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Abstract

We consider in this paper, the solution of the following systems of difference
equation:

xn+1 =
xn−2

±1 + xn−2yn−1zn
, yn+1 =

yn−2
±1 + yn−2zn−1xn

, zn+1 =
zn−2

±1 + zn−2xn−1yn

where the initial conditions x−2, x−1, x0, y−2, y−1, y0, z−2, z−1, z0 are arbi-
trary non zero real numbers.

Keywords: difference equations, recursive sequences, periodic solutions, system of
difference equations, stability.
Mathematics Subject Classification: 39A10.
––––––––––––––––––––––

1 Introduction

Difference equations related to differential equations as discrete mathematics related
to continuous mathematics. Most of these models are described by nonlinear delay
difference equations; see, for example, [9], [10]. The subject of the qualitative study
of the nonlinear delay population models is very extensive, and the current research
work tends to center around the relevant global dynamics of the considered systems of
difference equations such as oscillation, boundedness of solutions, persistence, global
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stability of positive steady sates, permanence, and global existence of periodic solu-
tions. See [13], [17], [19]-[22], [26], [28], [29] and the references therein. In particular,
Agarwal and Elsayed [1] deal with the global stability, periodicity character and gave
the solution form of some special cases of the recursive sequence

xn+1 = axn +
bxnxn−3

cxn−2 + dxn−3
.

Camouzis et al. [5] studied the global character of solutions of the difference equation

xn+1 =
δxn−2 + xn−3
A+ xn−3

.

Clark and Kulenovic [7] investigated the global asymptotic stability of the system

xn+1 =
xn

a+ cyn
, yn+1 =

yn
b+ dxn

.

In [9], Din studied the boundedness character, steady-states, local asymptotic sta-
bility of equilibrium points, and global behavior of the unique positive equilibrium
point of a discrete predator-prey model given by

xn+1 =
αxn − βxnyn
1 + γxn

, yn+1 =
δxnyn

xn + ηyn
.

Elsayed et al. [23] discussed the global convergence and periodicity of solutions of
the recursive sequence

xn+1 = axn +
b+ cxn−1
d+ exn−1

.

Elsayed and El-Metwally [24] discussed the periodic nature and the form of the solu-
tions of the nonlinear difference equations systems

xn+1 =
xnyn−2

yn−1 (±1± xnyn−2)
, yn+1 =

ynxn−2
xn−1 (±1± ynxn−2)

.

Gelisken and Kara [25] studied some behavior of solutions of some systems of rational
difference equations of higher order and they showed that every solution is periodic
with a period depends on the order.
In [27] Kurbanli discussed a three-dimensional system of rational difference equa-

tions
xn+1 =

xn−1
xn−1yn − 1

, yn+1 =
yn−1

yn−1xn − 1
, zn+1 =

xn
zn−1yn

.

Touafek et al. [33] studied the sufficient conditions for the global asymptotic stability
of the following systems of rational difference equations:

xn+1 =
xn−3

±1± xn−3yn−1
, yn+1 =

yn−3
±1± yn−3xn−1

.
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with a real number’s initial conditions.
Our goal in this paper is to investigate the form of the solutions of the system of

three difference equations

xn+1 =
xn−2

±1 + xn−2yn−1zn
, yn+1 =

yn−2
±1 + yn−2zn−1xn

, zn+1 =
zn−2

±1 + zn−2xn−1yn
, (1)

where the initial conditions x−2, x−1, x0, y−2, y−1, y0, z−2, z−1, z0 are arbitrary
real numbers. Moreover, we obtain some numerical simulation to the equation are
given to illustrate our results.

2 The System

xn+1 =
xn−2

1+xn−2yn−1zn
, yn+1 =

yn−2
1+yn−2zn−1xn

, zn+1 =
zn−2

1+zn−2xn−1yn

In this section, we study the solution of the following system of difference equations.

xn+1 =
xn−2

1 + xn−2yn−1zn
, yn+1 =

yn−2
1 + yn−2zn−1xn

, zn+1 =
zn−2

1 + zn−2xn−1yn
, (2)

where n ∈ N0 and the initial conditions are arbitrary real numbers.
The following theorem is devoted to the form of the solutions of system (1).

