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ABSTRACT 
Adversarial attacks are a significant vulnerability for deep learning models, particularly Convolutional 
Neural Networks (CNNs), which are widely employed in image classification and object detection. These 
attacks involve crafting imperceptible perturbations to input data that mislead CNNs into making 
incorrect predictions, posing risks in critical areas such as autonomous driving, security, and healthcare. 
This paper focuses on understanding the nature of adversarial attacks on CNNs, including white-box 
attacks, where attackers have full knowledge of the model’s parameters, and black-box attacks, where 
attackers have limited or no access to the model’s architecture. Common attack techniques such as the 
Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) and many more are reviewed to 
illustrate how CNNs can be compromised. In response to these threats, we explore various defense 
mechanisms aimed at increasing CNN robustness. Adversarial training, which incorporates adversarial 
examples during the training process, is a prominent defense. Other approaches, like input preprocessing, 
gradient obfuscation, and randomization techniques, are also discussed. This work emphasizes the trade-
off between the efficiency of these defenses and their ability to protect CNNs without significantly 
increasing computational costs. 
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1. INTRODUCTION 
Adversarial attacks present a growing threat to the security and dependability of deep learning models, 
particularly neural networks. These attacks involve making subtle changes to input data, often 
undetectable by humans, which lead to incorrect predictions from neural networks. Such vulnerabilities 
are especially concerning in critical sectors like autonomous systems, healthcare, and cybersecurity, 
where errors can have severe consequences. As adversarial techniques become increasingly 
sophisticated, they reveal new weaknesses in neural architectures, making the development of robust 
defense mechanisms essential. 
Adversarial attacks are generally classified into two categories: targeted and untargeted. Targeted attacks 
manipulate the input to force the model into predicting a specific incorrect class, often with harmful or 
malicious intent. In contrast, untargeted attacks aim to mislead the model into making any incorrect 
prediction, without focusing on a particular class. Both attack types can be executed under different 
access conditions. 
Based on the attacker’s access to the model, adversarial attacks can be categorized as white-box, black-
box, and gray-box attacks. In white-box attacks, attackers have complete knowledge of the model’s 
architecture, weights, and training data, allowing for precise manipulation. Black-box attacks are carried 
out without any internal knowledge of the model, typically through querying it to observe outputs. Gray-
box attacks fall between these two extremes, where attackers have partial knowledge of the model’s 
internals. 
Despite the existence of numerous defensemethods, such as adversarial training and preprocessing 
techniques, they often struggle to keep pace with new adversarial strategies and can be computationally 
expensive. This research focuses on a comprehensive vulnerability assessment and proposes a defense 
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mechanism that leverages parallel computing to improve efficiency, aiming to protect neural networks 
while maintaining high performance in real-time applications 
 
2. Objectives 
This research focuses on developing a computationally efficient defense mechanism using parallelism to 
protect deep learning models from adversarial attacks. By leveraging parallel computing, the defense 
aims to enhance the model's ability to withstand various adversarial strategies without significantly 
increasing computational costs. In addition, the study evaluates the vulnerability of models through 
diverse attack techniques, such as single-pixel attacks and randomized perturbations, providing a 
thorough analysis of the models' security. The investigation further explores the effectiveness of 
advanced techniques like Denoising Autoencoders (DAE), while utilizing parallelism to optimize 
performance and improve defenses against adversarial threats. A comparative analysis of various attack 
and defense methods is conducted to identify the most effective strategies, contributing to a deeper 
understanding of the security landscape in deep learning models. Through this, the research aims to 
strengthen defenses and provide insights into optimal approaches for safeguarding neural networks. 
 
3. Scope and Methodology 
This study focuses on evaluating the robustness of deep learning models against adversarial attacks using 
the MNIST dataset, which consists of hand-written digits. The methodology is divided into several key 
steps, covering dataset preparation, model implementation, adversarial attack generation, defense 
mechanisms, and a comparative analysis of model performance under attack. 
 
Dataset Selection: The MNIST dataset is chosen for this study as it is a widely-used benchmark for image 
classification tasks, particularly for evaluating the performance of Convolutional Neural Networks 
(CNNs). The dataset consists of 60,000 training images and 10,000 testing images, each representing a 
grayscale hand-written digit from 0 to 9. Images are normalized to have pixel values between 0 and 1 for 
consistency across models and attacks. 
 
Model Implementation: A standard Convolutional Neural Network (CNN) is implemented for image 
classification on the MNIST dataset. The CNN architecture includes convolutional layers followed by 
pooling layers and fully connected layers. Activation functions such as ReLU are applied between layers, 
and softmax is used at the output layer for class predictions. The model is trained on the MNIST dataset 
using stochastic gradient descent (SGD) or a similar optimization algorithm, with cross-entropy as the 
loss function. 
 
