
INTEGRAL INEQUALITIES FOR ASYMMETRIZED
SYNCHRONOUS FUNCTIONS

S. S. DRAGOMIR1;2

Abstract. In this paper we establish some integral inequalities for the prod-
uct of asymmetrized synchronous/asynchronous functions. Some examples for
integrals of monotonic functions, including power, logarithmic and sin func-
tions are also provided.

1. Introduction

For a function f : [a; b]! C we consider the symmetrical transform of f on the
interval [a; b] ; denoted by �f[a;b] or simply �f , when the interval [a; b] is implicit, as
de�ned by

(1.1) �f (t) :=
1

2
[f (t) + f (a+ b� t)] ; t 2 [a; b] :

The anti-symmetrical transform of f on the interval [a; b] is denoted by ~f[a;b]; or
simply ~f and is de�ned by

~f (t) :=
1

2
[f (t)� f (a+ b� t)] ; t 2 [a; b] :

It is obvious that for any function f we have �f + ~f = f:
If f is convex on [a; b] ; then for any t1; t2 2 [a; b] and �; � � 0 with � + � = 1

we have

�f (�t1 + �t2) =
1

2
[f (�t1 + �t2) + f (a+ b� �t1 � �t2)]

=
1

2
[f (�t1 + �t2) + f (� (a+ b� t1) + � (a+ b� t2))]

� 1

2
[�f (t1) + �f (t2) + �f (a+ b� t1) + �f (a+ b� t2)]

=
1

2
� [f (t1) + f (a+ b� t1)] +

1

2
� [f (t2) + f (a+ b� t2)]

= � �f (t1) + � �f (t2) ;

which shows that �f is convex on [a; b] :
Consider the real numbers a < b and de�ne the function f0 : [a; b]! R, f0 (t) =

t3: We have [6]

�f0 (t) :=
1

2

h
t3 + (a+ b� t)3

i
=
3

2
(a+ b) t2 � 3

2
(a+ b)

2
t+

1

2
(a+ b)

3
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2 S. S. DRAGOMIR1;2

for any t 2 R.
Since the second derivative

�
�f0

�00
(t) = 3 (a+ b) ; t 2 R, then �f0 is strictly convex

on [a; b] if a+b2 > 0 and strictly concave on [a; b] if a+b2 < 0: Therefore if a < 0 < b
with a+b

2 > 0; then we can conclude that f0 is not convex on [a; b] while �f0 is convex
on [a; b] :
We can introduce the following concept of convexity [6], see also [9] for an equiv-

alent de�nition.

De�nition 1. We say that the function f : [a; b] ! R is symmetrized convex
(concave) on the interval [a; b] if the symmetrical transform �f is convex (concave)
on [a; b] :

Now, if we denote by Con [a; b] the closed convex cone of convex functions de�ned
on [a; b] and by SCon [a; b] the closed convex cone of symmetrized convex functions,
then from the above remarks we can conclude that

(1.2) Con [a; b]  SCon [a; b] :
Also, if [c; d] � [a; b] and f 2 SCon [a; b] ; then this does not imply in general that
f 2 SCon [c; d] :
We have the following result [6], [9] :

Theorem 1. Assume that f : [a; b] ! R is symmetrized convex and integrable on
the interval [a; b] : Then we have the Hermite-Hadamard inequalities

(1.3) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
:

We also have [6]:

Theorem 2. Assume that f : [a; b] ! R is symmetrized convex on the interval
[a; b] : Then for any x 2 [a; b] we have the bounds

(1.4) f

�
a+ b

2

�
� �f (x) � f (a) + f (b)

2
:

For a monograph on Hermite-Hadamard type inequalities see [8].
In a similar way, we can introduce the following concept as well:

De�nition 2. We say that the function f : [a; b]! R is asymmetrized monotonic
nondecreasing (nonincreasing) on the interval [a; b] if the anti-symmetrical trans-
form ~f is monotonic nondecreasing (nonincreasing) on the interval [a; b] :