Theorem 1. Suppose that {xn, yn, zn} are solutions of the system (1). Then for
n = 0, 1, 2, ..., we have the following formulas

x3n−2 = x−2
n−1Q
i=0

(1 + (3i)x−2y−1z0)

(1 + (3i+ 1)x−2y−1z0)
, x3n−1 = x−1

n−1Q
i=0

(1 + (3i+ 1)x−1y0z−2)

(1 + (3i+ 2)x−1y0z−2)
,

x3n = x0
n−1Q
i=0

(1 + (3i+ 2)x0y−2z−1)

(1 + (3i+ 3)x0y−2z−1)
,

y3n−2 = y−2
n−1Q
i=0

(1 + (3i)x0y−2z−1)

(1 + (3i+ 1)x0y−2z−1)
, y3n−1 = y−1

n−1Q
i=0

(1 + (3i+ 1)x−2y−1z0)

(1 + (3i+ 2)x−2y−1z0)
,

y3n = y0
n−1Q
i=0

(1 + (3i+ 2)x−1y0z−2)

(1 + (3i+ 3)x−1y0z−2)
,

z3n−2 = z−2
n−1Q
i=0

(1 + (3i)x−1y0z−2)

(1 + (3i+ 1)x−1y0z−2)
, z3n−1 = z−1

n−1Q
i=0

(1 + (3i+ 1)x0y−2z−1)

(1 + (3i+ 2)x0y−2z−1)
,

z3n = z0
n−1Q
i=0

(1 + (3i+ 2)x−2y−1z0)

(1 + (3i+ 3)x−2y−1z0)
,
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Proof. For n = 0 the result holds. Suppose that the result holds for n− 1.

x3n−5 = x−2
n−2Q
i=0

(1 + (3i)x−2y−1z0)

(1 + (3i+ 1)x−2y−1z0)
, x3n−4 = x−1

n−2Q
i=0

(1 + (3i+ 1)x−1y0z−2)

(1 + (3i+ 2)x−1y0z−2)
,

x3n−3 = x0
n−2Q
i=0

(1 + (3i+ 2)x0y−2z−1)

(1 + (3i+ 3)x0y−2z−1)
,

y3n−5 = y−2
n−2Q
i=0

(1 + (3i)x0y−2z−1)

(1 + (3i+ 1)x0y−2z−1)
, y3n−4 = y−1

n−2Q
i=0

(1 + (3i+ 1)x−2y−1z0)

(1 + (3i+ 2)x−2y−1z0)
,

y3n−3 = y0
n−2Q
i=0

(1 + (3i+ 2)x−1y0z−2)

(1 + (3i+ 3)x−1y0z−2)
,

z3n−5 = z−2
n−2Q
i=0

(1 + (3i)x−1y0z−2)

(1 + (3i+ 1)x−1y0z−2)
, z3n−4 = z−1

n−2Q
i=0

(1 + (3i+ 1)x0y−2z−1)

(1 + (3i+ 2)x0y−2z−1)
,

z3n−3 = z0
n−2Q
i=0

(1 + (3i+ 2)x−2y−1z0)

(1 + (3i+ 3)x−2y−1z0)
.

It follows from Eq.(1) that

x3n−2 =
x3n−5

1 + x3n−5y3n−4z3n−3

=

x−2
n−2Q
i=0

(1+(3i)x−2y−1z0)
(1+(3i+1)x−2y−1z0)

1 + (x−2
n−2Q
i=0

(1+(3i)x−2y−1z0)
(1+(3i+1)x−2y−1z0)

)(y−1
n−2Q
i=0

(1+(3i+1)x−2y−1z0)
(1+(3i+2)x−2y−1z0)

)(z0
n−2Q
i=0

(1+(3i+2)x−2y−1z0)
(1+(3i+3)x−2y−1z0)

)

=

x−2
n−2Q
i=0

(1+(3i)x−2y−1z0)
(1+(3i+1)x−2y−1z0)

1 + x−2y−1z0
n−2Q
i=0

(( (1+(3i)x−2y−1z0)
(1+(3i+1)x−2y−1z0)

)( (1+(3i+1)x−2y−1z0)
(1+(3i+2)x−2y−1z0)

)( (1+(3i+2)x−2y−1z0)
(1+(3i+3)x−2y−1z0)

))

=

x−2
n−2Q
i=0

(1+(3i)x−2y−1z0)
(1+(3i+1)x−2y−1z0)

1 + x−2y−1z0
n−2Q
i=0

( (1+(3i)x−2y−1z0)
(1+(3i+3)x−2y−1z0)

)

= x−2
n−2Q
i=0

(1 + (3i)x−2y−1z0)

