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ABSTRACT  
Let L be unitary left module over ring with 1 R. In this paper we training the connection among 
Essentially Semismall Quasi-Dedekind modules and nonsingular modules. As well, we offer round about 
examples which explain the relations between them. 
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INTRODUCTION 
A submodule U of an R-module L is said to be small in L denoted by (U≪ L) if L =  U +  V for every 
submodule V of L  then   V = L[1].A submodule U of an R-module L is said to be semismall of L denoted by 
(U≪S L) if U = 0 or U/V≪ L/V∀ non zero submodule V of U[2].A submodule U of R-module L is essentially 
semismall denoted by (U≪es L), if for each nonzero semismall submodule V of L, U∩V≠ 0[3]. An R-
moduleL is essentially semismall quasi-Dedekind denoted by (ESSQD) if Hom(L/V, L) = 0 ∀V≪esL[3]. A 

ring R is ESSQD if R is ESSQDR-module[3].Let L be R-module, put )(:{)( lannLlLZ R ≤e R}. Z(L) is 

the singular  submodule of  L. L  is  said to be singular  if  Z(L) = L and L  is said to be nonsingular if Z(L) = 
0[4].In this paper we give the relationship between ESSQD modules and nonsingular modules.  
An R-module L remains semismall quasi-Dedekind (SSQD), if for each submodule 0 ≠ V of L be semismall 
quasi-invertible; that is Hom(L/V, L) = 0, ∀ 0 ≠V ≪sL[5]. 
 
Proposition 1 Let L be nonsingular module, thus each essential semismall submodule of L is semismall 
quasi-invertible submodule of L. 
Proof: Let Uremain essential semismall submodule of Las well asa homomorphism f: L/U → L, f ≠ 0. 
Then∃ l ∈ L s.t f l + U = l ≠ 0 . Let r ∈ R and r ∉ ann(l). Thus rl ≠ 0; rl ∉ U. ButU is essential semismall 
in L, ∃ s ≠ 0, s ∈ R s.t 0 ≠ srl ∈ U. Then 0 = f srl + U = srf l + U = srlimpliessr ∈ ann(l). 
Therefore ann(l) is essential semismall ideal of R. Thusl = 0,implies f = 0. Thus Hom(L/U , L) = 0.               
From prop.1, we get the following proposition: 
 
Proposition 2 Every nonsingular module is ESSQD module. 
The next example shows the opposite of prop. 2 is not correct. 
   
Example 3 Zpas Z-module, where p be prime number is an ESSQD which is not nonsingular since

)(:{)( lannZlZZ ZPP  ≤e Z}= 0PZ .  

A regular ring remains a ring R with identity in which each element r ∈ R is regular, that is  rsr = r for 
some element s ∈ R[6].  
A Rickart ring is a ring R with identity in which the left (right) annihilator of each element be principal 
left (right) ideal generated by an idempotent[6].  
An R-module L is prime if ann(L) = ann(W) for any 0 ≠W ≤ L[7]. 
An element l ∈ L is torsion element when lc = 0, wherever c beregular element of a ring R. The set of 
torsion elements of L be submodule Z(L) as well as the module L - Z(L) has no nonzero torsion 
elements[8],  
The set Z(L) of these elements remains a submodule but L - Z(L) is not torsion-free[8]. 
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Remarks 4 
1)  Every Rickart ring remains nonsingular ring, as a result of[4,prop 1.27, p.35],and hence ESSQD ring.   
2) Every regular ring be nonsingular ring, as a result of[4,p.36], and hence ESSQD ring. 

3) If W be prime R-module, then )(WEnd R be ESSQD.  

Proof: From[9, prop 3.7, p.36] and (Rem. 4(2)).      
4) Any direct product of integral domains benonsingular ring, as a result of[4, p.36], and hence ESSQD 
ring.  
5) For any ring R. R/Z(R) be nonsingular ring; that is Z(R/Z (R)) = 0, as a result of[4, Ex.5, p.36], thus 
R/Z(R) be ESSQD ring.  

6) Let LV  . If V and L/Vare both nonsingular, then L be non singular, by[10 ,Ex.5,p.269], thus L be 

ESSQD.             

7) Let L be R-module with LV  . If L remains non singular, then V remains non singular. So V be ESSQD 
R-module, in addition to the opposite holds if V ≪esLas a result of [10 ,Ex.7.6, p.247], therefore L be  
ESSQD R-module.   
8) An R-module L over integral domain R be non singular R-module iff L be torsion  free R-module 
[10,p.247]. Thus every torsion free above integral domain be ESSQD.  
9) A nonsingular module need not be SSQD module as the next example illustrations: 
 
Example 5 

1) Let ZZL  as Z-module is nonsingular, since for 0),(,),(  fdLfd , 0),( fdannZ
≰e  Z ; 

that is  Z (L) = 0 which is not SSQD [7, Ex1.5,p.7].  