If f is monotonic nondecreasing on [a; b] ; then for any t1; t2 2 [a; b] we have

~f (t2)� ~f (t1) =
1

2
[f (t2)� f (a+ b� t2)]�

1

2
[f (t1)� f (a+ b� t1)]

=
1

2
[f (t2)� f (t1)] +

1

2
[f (a+ b� t1)� f (a+ b� t2)]

� 0;
which shows that f : [a; b] ! R is asymmetrized monotonic nondecreasing on the
interval [a; b] :
Consider the real numbers a < b and de�ne the function f0 : [a; b]! R, f0 (t) =

t2: We have

~f0 (t) :=
1

2

h
t2 � (a+ b� t)2

i
= (a+ b) t� 1

2
(a+ b)

2
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and
�
~f0

�0
(t) = a + b; therefore f : [a; b] ! R is asymmetrized monotonic nonde-

creasing (nonincreasing) on the interval [a; b] provided a+b
2 > 0 (< 0) : So, if we take

a < 0 < b with a+b
2 > 0; then f is asymmetrized monotonic nondecreasing on [a; b]

but not monotonic nondecreasing on [a; b] :
If we denote by M% [a; b] the closed convex cone of monotonic nondecreasing

functions de�ned on [a; b] and by AM% [a; b] the closed convex cone of asym-
metrized monotonic nondecreasing functions, then from the above remarks we can
conclude that

(1.5) M% [a; b]  AM% [a; b] :

Also, if [c; d] � [a; b] and f 2 AM% [a; b] ; then this does not imply in general that
f 2 AM% [c; d] :
We recall that the pair of functions (f; g) de�ned on [a; b] are called synchronous

(asynchronous) on [a; b] if

(1.6) (f (t)� f (s)) (g (t)� g (s)) � (�) 0

for any t; s 2 [a; b] : It is clear that if both functions (f; g) are monotonic non-
decreasing (nonincreasing) on [a; b] then they are synchronous on [a; b] : There are
also functions that change monotonicity on [a; b] ; but as a pair they are still syn-
chronous. For instance if a < 0 < b and f; g : [a; b] ! R, f (t) = t2 and g (t) = t4;
then

(f (t)� f (s)) (g (t)� g (s)) =
�
t2 � s2

� �
t4 � s4

�
=
�
t2 � s2

�2 �
t2 + s2

�
� 0

for any t; s 2 [a; b] ; which show that (f; g) is synchronous.

De�nition 3. We say that the pair of functions (f; g) de�ned on [a; b] is called
asymmetrized synchronous (asynchronous) on [a; b] if the pair of transforms

�
~f; ~g
�

is synchronous (asynchronous) on [a; b] ; namely

(1.7)
�
~f (t)� ~f (s)

�
(~g (t)� ~g (s)) � (�) 0

for any t; s 2 [a; b] :

It is clear that if f; g are asymmetrized monotonic nondecreasing (nonincreasing)
on [a; b] then they are asymmetrized synchronous on [a; b] :
One of the most important results for synchronous (asynchronous) and integrable

functions f; g on [a; b] is the well-known µCeby�ev�s inequality :

(1.8)
1

b� a

Z b

a

f (t) g (t) dt � (�) 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt:

For integral inequalities of µCeby�ev�s type, see [1]-[5], [7], [10]-[18] and the refer-
ences therein.
Motivated by the above results, we establish in this paper some inequalities for

asymmetrized synchronous (asynchronous) functions on [a; b] : Some examples for
power, logarithm and sin functions are provided as well.
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2. Main Results

We have the following result:

Theorem 3. Assume that f; g are asymmetrized synchronous (asynchronous) and
integrable functions on [a; b]. Then

(2.1)
Z b

a

~f (t) g (t) dt � (�) 0:

Proof. We consider only the case of symmetrized synchronous and integrable func-
tions.
1. By the µCeby�ev�s inequality (1.8) for

�
~f; ~g
�
we get

(2.2)
1

b� a

Z b

a

~f (t) ~g (t) dt � 1

b� a

Z b

a

~f (t) dt
1

b� a

Z b

a

~g (t) dt:

We have Z b

a

~f (t) dt =
1

2

"Z b

a

f (t) dt�
Z b

a

f (a+ b� t) dt
#
= 0

since, by the change of variable s = a+ b� t; t 2 [a; b] ;Z b

a

f (a+ b� t) dt =
Z b

a

f (s) ds:

Also, Z b

a

~f (t) ~g (t) =
1

4

Z b

a

[f (t)� f (a+ b� t)] [g (t)� g (a+ b� t)] dt(2.3)

=
1

4

Z b

a

[f (t) g (t) + f (a+ b� t) g (a+ b� t)] dt

� 1
4

Z b

a

[f (t) g (a+ b� t) + f (a+ b� t) g (t)] dt

=
1

4

"Z b

a

f (t) g (t) dt+

Z b

a

f (a+ b� t) g (a+ b� t) dt
#

� 1
4

"Z b

a

f (t) g (a+ b� t) dt+
Z b

a

f (a+ b� t) g (t) dt
#

=
1

2

 Z b

a

f (t) g (t) dt�
Z b

a

f (a+ b� t) g (t) dt
!

=

Z b

a

~f (t) g (t) dt

since, by the change of variable s = a+ b� t; t 2 [a; b] ; we haveZ b

a

f (a+ b� t) g (a+ b� t) dt =
Z b

a

f (t) g (t) dt

and Z b

a

f (t) g (a+ b� t) dt =
Z b

a

f (a+ b� t) g (t) dt:
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By (2.2) we then get the desired result (2.1).

2. An alternative proof is as follows. Since
�
~f; ~g
�
are synchronous, then�

~f (t)� ~f

�
a+ b

2

���
~g (t)� ~g

�
a+ b

2

��
� 0

for any t 2 [a; b] ; which is equivalent to
(2.4) ~f (t) ~g (t) � 0 for any t 2 [a; b] ;
or to

[f (t)� f (a+ b� t)] [g (t)� g (a+ b� t)] � 0 for any t 2 [a; b] :
This is a property of interest for asymmetrized synchronous functions.
If we integrate the inequality (2.4) and use the identity (2.3) we get the desired

result (2.1). �

Remark 1. The inequality (2.1) can be written in an equivalent form asZ b

a

f (t) g (t) dt �
Z b

a

f (a+ b� t) g (t) dt;

or as Z b

a

f (t) g (t) dt �
Z b

a

�f (t) g (t) dt:

Theorem 4. If both f; g are asymmetrized monotonic nondecreasing (nonincreas-
ing) and integrable functions on [a; b] ; then

(2.5)
1

4
jf (b)� f (a)j jg (b)� g (a)j � 1

b� a

Z b

a

~f (t) g (t) dt � 0;

and

1

2
min

(
jf (b)� f (a)j 1

b� a

Z b

a

jg (t)j dt; jg (b)� g (a)j 1

b� a

Z b

a

jf (t)j dt
)

(2.6)

� 1

b� a

Z b

a

~f (t) g (t) dt � 0:

Proof. Assume that both f; g are asymmetrized monotonic nondecreasing and in-
tegrable functions on [a; b] ; then they are asymmetrized synchronous and by (2.1)
we get the second inequality in (2.5).
We also have

~f (a) � ~f (t) � ~f (b)

for any t 2 [a; b] ; namely

�1
2
[f (b)� f (a)] � 1

2
[f (t)� f (a+ b� t)] � 1

2
[f (b)� f (a)] ;

for any t 2 [a; b] ; which implies that 12 [f (b)� f (a)] � 0 and

(2.7)
1

2
jf (t)� f (a+ b� t)j � 1

2
[f (b)� f (a)]

for any t 2 [a; b] :
Similarly, we have 1

2 [g (b)� g (a)] � 0 and

(2.8)
1

2
jg (t)� g (a+ b� t)j � 1

2
[g (b)� g (a)]
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for any t 2 [a; b] :
If we multiply (2.7) and (2.8), then we get

1

4
[f (t)� f (a+ b� t)] [g (t)� g (a+ b� t)](2.9)