(1 + (3i+ 1)x−2y−1z0)

1

1 + ( x−2y−1z0
(1+(3n−3)x−2y−1z0))

= x−2
n−2Q
i=0

(1 + (3i)x−2y−1z0)

(1 + (3i+ 1)x−2y−1z0)
(

(1 + (3n− 3)x−2y−1z0)
(1 + (3n− 3)x−2y−1z0) + x−2y−1z0

)

= x−2
n−2Q
i=0

(1 + (3i)x−2y−1z0)

(1 + (3i+ 1)x−2y−1z0)
(
(1 + (3n− 3)x−2y−1z0)
(1 + (3n− 2)x−2y−1z0)

).
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Then, we see that

x3n−2 = x−2
n−1Q
i=0

(1 + (3i)x−2y−1z0)

(1 + (3i+ 1)x−2y−1z0)
.

Also, we see from Eq.(1) that

y3n−2 =
y3n−5

1 + y3n−5z3n−4x3n−3

=

y−2
n−2Q
i=0

(1+(3i)x0y−2z−1)
(1+(3i+1)x0y−2z−1)

1 + (y−2
n−2Q
i=0

(1+(3i)x0y−2z−1)
(1+(3i+1)x0y−2z−1)

)(z−1
n−2Q
i=0

(1+(3i+1)x0y−2z−1)
(1+(3i+2)x0y−2z−1)

)(x0
n−2Q
i=0

(1+(3i+2)x0y−2z−1)
(1+(3i+3)x0y−2z−1)

)

=

y−2
n−2Q
i=0

(1+(3i)x0y−2z−1)
(1+(3i+1)x0y−2z−1)

1 + x0y−2z−1
n−2Q
i=0

(1+(3i)x0y−2z−1)
(1+(3i+3)x0y−2z−1)

= y−2
n−2Q
i=0

(1 + (3i)x0y−2z−1)

(1 + (3i+ 1)x0y−2z−1)
(

1

1 + x0y−2z−1
1+(3n−3)x0y−2z−1−

)

= y−2
n−2Q
i=0

(1 + (3i)x0y−2z−1)

(1 + (3i+ 1)x0y−2z−1)
(

1 + (3n− 3)x0y−2z−1
1 + (3n− 3)x0y−2z−1 + x0y−2z−1

)

= y−2
n−2Q
i=0

(1 + (3i)x0y−2z−1)

(1 + (3i+ 1)x0y−2z−1)
(
1 + (3n− 3)x0y−2z−1
1 + (3n− 2)x0y−2z−1

).

Then, we see that

y3n−2 = y−2
n−1Q
i=0

(1 + (3i)x0y−2z−1)

(1 + (3i+ 1)x0y−2z−1)

Finally, we see that
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z3n−2 =
z3n−5

1 + z3n−5x3n−4y3n−3

=

z−2
n−2Q
i=0

(1+(3i)x−1y0z−2)
(1+(3i+1)x−1y0z−2)

1 + (z−2
n−2Q
i=0

(1+(3i)x−1y0z−2)
(1+(3i+1)x−1y0z−2)

)(x−1
n−2Q
i=0

(1+(3i+1)x−1y0z−2)
(1+(3i+2)x−1y0z−2)

)(y0
n−2Q
i=0

(1+(3i+2)x−1y0z−2)
(1+(3i+3)x−1y0z−2)

)

=

z−2
n−2Q
i=0

(1+(3i)x−1y0z−2)
(1+(3i+1)x−1y0z−2)

1 + x−1y0z−2
n−2Q
i=0

(1+(3i)x−1y0z−2)
(1+(3i+3)x−1y0z−2

= z−2
n−2Q
i=0

(1 + (3i)x−1y0z−2)

(1 + (3i+ 1)x−1y0z−2)
(

1

1 + x−1y0z−2
1+(3n−3)x−1y0z−2

)

= z−2
n−2Q
i=0

(1 + (3i)x−1y0z−2)

(1 + (3i+ 1)x−1y0z−2)
(
1 + (3n− 3)x−1y0z−2
1 + (3n− 2)x−1y0z−2

).

Then

z3n−2 = z−2
n−1Q
i=0

(1 + (3i)x−1y0z−2)

(1 + (3i+ 1)x−1y0z−2)
.

This completes the proof.

