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ABSTRACT 
This study provides a comprehensive analysis of linear 2-normed spaces and 2-inner product spaces, 
building on foundational theories and previous research. We clarify key definitions, structures, and 
properties governing these mathematical constructs, demonstrating their relevance to functional analysis 
and approximation theory. Our investigation highlights the significance of best approximations and their 
connections to optimization problems, as well as the crucial roles of completeness and convergence in 
influencing the behavior of sequences and functions. The insights gained from this work not only enhance 
current understanding but also open avenues for future research, encouraging mathematicians to explore 
unresolved questions and refine existing theories. Overall, this research underscores the importance of 
linear 2-normed and 2-inner product spaces within the broader mathematical landscape. 
 
Keywords: 2-inner product spaces, linear 2-normed spaces, completeness, convergence, approximation 
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1. INTRODUCTION 
The notion of 2-inner product was first introduced by Diminnie et al. (1973) as a two-dimensional 
analogue of the traditional inner product. This innovative concept has since prompted significant 
developments in the field, particularly through the work of Elumalai and Ahsa (2000), who established 
Bessel's inequality and the Riesz representation theorem within the context of 2-inner product spaces. 
The exploration of best approximations in linear 2-normed spaces has also seen contributions from 
various authors, including Elumalai and Ravi (1992), Elumalai and Souruparani (2000), as well as Franic 
(1994, 1997). The study of linear 2-normed spaces has garnered considerable interest in mathematical 
literature due to its applications in functional analysis and approximation theory. The foundational work 
of Gähler et al. (1973) introduced the concept of a 2-norm and defined a linear space equipped with this 
norm as a linear 2-normed space. Their research established essential properties and axioms that govern 
these spaces, serving as a crucial basis for subsequent investigations. Elumalai and Ahsa (2000) further 
developed this framework by examining the structure of 2-inner product spaces, defining key concepts 
such as convergence and Cauchy sequences. Their contributions significantly advanced the understanding 
of orthonormal sets and their role in approximation theory.  
Building on this foundation, Raymond et al. (2001) characterized 2-pre-Hilbert spaces, introducing 
important sequences and convergence criteria vital for advanced studies in the field. Their findings 
underscore the importance of completeness in 2-inner product spaces, a concept crucial for establishing 
various analytical results. More recent work by Devi (2013) has delved into the properties of closed 
subspaces within complete 2-inner product spaces, offering insights into the closure and continuity of 
these structures. This research reinforces foundational theories while exploring the relationships 
between subspaces and their respective norms. 
 
2. Objectives 
The primary objective of this study is to explore the properties of linear 2-normed spaces and 2-inner 
product spaces, building on existing literature to deepen understanding of these mathematical structures. 
This paper aims to present and analyse foundational definitions and theorems related to these spaces, 
establish a framework for further exploration, investigate the concepts of best approximations and their 
implications for approximation theory and functional analysis, and examine the significance of 
completeness and convergence in 2-inner product spaces, particularly regarding Cauchy sequences. 
Additionally, it seeks to provide new insights that enhance the current understanding of linear 2-normed 
spaces, thereby contributing to ongoing research in functional analysis and related fields. By achieving 
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these objectives, this study intends to advance the discourse surrounding linear 2-normed spaces and 
their applications while reinforcing foundational theories in the area. 
 
3. Preliminaries  
Some related well known definitions and theorems which are used in this paper are stated below. 
Definition 3.1 (Gahler et al., 1973): Let X be a linear space over reals of dimension greater than one and let 

 be a real valued function on X  X satisfying 

(N1 ) , 

(N2 ) , 

(N3)  

(N4) . 

  is called a 2-norm and the linear space X equipped with the 2-norm is called the linear 2-normed 

space. 

Definition 3.2 (Gahler et al., 1973): Let X be a linear space of dimension greater than one and  be a 

real valued function on X X X which satisfies the following conditions 

(I1 )  

(I2) , 

(I3) , 

(I4) , 

(I5) . 

 is called a 2-inner product and (X, ) is called a 2-inner product space(or a 2-Pre- Hilbert 

space). 

Definition 3.3 (Raymond et al., 2001): A 2-norm defined on any 2-pre- Hilbert space (X, ) is 

. 

Definition 3.4 (Raymond et al., 2001): A sequence  in a linear 2-normed space (X, ) is called a 

convergent sequence if there exists an  such that 

. 

Definition 3.5 (Raymond et al., 2001): A sequence  in a linear 2-normed space (X, ) is called a 

Cauchy sequence if there exist y and z in X such that y and z are linearly independent, 

. 

Definition 3.6 (Raymond et al., 2001): A 2-inner product space (X, ) is said to be complete in the 

associated norm if every Cauchy sequence in it converges. A complete 2- inner product space is known as 
2-Hilbert space. 

Definition 3.7 (Elumalai and Ahsa, 2000): A non-empty subset  of a 2-inner product space (X, ) 

is set to be orthonormal set if  

(i) . 

(ii) . 

Theorem 3.1 (Elumalai and Ahsa, 2000): Let (X, ) be a complete 2-inner product space and let C be 

a closed convex subset of X. Then C contains a unique vector of smallest 2-norm. 