Adversarial Attack Implementation: Several adversarial attack methods are employed to test the 
vulnerability of the CNN model: 
 
Fast Gradient Sign Method (FGSM): This attack computes the gradients of the loss function with respect 
to the input and creates perturbations by adding a scaled version of the sign of the gradients to the input. 
FGSM is fast and effective but generates relatively larger perturbations. 
 
Iterative Fast Gradient Sign Method (I-FGSM): An iterative version of FGSM that applies smaller 
perturbations over multiple steps. The input is iteratively updated using the gradient sign, making the 
attack more effective than single-step FGSM. 
 
Momentum Iterative Fast Gradient Sign Method (MI-FGSM): An advanced version of I-FGSM, this 
method incorporates momentum during the gradient update process to stabilize the attack and escape 
from local minima. The momentum term helps improve the attack’s performance and increases the 
likelihood of success against models trained with basic defenses like adversarial training. 
 
Projected Gradient Descent (PGD): PGD is an iterative attack that refines adversarial examples by 
iteratively updating the input with smaller perturbations, while constraining them within a predefined 
boundary. This attack is more powerful than FGSM. 
 
Carlini-Wagner (CW) Attack: CW is a sophisticated attack that minimizes the perturbation size while 
maintaining the attack’s effectiveness, making it harder to detect. It is often used as a benchmark for 
testing model defenses. 
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Transferability Attack: This attack exploits the phenomenon where adversarial examples generated for 
one model can successfully fool another model, even with a different architecture. We generate 
adversarial examples on a surrogate model and test their effectiveness on the target CNN, examining the 
cross-model transferability of adversarial attacks. 
 
Simulated Power Attack (SPA): SPA simulates power-based physical attacks by introducing 
perturbations that mimic power fluctuations or hardware faults. These perturbations test a model's 
robustness in real-world conditions where power instability may affect performance, particularly in 
energy-sensitive or resource-constrained systems. 
 
DeepFool Attack: DeepFool is an iterative method that generates minimal perturbations to misclassify 
inputs by progressively linearizing the model's decision boundaries. It’s effective in creating subtle 
adversarial examples with minimal changes. 
 
Defense Mechanisms Against Adversarial Attacks: To improve the model’s robustness against 
adversarial attacks, the following defense techniques are implemented: 
 
Adversarial Training: The CNN model is trained not only with clean examples but also with adversarial 
examples generated by the FGSM and PGD methods. This process helps the model generalize better 
against adversarial perturbations and become more robust. 
 
Defensive Distillation: A distilled model is trained using softened logits from the original CNN. By 
lowering the temperature during the training process, the model becomes less sensitive to small changes 
in input, improving its resilience to attacks. 
 
Gradient Masking: This method modifies the CNN architecture to reduce the effectiveness of gradient-
based attacks. By obscuring gradient information, it becomes more challenging for attackers to compute 
precise perturbations, limiting the success of attacks like FGSM and PGD. 
 
Comparative Study of Models: The study conducts a comparative evaluation of the CNN model’s 
performance under different adversarial attack scenarios and defense mechanisms. The following metrics 
are used for comparison: 
 
Accuracy under attack: The classification accuracy of the model is evaluated when subjected to 
adversarial examples generated by FGSM, PGD, and CW attacks. 
 
Perturbation size: The magnitude of perturbations required for each attack is recorded to assess the 
effectiveness of both the attacks and defenses. 
 