=
1

4
j[f (t)� f (a+ b� t)] [g (t)� g (a+ b� t)]j

� 1

4
[f (b)� f (a)] [g (b)� g (a)]

for any t 2 [a; b] :
Since

0 �
Z b

a

~f (t) g (t) dt =
1

4

Z b

a

[f (t)� f (a+ b� t)] [g (t)� g (a+ b� t)] dt

� 1

4
[f (b)� f (a)] [g (b)� g (a)] (b� a) ;

where for the last inequality we used (2.9), hence we get the �rst inequality in (2.5).
Also, we observe that

0 �
Z b

a

~f (t) g (t) dt =

Z b

a

��� ~f (t) g (t)��� dt � 1

2
[f (b)� f (a)]

Z b

a

jg (t)j dt

and since Z b

a

~f (t) g (t) dt =

Z b

a

f (t) ~g (t) dt;

then also Z b

a

f (t) ~g (t) dt � 1

2
[g (b)� g (a)]

Z b

a

jf (t)j dt

and the inequality (2.6) is also proved. �
Remark 2. If the functions f; g : [a; b]! R are either both of them nonincreasing
or nondecreasing on [a; b] ; then they are integrable and we have the inequalities
(2.5) and (2.6).

We have the following re�nement of the inequality in (2.1).

Theorem 5. Assume that f; g are asymmetrized synchronous and integrable func-
tions on [a; b]. Then

1

b� a

Z b

a

~f (t) g (t) dt(2.10)

�
����� 1

b� a

Z b

a

��� ~f (t)��� j~g (t)j dt� 1

b� a

Z b

a

��� ~f (t)��� dt 1

b� a

Z b

a

j~g (t)j dt
����� � 0:

Proof. By the continuity property of modulus, we haveh
~f (t)� ~f (s)

i
[~g (t)� ~g (s)] =

���h ~f (t)� ~f (s)
i
[~g (t)� ~g (s)]

���
=
��� ~f (t)� ~f (s)

��� j~g (t)� ~g (s)j
�
������ ~f (t)���� ��� ~f (s)������ j~g (t)� ~g (s)j

=
������� ~f (t)���� ��� ~f (s)���� (~g (t)� ~g (s))���
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for any t; s 2 [a; b] :
Taking the double integral mean on [a; b]2 and using the properties of the integral

versus the modulus, we have

1

(b� a)2
Z b

a

Z b

a

h
~f (t)� ~f (s)

i
[~g (t)� ~g (s)] dtds(2.11)

�
����� 1

(b� a)2
Z b

a

Z b

a

���� ~f (t)���� ��� ~f (s)���� (j~g (t)j � j~g (s)j) dtds����� :
Since, by Korkine�s identity we have

1

(b� a)2
Z b

a

Z b

a

h
~f (t)� ~f (s)

i
[~g (t)� ~g (s)] dtds

= 2

"
1

b� a

Z b

a

~f (t) ~g (t) dt� 1

b� a

Z b

a

~f (t) dt
1

b� a

Z b

a

~g (t) dt

#

=
2

b� a

Z b

a

~f (t) ~g (t) dt

and

1

(b� a)2
Z b

a

Z b

a

���� ~f (t)���� ��� ~f (s)���� (j~g (t)j � j~g (s)j) dtds
= 2

"
1

b� a

Z b

a

��� ~f (t)��� j~g (t)j dt� 1

b� a

Z b

a

��� ~f (t)��� dt 1

b� a

Z b

a

j~g (t)j dt
#
;

hence by (2.11) we have

1

b� a

Z b

a

~f (t) ~g (t) dt

�
����� 1

b� a

Z b

a

��� ~f (t)��� j~g (t)j dt� 1

b� a

Z b

a

��� ~f (t)��� dt 1

b� a

Z b

a

j~g (t)j dt
����� :

By using the identity (2.3) we get the desired result (2.10). �

Remark 3. We remark that, if
�
~f; g
�
are synchronous, then by a similar argument

to the one above for g $ ~g we have

1

b� a

Z b

a

~f (t) g (t) dt(2.12)