3 The System

xn+1 =
xn−2

1+xn−2yn−1zn
, yn+1 =

yn−2
−1+yn−2zn−1xn , zn+1 =

zn−2
−1+zn−2xn−1yn

In this section, we obtain the form of the solutions of the system of three difference
equations

xn+1 =
xn−2

1 + xn−2yn−1zn
, yn+1 =

yn−2
−1 + yn−2zn−1xn

, zn+1 =
zn−2

−1 + zn−2xn−1yn
, (3)

where n ∈ N0 and the initial conditions are arbitrary nonzero real numbers.
Theorem 2. Suppose that {xn, yn, zn} are solutions of the system (2). Then for
n = 0, 1, 2, ..., we have the following formulas

x3n−2 =
x−2

1 + nx−2y−1z0
, x3n−1 =

x−1(x−1y0z−2 − 1)
(n+ 1)x−1y0z−2 − 1

, x3n =
x0

1 + nx0y−2z−1
,

y3n−2 =
(−1)n+1y−2(1 + (n− 1)x0y−2z−1)

x0y−2z−1 − 1
, y3n−1 = (−1)ny−1(1 + nx−2y−1z0),

y3n =
(−1)ny0((n+ 1)x−1y0z−2 − 1)

x−1y0z−2 − 1
,
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z3n−2 =
(−1)n+1z−2

nx−1y0z−2 − 1
, z3n−1 =

(−1)n+1z−1(x0y−2z−1 − 1)
(n− 1)x0y−2z−1 + 1

, z3n =
(−1)nz0

1 + nx−2y−1z0
.

Proof. For n = 0 the result holds. Suppose that the result holds for n− 1.

x3n−5 =
x−2

1 + (n− 1)x−2y−1z0
, x3n−4 =

x−1(x−1y0z−2 − 1)
nx−1y0z−2 − 1

, x3n−3 =
x0

1 + (n− 1)x0y−2z−1
,

y3n−5 =
(−1)ny−2(1 + (n− 2)x0y−2z−1)

x0y−2z−1 − 1
, y3n−4 = (−1)n−1y−1(1 + (n− 1)x−2y−1z0),

y3n−3 =
(−1)n−1y0(nx−1y0z−2 − 1)

x−1y0z−2 − 1
,

z3n−5 =
(−1)nz−2

(n− 1)x−1y0z−2 − 1
, z3n−4 =

(−1)nz−1(x0y−2z−1 − 1)
(n− 2)x0y−2z−1 + 1

, z3n−3 =
(−1)n−1z0

1 + (n− 1)x−2y−1z0
,

from system (2) we can prove as follow

x3n−2 =
x3n−5

1 + x3n−5y3n−4z3n−3

=

x−2
1+(n−1)x−2y−1z0

1 + ( x−2
1+(n−1)x−2y−1z0 )((−1)

n−1y−1(1 + (n− 1)x−2y−1z0))( (−1)n−1z0
1+(n−1)x−2y−1z0 )

=
x−2

1 + (n− 1)x−2y−1z0 + x−2y−1z0
=

x−2
1 + nx−2y−1z0

Also, we get

y3n−1 =
y3n−4

−1 + y3n−4z3n−3x3n−2

=
(−1)n−1y−1(1 + (n− 1)x−2y−1z0)

−1 + ((−1)n−1y−1(1 + (n− 1)x−2y−1z0))( (−1)n−1z0
1+(n−1)x−2y−1z0 )(

x−2
1+nx−2y−1z0

)

=
(−1)ny−1(1 + (n− 1)x−2y−1z0)(1 + nx−2y−1z0)

1 + (n− 1)x−2y−1z0
= (−1)ny−1(1 + nx−2y−1z0)

z3n =
z3n−3

−1 + z3n−3x3n−2y3n−1

=

(−1)n−1z0
1+(n−1)x−2y−1z0

−1 + ( (−1)n−1z0
1+(n−1)x−2y−1z0 )(

x−2
1+nx−2y−1z0

)((−1)ny−1(1 + nx−2y−1z0))