Theorem 3.2 (Elumalai and Ahsa, 2000): Let (X, ) be a 2-inner product space and let M be a closed 

linear subspace of X,  and let d be the distance from x to M. Then there exists a unique vector 

 such that 

. 

Theorem 3.3 (Elumalai and Ahsa, 2000): Let M be a proper closed linear subspace of a complete 2-inner 

product space X. Then there exists a non-zero vector  such that  (i.e.  is perpendicular to 

M). 

Theorem 3.4 (Elumalai and Ahsa, 2000): Let (X, ) be a 2-inner product space and let  

 be a finite orthonormal set in X. If x is vector in X, then  
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where  is the space generated by . Further 

 

 Theorem 3.5 (Elumalai and Ahsa, 2000): Let (X, ) be a 2-inner product space and if  is an 

orthonormal set in X then  for every  and  where 

 is the space generated by . 

Theorem 3.6 (Elumalai and Ahsa, 2000): Let (X, ) be a 2-inner product space and  is an 

orthonormal set in X. If x is any vector in X then the set is either empty or 

countable. 

Lemma 3.1 (Devi, 2013): If M and N are closed subspaces of a 2-inner product space (X, ) such that  

 then the subspace  is also closed. 

Theorem 3.7 (Devi, 2013): If K is closed subspace of a complete 2-inner product space (X, ) then 

. 

Definition 3.8 (Ravi (1992): Let X be a linear 2-normed space, G a linear subspace of X. Let  and 

, where  is the space generated by x, G. An element  is called the best 

approximation of x by means of the element of the G, if  

 

 
4. Main Results 

Theorem 4.1: Let  is an orthonormal set in a complete 2-inner product space , and  

are arbitrary vectors in , where  is the space generated by , then 

 

Proof: Let  

Then by theorem 3.6,  is either empty or countable. Thus, we have three cases. 

Case(i)  Then we have  

 
In this case we define 

 

 
Case(ii) :  Then we can write  for some positive integers n. 

In this case we define 

(4.1-i)   

By Cauchy’s inequality, we have 

 
Also, by Bessel’s inequality for finite cases we have 

  and   

Therefore (4.1-i) gives  

(4.1-ii)     

Case (iii) ‘S is countably infinite’:  

Let the vectors in  be arranged in a definite order:  .  

In this case we define 
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But this sum will be defined only if we can show that the series  is convergent 

and that its sum does not change by any rearrangement of its terms, i.e., by any arrangement of vectors in 
the set S. Since inequality (4.1-ii) is true for every positive integer n, therefore it must also be true in the 
limit. So, we have 

(4.1-iii)    

And from (4.1.-iii) we see that the series  is convergent. Since all terms of this 

series are positive, therefore it is absolutely convergent and its sum will not change by any rearrangement 
of its terms. So, we are justified in defining  

 
And from (4.1-iii) we see that this sum is less than  

 
Now, we come to a theorem on Best Approximation. 

Theorem 4.2:  Let  be a closed subset of a complete 2-inner product space  If  is 

an orthonormal basis in , then the best approximation to  

, 

 where  is the space generated by  

Proof: By hypothesis,  is a closed subspace of a complete 2-inner product space , and hence  

itself a complete 2-inner product space with respect to the restriction of the 2-inner product on . 

Moreover, by theorem (3.7) each  admits a unique representation 

 with  

By theorem (3.4),  has the representation 

 
Since,  for all n, it follows that  

   for all n. 

 Hence                

Next result gives an equivalent statements for approximation of an element. 

Theorem 4.3: Let  be a closed convex subset of a real complete 2-inner product space , 

 Then the following conditions are equivalent 

(4.3-i)   

(4.3-ii)   

  

Proof: Let  Since  is convex,  

  

Then by (4.3-i), we have  

 
Hence, as  is real complete 2-inner product space, we get 

 

And consequently, . 

Thus (4.3-ii) follows by letting . 

Conversely, if  satisfy (3.2-ii), then for every we have  

 
Thus  satisfy (4.3-i). 
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This completes the proof. 
 
5. CONCLUSION 
This study offers a comprehensive exploration of linear 2-normed spaces and 2-inner product spaces, 
greatly enhancing our understanding of these mathematical constructs. By building on foundational 
theories and integrating insights from previous research, we have clarified the definitions, structures, and 
key properties that characterize these spaces. Our analysis of significant theorems has demonstrated 
their relevance to functional analysis and approximation theory, illustrating that these frameworks are 
not only theoretical but also applicable in practical contexts. For example, the investigation of best 
approximations reveals important connections between these spaces and optimization problems, 
highlighting their role in finding solutions within specific constraints. Additionally, our examination of 
completeness and convergence in 2-inner product spaces has enriched our understanding of how these 
properties influence the behaviour of sequences and functions. This knowledge is essential for validating 
theoretical results and ensuring the practical applicability of these spaces. The insights gained also pave 
the way for future research, inviting further exploration of the properties and applications of linear 2-
normed spaces. By pinpointing unresolved questions and areas ripe for investigation, this work 
encourages mathematicians to pursue innovative approaches and refine existing theories. Ultimately, this 
study underscores the significance of linear 2-normed and 2-inner product spaces in mathematics, setting 
the stage for ongoing development and potential breakthroughs that could transform our understanding 
and application of these frameworks. 
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