�
����� 1

b� a

Z b

a

��� ~f (t)��� jg (t)j dt� 1

b� a

Z b

a

��� ~f (t)��� dt 1

b� a

Z b

a

jg (t)j dt
����� � 0:

Also, since

1

b� a

Z b

a

~f (t) g (t) dt =
1

b� a

Z b

a

f (t) ~g (t) dt;
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then if we assume that (f; ~g) are synchronous we also have

1

b� a

Z b

a

~f (t) g (t) dt(2.13)

�
����� 1

b� a

Z b

a

jf (t)j j~g (t)j dt� 1

b� a

Z b

a

jf (t)j dt 1

b� a

Z b

a

j~g (t)j dt
����� � 0:

Now, if f and g have the same monotonicity, then
�
~f; ~g
�
;
�
~f; g
�
; (f; ~g) are

synchronous and we have

(2.14)
1

b� a

Z b

a

~f (t) g (t) dt � max
n���C � ~f; ~g���� ; ���C � ~f; g���� ; jC (f; ~g)jo � 0;

where

C (h; `) :=
1

b� a

Z b

a

jh (t) ` (t)j dt� 1

b� a

Z b

a

jh (t)j dt 1

b� a

Z b

a

j` (t)j dt

provided h and ` are integrable on [a; b] :

We say that the function h : [a; b] ! R is H-r-Hölder continuous with the
constant H > 0 and power r 2 (0; 1] if

(2.15) jh (t)� h (s)j � H jt� sjr

for any t; s 2 [a; b] : If r = 1 we call that h is L-Lipschitzian when H = L > 0:

Theorem 6. Assume that f; g are asymmetrized synchronous with f is H1-r1-
Hölder continuous and g is H2-r2-Hölder continuous on [a; b] : Then

(2.16)
1

4 (r1 + r2 + 1)
H1H2 (b� a)r1+r2 �

1

b� a

Z b

a

~f (t) g (t) dt � 0:

If particular, if f is L1-Lipschitzian and g is L2-Lipschitzian, then

(2.17)
1

12
L1L2 (b� a)2 �

1

b� a

Z b

a

~f (t) g (t) dt � 0:

Proof. From (2.3) we have

0 �
Z b

a

~f (t) g (t) dt =
1

4

Z b

a

[f (t)� f (a+ b� t)] [g (t)� g (a+ b� t)] dt

=
1

4

Z b

a

j[f (t)� f (a+ b� t)] [g (t)� g (a+ b� t)]j dt

� 1

4
H1H2

Z b

a

j2t� a� bjr1+r2 dt = 2r1+r2

4
H1H2

Z b

a

����t� a+ b2
����r1+r2 dt

=
2

22�r1�r2
H1H2

Z b

a+b
2

�
t� a+ b

2

�r1+r2
dt =

2

22�r1�r2
H1H2

�
b�a
2

�r1+r2+1
r1 + r2 + 1

=
1

4 (r1 + r2 + 1)
H1H2 (b� a)r1+r2+1 ;

which is equivalent to the desired result (2.16). �
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3. Some Examples

Consider the identity function ` : [a; b]! R de�ned by ` (t) = t: If g is monotonic
nondecreasing, then by (2.5) and (2.14) we have

1

4
(b� a) [g (b)� g (a)] � 1

b� a

Z b

a

�
t� a+ b

2

�
g (t) dt(3.1)

� max fjC1;` (g)j ; jC2;` (g)j ; jC3;` (g)jg � 0;
where

C1;` (g) :=
1

b� a

Z b

a

�����t� a+ b2
�
~g (t)

���� dt� 14
Z b

a

j~g (t)j dt;

C2;` (g) :=
1

b� a

Z b

a

�����t� a+ b2
�
g (t)

���� dt� 14
Z b

a

jg (t)j dt

and

C3;` (g) :=
1

b� a

Z b

a

jt~g (t)j dt� 1

b� a

Z b

a

jtj dt 1

b� a

Z b

a

j~g (t)j dt:

If g is monotonic nondecreasing and L-Lipschitzian on [a; b] ; then by (2.17) we
get

(3.2)
1

12
L (b� a)2 � 1

b� a

Z b

a

�
t� a+ b

2

�
g (t) dt (� 0) :

Consider the power function f : [a; b] � (0;1) ! R, f (t) = tp with p > 0: If g
is monotonic nondecreasing, then by (2.5) and (2.14) we get

1

4
(bp � ap) [g (b)� g (a)] � 1

b� a

Z b

a

�
tp � (a+ b� t)p

2

�
g (t) dt(3.3)

� max fjC1;p (g)j ; jC2;p (g)j ; jC3;p (g)jg � 0;
where

C1;p (g) :=
1

b� a

Z b

a

���� tp � (a+ b� t)p2

���� j~g (t)j dt
� 1

b� a

Z b

a

���� tp � (a+ b� t)p2

���� dt 1

b� a

Z b

a

j~g (t)j dt;

C2;p (g) :=
1

b� a

Z b

a

���� tp � (a+ b� t)p2

���� jg (t)j dt
� 1

b� a

Z b

a

���� tp � (a+ b� t)p2

���� dt 1

b� a

Z b

a

jg (t)j dt

and

C3;p (g) :=

Z b

a

tp j~g (t)j dt� bp+1 � ap+1
(p+ 1) (b� a)

1

b� a

Z b

a

j~g (t)j dt:

If g is monotonic nondecreasing and L-Lipschitzian on [a; b] ; then by (2.17) we get

p

12
L (b� a)2

8<: bp�1 if p � 1

ap�1 if p 2 (0; 1)
(3.4)

� 1

b� a

Z b

a

�
tp � (a+ b� t)p

2

�
g (t) dt (� 0) :
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Consider the function f : [a; b] � (0;1) ! R, f = ln : If g is monotonic nonde-
creasing, then by (2.5) and (2.14) we have

1

4
ln

�
b

a

�
[g (b)� g (a)] � 1

2 (b� a)

Z b

a

ln

�
t

a+ b� t

�
g (t) dt(3.5)

� max fjC1;ln (g)j ; jC2;ln (g)j ; jC3;ln (g)jg � 0;
where

C1;ln (g) :=
1

b� a

Z b

a

�����ln
�

t

a+ b� t

�1=2����� j~g (t)j dt
� 1

b� a

Z b

a

�����ln
�

t

a+ b� t

�1=2����� dt 1

b� a

Z b

a

j~g (t)j dt;

C2;ln (g) :=
1

b� a

Z b

a

jln tj j~g (t)j dt� 1

b� a

Z b

a

jln tj dt 1

b� a

Z b

a

j~g (t)j dt

and

C1;ln (g) :=
1

b� a

Z b

a

�����ln
�

t

a+ b� t

�1=2����� jg (t)j dt
� 1

b� a

Z b

a

�����ln
�

t

a+ b� t

�1=2����� dt 1

b� a

Z b

a

jg (t)j dt:

If g is monotonic nondecreasing and L-Lipschitzian on [a; b] ; then by (2.17) we
get

(3.6)
1

6a
L (b� a)2 � 1

b� a

Z b

a

ln

�
t

a+ b� t

�
g (t) dt (� 0) :

Consider the function f : [a; b] �
�
��
2 ;

�
2

�
! R, f = sin : If g is monotonic

nondecreasing, then by (2.5) we have

(3.7)
1

2
sin

�
b� a
2

�
[g (b)� g (a)] � 1

b� a

Z b

a

sin

�
t� a+ b

2

�
g (t) dt � 0:

If g is monotonic nondecreasing and L-Lipschitzian on [a; b] ; then by (2.17) we
get

1

12
L (b� a)2 �

8<: cos b if � �
2 � a < b � 0;

max fcos a; cos bg if � �
2 � a < 0 < b �

�
2 ;

cos a if 0 � a < b � �
2

(3.8)

� 1

b� a cos
�
a+ b

2

�Z b

a

sin

�
t� a+ b

2

�
g (t) dt (� 0) :
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