=
(−1)nz0

1 + (n− 1)x−2y−1z0 + x−2y−1z0
=

(−1)nz0
1 + nx−2y−1z0

.
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4 The System

xn+1 =
xn−2

−1+xn−2yn−1zn , yn+1 =
yn−2

1+yn−2zn−1xn
, zn+1 =

zn−2
−1+zn−2xn−1yn

In this section, we study the solution of the following system of difference equations

xn+1 =
xn−2

−1 + xn−2yn−1zn
, yn+1 =

yn−2
1 + yn−2zn−1xn

, zn+1 =
zn−2

−1 + zn−2xn−1yn
, (4)

where n ∈ N0 and the initial conditions are arbitrary nonzero real numbers.
Theorem 3. Suppose that {xn, yn, zn} are solutions of the system (3). Then for
n = 0, 1, 2, ..., we have the following formulas

x3n−2 =
x−2

nx−2y−1z0 − 1
, x3n−1 =

(−1)n+1x−1(x−1y0z−2 − 1)
(n− 1)x−1y0z−2 + 1

, x3n =
(−1)nx0

1 + nx0y−2z−1
,

y3n−2 =
y−2

nx0y−2z−1 + 1
, y3n−1 =

y−1(x−2y−1z0 − 1)
(n+ 1)x−2y−1z0 − 1

, y3n =
y0

nx−1y0z−2 + 1
,

z3n−2 =
(−1)n+1z−2((n− 1)x−1y0z−2 + 1)

x−1y0z−2 − 1
, z3n−1 = (−1)nz−1(nx0y−2z−1 + 1),

z3n =
(−1)nz0((n+ 1)x−2y−1z0 − 1)

x−2y−1z0 − 1
.

Proof. For n = 0 the result holds. Suppose that the result holds for n− 1

x3n−5 =
x−2

(n− 1)x−2y−1z0 − 1
, x3n−4 =

(−1)nx−1(x−1y0z−2 − 1)
(n− 2)x−1y0z−2 + 1

, x3n−3 =
(−1)n−1x0

1 + (n− 1)x0y−2z−1
,

y3n−5 =
y−2

(n− 1)x0y−2z−1 + 1
, y3n−4 =

y−1(x−2y−1z0 − 1)
nx−2y−1z0 − 1

, y3n−3 =
y0

(n− 1)x−1y0z−2 + 1
,

z3n−5 =
(−1)nz−2((n− 2)x−1y0z−2 + 1)

x−1y0z−2 − 1
, z3n−4 = (−1)n−1z−1((n− 1)x0y−2z−1 + 1),

z3n−3 =
(−1)n−1z0(nx−2y−1z0 − 1)

x−2y−1z0 − 1
,

from system (3) we can prove as follow

x3n−1 =
x3n−4

−1 + x3n−4y3n−3z3n−2

=

(−1)nx−1(x−1y0z−2−1)
(n−2)x−1y0z−2+1

−1 + ( (−1)nx−1(x−1y0z−2−1)
(n−2)x−1y0z−2+1 )( y0

(n−1)x−1y0z−2+1)(
(−1)n+1z−2((n−1)x−1y0z−2+1)

x−1y0z−2−1 )

=
(−1)nx−1(x−1y0z−2 − 1)

−((n− 2)x−1y0z−2 + 1) + ((−1)nx−1)((−1)n+1y0z−2)

=
(−1)n+1x−1(x−1y0z−2 − 1)
(n− 1)x−1y0z−2 + 1

.
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Also, we get

y3n =
y3n−3

1 + y3n−3z3n−2x3n−1

=

y0
(n−1)x−1y0z−2+1

1 + ( y0
(n−1)x−1y0z−2+1)(

(−1)n+1z−2((n−1)x−1y0z−2+1)
x−1y0z−2−1 )( (−1)

n+1x−1(x−1y0z−2−1)
(n−1)x−1y0z−2+1 )

=
y0

(n− 1)x−1y0z−2 + 1 + y0((−1)n+1z−2)((−1)n+1x−1)
=

y0
nx−1y0z−2 + 1

z3n−2 =
z3n−5

−1 + z3n−5x3n−4y3n−3

=

(−1)nz−2((n−2)x−1y0z−2+1)
x−1y0z−2−1

−1 + ( (−1)nz−2((n−2)x−1y0z−2+1)
x−1y0z−2−1 )( (−1)

nx−1(x−1y0z−2−1)
(n−2)x−1y0z−2+1 )( y0

(n−1)x−1y0z−2+1)

=

(−1)nz−2((n−2)x−1y0z−2+1)
x−1y0z−2−1

−((n−2)x−1y0z−2+1)
(n−1)x−1y0z−2+1

=
(−1)n+1z−2((n− 1)x−1y0z−2 + 1)

x−1y0z−2 − 1
.

This completes the proof.