Defense performance: The effectiveness of adversarial training, defensive distillation, and gradient 
masking is evaluated based on the model’s ability to maintain accuracy and withstand different attacks. 
This comparative study helps in identifying the most robust defense strategy for CNNs on the MNIST 
dataset. 
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4. LITERATURE REVIEW 
The paper explores white-box and black-box attacks, like Fast Gradient Sign Method (FGSM), on Support 
Vector Machine (SVM) and Convolutional Neural Network (CNN). It examines defenses such as 
adversarial training, gradient hiding, defensive distillation, and feature squeezing. A novel approach using 
Generative Adversarial Networks (GANs) is proposed to reduce the impact of adversarial attacks on both 
white-box and black-box models [1]. 
This paper categorizes adversarial attacks into targeted and non-targeted types, along with 
corresponding defense strategies. It implements Fast Gradient Sign Method (FGSM), Projected Gradient 
Descent (PGD), and Basic Iterative Method (BIM). A randomization-based defense method achieves a 
score of 92.4% among 107 submissions, while a High-level Guided Denoiser (HGD) removes adversarial 
noise by training a DNN-based denoiser on 20,000 ImageNet images (20 per class)[2]. 
This paper investigates how adversarial perturbations can weaken trained policies in deep reinforcement 
learning. Huang et al. utilize the Fast Gradient Sign Method (FGSM) to construct a surrogate loss across 
various algorithms,Liang et al. present word-level perturbations to mislead deep neural network-based 
text classifiers, using the TextBugger tool to show how adversarial text can cause misclassifications. A key 
limitation of this research is its shallow exploration of the causation behind adversarial samples, noting 
the difficulties in understanding how high-dimensional data geometry and insufficient training data 
contribute to vulnerability[3].  
The paper employs MEFDroid, a multi-model ensemble framework that integrates predictors and hybrid 
deep learning techniques for enhanced imbalanced Android malware detection.The malware detection 
performance is improved using ESAES, EDAES, and EDAFS algorithms, surpassing classical machine 
learning and traditional sampling methods. However, it notes that many heuristic defenses struggle 
against adaptive adversaries in white-box settings, raising doubts about their effectiveness[4]. 
The paper employs comprehensive feature preprocessing using the Yeo-Johnson power transformation 
for standardization, utilizing nearly two dozen metrics to interpret linear model weights effectively. It 
introduces the Fast-tack algorithm for scalable attacks, enabling efficient computation of perturbations 
ranked by predicted impact, while a linear model is trained to enforce budget constraints for subtle 
perturbations.To deepen the understanding of adversarial attacks on graph neural networks, the paper 
formulates null hypotheses, analyzes the Cora-ML dataset, and references relevant works to enhance 
model robustness [5]. 
The paper proposes an efficient defense mechanism against Fast Gradient Sign (FGS) adversarial attacks 
on deep learning models. It employs a Denoising Autoencoder (DAE) trained on both clean and 
adversarially perturbed.However, the defense shows less robustness in black-box threat models due to 
gradient mismatches between the adversary and target model.The evaluation focuses solely on FGS 
attacks, overlooking performance against more complex adversarial methods. Tested on MNIST and 
Fashion-MNIST datasets, the defense demonstrates robust accuracy retention across varying 
perturbation magnitudes, outperforming baseline methods and 2.4x faster computational speed [6]. 
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This survey highlights the growing concerns over the vulnerability of deep neural networks (DNNs) to 
adversarial attacks, which threaten the large-scale deployment of deep learning models.The paper 
reviews the literature on adversarial attacks, primarily focusing on evasion attacks, and proposes a 
systematic analysis framework inspired by the lifecycle of Advanced Persistent Threats (APT). This 
framework provides a structured approach to understanding both attacks and defenses, allowing for the 
combination of multiple defensive strategies at different stages[7]. 
This survey provides a comprehensive overview of adversarial attacks in artificial intelligence (AI), 
emphasizing the urgent need for research in this area as AI applications expand. The paper explains the 
significance, concepts, types, and dangers of adversarial attacks. It reviews key attack algorithms and 
defense strategies across image, text, and malicious code domains, helping researchers quickly identify 
relevant study areas[8]. 
This study investigates the vulnerability of artificial intelligence (AI) applications in oncology, particularly 
focusing on the susceptibility of convolutional neural networks (CNNs) to white- and black-box 
adversarial attacks during weakly-supervised classification tasks. The research reveals that vision 
transformers (ViTs) match CNN performance at baseline but exhibit significantly greater robustness 
against adversarial attacks. The findings support the notion that ViTs are more reliable learners in 
computational pathology, suggesting that AI models in this field should favor ViTs over CNN-based 
classifiers to enhance protection against adversarial perturbations [9]. 
This research focuses on adversarial machine learning, specifically examining how adversarial attacks 
impact the accuracy of machine learning-based Intrusion Detection Systems (IDSs). Utilizing a Generative 
Adversarial Network (GAN), the study generated synthetic intrusion traffic to test two types of 
adversarial attacks: poisoning and evasion. Experiments were conducted on Decision Tree and Logistic 
Regression models using the CICIDS2017 dataset. The results revealed that evasion attacks significantly 
decreased the testing accuracy of both network intrusion detection models, with the Decision Tree model 
being more adversely affected than Logistic Regression[10]. 
 
