B and positive real numbers m; m0;
M; M 0 satisfying either of the following conditions:
(i) 0 < mI � A � m0I < M 0I � B �MI;
(ii) 0 < mI � B � m0I < M 0I � A �MI;

we have

(3.8) ArB � exp [4� (1� �) (K (h)� 1)]H� (A;B) :
We also have:

Theorem 6. Assume that A; B are positive invertible operators and the constants
M > m > 0 are such that the condition (2.1) is valid. Then for any � 2 [0; 1] we
have

(3.9) H� (A;B) � exp [�� (m;M)� 1]A]B
where

(3.10) �� (m;M) :=

8>>>><>>>>:
K
�
mj2��1j� if M < 1;

max
�
K
�
mj2��1j� ;K �M j2��1j�	 if m � 1 �M;

K
�
M j2��1j� if 1 < m:

Proof. From the inequality (1.5) we have for � = 1
2

(3.11)
c+d
2p
cd
� exp

�
K
� c
d

�
� 1
�

for any c; d > 0:
If we take in (3.11) c = a1��b� and d = a�b1�� then we get

(3.12)
a1��b� + a�b1��

2
� exp

�
K

��a
b

�1�2��
� 1
�p

ab

for any a; b > 0 for any � 2 [0; 1]:
This is an inequality of interest in itself.
If we take in (2.19) a = x and b = 1; then we get

(3.13)
x1�� + x�

2
� exp

�
K
�
x1�2�

�
� 1
�p
x;

for any x > 0:
Now, if x 2 [m;M ] � (0;1) then by (2.20) we have

(3.14)
x1�� + x�

2
�
p
x exp

�
max

x2[m;M ]
K
�
x1�2�

�
� 1
�
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for any x 2 [m;M ] :
If � 2

�
0; 12
�
; then

max
x2[m;M ]

K
�
x1�2�

�
=

8>>>><>>>>:
K
�
m1�2�� if M < 1;

max
�
K
�
m1�2�� ;K �M1�2��	 if m � 1 �M;

K
�
M1�2�� if 1 < m:

If � 2
�
1
2 ; 1
�
, then

max
x2[m;M ]

K
�
x1�2�

�
= max

x2[m;M ]
K
�
x2��1

�

=

8>>>><>>>>:
K
�
m2��1� if M < 1;

max
�
K
�
m2��1� ;K �M2��1�	 if m � 1 �M;

K
�
M2��1� if 1 < m:

Therefore, by (3.14) we have

(3.15)
x1�� + x�

2
� exp [� (m;M)� 1]

p
x

for any x 2 [m;M ] � (0;1) and for any � 2 [0; 1]:
If X is an operator with mI � X �MI; then by (3.15) we have

X1�� +X�

2
� exp [� (m;M)� 1]X1=2:

If the condition (2.1) holds true, then by multiplying in both sides with A�1=2 we
get mI � A�1=2BA�1=2 �MI and by taking X = A�1=2BA�1=2 in (3.15) we get

1

2

��
A�1=2BA�1=2

�1��
+
�
A�1=2BA�1=2

���
(3.16)

� exp [� (m;M)� 1]
�
A�1=2BA�1=2

�1=2
:

Now, if we multiply (3.16) in both sides with A1=2 we get the desired result (3.9). �

Finally, we have

Corollary 6. For two positive operators A; B and positive real numbers m; m0;
M; M 0 satisfying either of the following conditions:
(i) 0 < mI � A � m0I < M 0I � B �MI;
(ii) 0 < mI � B � m0I < M 0I � A �MI;

we have for h = M
m and h0 = M 0

m0 that

(3.17) H� (A;B) � exp
h
K
�
hj2��1j

�
� 1
i
A]B;

where � 2 [0; 1]:
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