2) For each of the Z-modules ZQ and QQ  are nonsingular Z-modules which  are not SSQD, 

by [9 ,Ex 1.10,p.27],[9, Ex 3.21,p.40].  
 
Theorem 6 Let R is nonsingular ring thus every  faithful multiplication R-module is ESSQD R-module.  
Proof: Let L be faithful multiplication R-module, thus from[11,Coro. 2.14], Z (L) = Z (R).L. Since R 
remains nonsingular ring, then  Z (R) = 0, thus Z (L) = 0. Then L remains non singular R-module. Thus 
from prop.2, L be ESSQDR-module.    
 
Proposition 7 Let L be essentially semismall prime faithful R-module. Thus R is ESSQD ring. 

Proof: Let Y be an ideal of R s.t )0(2 Y . Assume )0(Y . Claim )0(YL ,if YL = (0) the 

)0()(  LannY R
;that is Y = (0), a contradiction. But YL ≮<es  L,  since if YL ≪esL, But L is an 

essentially semismall prime faithful R-module thus )0()()(  LannYLann RR
. However, it is clear 

that )0()(  YLannY R
, thus Y = (0), a contradiction, therefore YL≮<es L. Let E be a relative 

complement for YL, thus EYL ≪esL. So )0()()(  LannEYLann RR
, since YLYN   and 

EYE  , then )0( EYLYE  and hence )0()( 2  YELYEYLY . Therefore

)0()(  EYLannY R
  and Y = (0) , a contradiction. Then our assumption remainsuntrue. Then Y = 

(0),thus R remains semiprime  ring. Therefore by[3,Proposition9], R is ESSQD ring.    
 
Proposition 8 Let Lbe faithful multiplication module overself-injective ring R. R is nonsingular (ESSQD) 
ring iff L is nonsingular R-Module (ESSQD ring ). 
Proof: Assume R is nonsingular ring. ButL is faithful  multiplication  R-module, thus from[11,Coro 2.14] , 
Z (L) = Z (R). L, since  Z (R) = 0 thenZ (L) = 0, therefore L remains nonsingular R-module.  Assume L is 

nonsingular ring. Thus Z (L) = 0. Now, for all )(RZb , bL ⊆ Z(R)L = Z(L) = 0, so 0)(  Lannb R
,  

then  b = 0. Then R is nonsingular ring.               
 
Proposition 9If E is semismall quasi-invertible R-submodule of L, then ann(L) = ann(E). 

Proof: Clearly ann(L) ⊆ ann(E). let r ∈ ann(E). Define f: L
E  → Lby f(l+E) = rl, ∀l ∈ L. Clearly f is well-

defined homomorphism. Thusf = 0.  Thereforer ∈ ann L . 
 
Proposition 10 If L is SSQDR-module, then L be semismall prime R-module. 
Proof: Since L be SSQD module, thus each semismall submodule 0 ≠ Y of L remains semismall quasi-
invertible submodule of L. Then from prop.9,  ann  L = ann (Y), hence L is semismall prime module.  
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Proposition 11 If L is prime faithful R-module, thus L be nonsingular R-module, and hence L be ESSQD 
R-module.  
Proof: Since Lbe prime R-module,  ann(L) be prime ideal of R. But L be  prime  R-module, thus from [12, 

Prop 1.3, ch.1], Lbe  torsion-free RLannRR R  )( . Thus L be torsion-free over integral domain R . 

Then by (Rem 4(8)), L  is nonsingular R-module. Therefore L  is  ESSQD R-module.       
 
Corollary 12 If L is faithful SSQD R-module, thus L is non singular R-module, and hence L is ESSQD R-
module.  
Proof: From Prop.10  and  Prop.11. 
.   
Proposition 13 Let L be faithful module over  integral domain R, If L be nonsingular R-module, thus L be 
ESSQD R-module.  
Proof: By prop.2 
The next example shows the converse of proposition13 is not correct 
 

Example 14 The Z-module 
2ZQL  is faithful module over an integral domain Z and hencESSQD, It 

is  easy  to  see  that  L  is  not  nonsingular.  
 

Proposition 15 Let L , N be modules over ring R. Let NLf : be R-monomorphism. If N be  non 

singular R-module, then L be nonsingular R-module and hence L be ESSQD R-module.  

Proof: Since NLf : remains R-homomorphism, thusfrom[10,Lemma 7.2, p.246],

)())(( NZLZf  . But Z(N) = 0. Since N be nonsingular, thus )0(0))(( fLZf  , since f  remains  

monomorphism, thus  Z(L) = 0. Then L remains nonsingular R-module. Therefore L remains ESSQD   R-
module.    
 
Proposition16 Let  L  be  R-module. If zk (L) = 0 then L is  ESSQD.  

Proof: Suppose that zk(L). Let f ∈ HomR (L) and Kerf≪es L,  0)(Im  LZf K
, so 0Im f , hence f 

= 0. Then L is an ESSQD R-module.     
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