5. RESULT AND DISCUSSION 
The results demonstrate a significant impact of adversarial attacks on the accuracy of the model, followed 
by considerable improvements after applying defense mechanisms. For FGSM, IFGSM, and MIFGSM 
attacks, accuracy dropped drastically to 11%, 12.2%, and 12.03%, respectively. However, after employing 
defensive distillation as a defense mechanism, the model's accuracy was restored to 91% for all three 
attacks.With Projected Gradient Descent (PGD) attacks, using 0.1 epsilon over 12 iterations resulted in an 
accuracy of 18%, which further dropped to 12% with 0.3 epsilon. After defense, with adversarial training, 
accuracy improved to 98% for 0.1 epsilon and 97% for 0.3 epsilon.In the Carlini-Wagner attack, accuracy 
after the attack was 96%, but after applying adversarial training, it increased to 98%. For the 
transferability attack, accuracy fell to 16%, but adversarial training with a surrogate model improved it to 
97%. Lastly, for the DeepFool attack, the model’s accuracy dropped drastically to 1.84%, and after 
defense, it was further reduced to85%, indicating some challenges in mitigating this particular attack 
effectively.Overall, defense techniques like defensive distillation and adversarial training demonstrated 
strong resilience against most adversarial attacks, successfully restoring or even enhancing model 
performance in most cases.Simulated Power Analysis (SPA), the mean and standard deviation of loss 
metrics reveal the impact of adversarial attacks on model performance. Initially, the model exhibited a 
stable mean loss of approximately 0.055 with a low standard deviation, indicating robust performance. 
The mean loss increased significantly, reflecting a degradation in accuracy, while the standard deviation 
rose, indicating greater variability in predictions. After employing defense strategies, such as defensive 
distillation, the mean loss decreased to around 0.071, and the standard deviation reduced, highlighting 
improved stability and reliability in the model's performance. 
 
 

Attacks Accuracy After 
Attack 

Accuracy After 
Defense 

Defense Technique 

FGSM 11.86% 91.91% Defense Distillation 

IFGSM 12.2% 91.81% Defense Distillation 

MIFGSM 12.03% 91.48% Defense Distillation 

Carlini Wagner 96% 98% Adversarial Training 

Transferability  16% 97% Adversarial Training 
with Surrogate Model 
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Deep-fool 1.84% 85% Adversarial Training 
PGD 12.03% 97.64% Adversarial Training 

 

 
 
6. Findings 
This research provided key insights into the effectiveness of different defense strategies against various 
adversarial attacks in deep learning. Defensive distillation proved to be particularly effective against 
attacks such as FGSM, IFGSM, and MIFGSM, while adversarial training demonstrated resilience against 
more complex attacks, including Projected Gradient Descent (PGD) and Carlini-Wagner. Additionally, the 
study delved into the characteristics of black-box, white-box, and gray-box attacks, each posing distinct 
challenges based on the attacker's level of knowledge about the model. This exploration not only 
deepened my understanding of adversarial attack and defense mechanisms but also contributed to 
advancing deep learning by identifying strategies to improve model robustness against emerging 
adversarial threats. 
 
7. Limitations and Research Gaps 
One limitation of this research is the need for more powerful computational resources, such as GPUs, to 
handle the high complexity and faster processing of adversarial attacks and defenses. This restricted the 
ability to perform more extensive experimentation, especially with larger datasets and deeper models. 
Additionally, while certain defenses, such as defensive distillation and adversarial training, were effective 
in specific attack scenarios, their generalizability across different datasets remains unexplored, indicating 
a research gap. The relatively high accuracy (96%) after the Carlini-Wagner attack suggests that the 
model may not fully detect or respond to this type of attack, highlighting a need for further refinement in 
defenses against such sophisticated methods. Future research should focus on enhancing model 
understanding of more subtle attacks like Carlini-Wagner, as well as broadening testing to include diverse 
datasets and architectures to ensure robust, scalable defense mechanisms across various scenarios. 
 
8. CONCLUSION 
The research highlights the critical role of implementing tailored defense mechanisms to protect deep 
learning models from a range of adversarial attacks. Techniques such as defensive distillation and 
adversarial training have shown effectiveness against attacks like FGSM, IFGSM, MIFGSM, PGD, and 
Carlini-Wagner, though there remains a need for further enhancement, especially in defending against 
complex attacks like Carlini-Wagner. The findings also emphasize the necessity for more computational 
power, particularly GPUs, and for testing defenses on a wider variety of datasets toensure 
generalizability. Additionally, the model's vulnerability to transferability and Deepfool attacks signals 
areas that require deeper exploration and refinement. This research contributes to improving the 
resilience of deep learning models, providing a foundation for future studies to strengthen defenses 
against evolving adversarial attacks. 
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