5 The System

xn+1 =
xn−2

−1+xn−2yn−1zn , yn+1 =
yn−2

−1+yn−2zn−1xn , zn+1 =
zn−2

1+zn−2xn−1yn

In this section, we investigate the solution of the following system of difference equa-
tions

xn+1 =
xn−2

−1 + xn−2yn−1zn
, yn+1 =

yn−2
−1 + yn−2zn−1xn

, zn+1 =
zn−2

1 + zn−2xn−1yn
, (5)

where the initial conditions n ∈ N0 are arbitrary non zero real numbers. The
following theorem is devoted to the form of the solutions of system (4).
Theorem 4. Suppose that {xn, yn, zn} are solutions of the system (4). Then for
n = 0, 1, 2, ..., we have the following formulas

x3n−2 =
(−1)n+1x−2((n− 1)x−2y−1z0 + 1)

x−2y−1z0 − 1
, x3n−1 = (−1)nx−1(nx−1y0z−2 + 1),

x3n =
(−1)nx0((n+ 1)x0y−2z−1 − 1)

x0y−2z−1 − 1
,
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y3n−2 =
(−1)n+1y−2

nx0y−2z−1 − 1
, y3n−1 =

(−1)n+1y−1(x−2y−1z0 − 1)
(n− 1)x−2y−1z0 + 1

, y3n =
(−1)ny0

nx−1y0z−2 + 1
,

z3n−2 =
z−2

nx−1y0z−2 + 1
, z3n−1 =

z−1(x0y−2z−1 − 1)
(n+ 1)x0y−2z−1 − 1

, z3n =
z0

nx−2y−1z0 + 1
.

Proof. For n = 0 the result holds. Suppose that the result holds for n− 1

x3n−5 =
(−1)nx−2((n− 2)x−2y−1z0 + 1)

x−2y−1z0 − 1
, x3n−4 = (−1)n−1x−1((n− 1)x−1y0z−2 + 1),

x3n−3 =
(−1)n−1x0(x0y−2z−1 − 1)

x0y−2z−1 − 1
,

y3n−5 =
(−1)ny−2

(n− 1)x0y−2z−1 − 1
, y3n−4 =

(−1)ny−1(x−2y−1z0 − 1)
(n− 2)x−2y−1z0 + 1

, y3n−3 =
(−1)n−1y0

(n− 1)x−1y0z−2 + 1
,

z3n−5 =
z−2

(n− 1)x−1y0z−2 + 1
, z3n−4 =

z−1(x0y−2z−1 − 1)
nx0y−2z−1 − 1

, z3n−3 =
z0

(n− 1)x−2y−1z0 + 1
,

from system (4) we can prove as follow

x3n =
x3n−3

−1 + x3n−3y3n−2z3n−1

=

(−1)n−1x0(nx0y−2z−1−1)
x0y−2z−1−1

−1 + ( (−1)n−1x0(nx0y−2z−1−1)
x0y−2z−1−1 )( (−1)

n+1y−2
nx0y−2z−1−1)(

z−1(x0y−2z−1−1)
(n+1)x0y−2z−1−1)

=

(−1)n−1x0(nx0y−2z−1−1)
x0y−2z−1−1

x0y−2z−1−((n+1)x0y−2z−1−1)
((n+1)x0y−2z−1−1)

=
(−1)nx0((n+ 1)x0y−2z−1 − 1)

x0y−2z−1 − 1

Also, we get

y3n−1 =
y3n−4

−1 + y3n−4z3n−3x3n−2

=

(−1)ny−1(x−2y−1z0−1)
(n−2)x−2y−1z0+1

−1 + ( (−1)ny−1(x−2y−1z0−1)
(n−2)x−2y−1z0+1 )( z0

(n−1)x−2y−1z0+1)(
(−1)n+1x−2((n−1)x−2y−1z0+1)

x−2y−1z0−1 )

=

(−1)n+1y−1(x−2y−1z0−1)
(n−2)x−2y−1z0+1

(n−2)x−2y−1z0+1+x−2y−1z0
(n−2)x−2y−1z0+1

=
(−1)n+1y−1(x−2y−1z0 − 1)
(n− 1)x−2y−1z0 + 1

z3n−2 =
z3n−5

1 + z3n−5x3n−4y3n−3

=

z−2
(n−1)x−1y0z−2+1

1 + ( z−2
(n−1)x−1y0z−2+1)((−1)

n−1x−1((n− 1)x−1y0z−2 + 1))( (−1)n−1y0
(n−1)x−1y0z−2+1)

=

z−2
(n−1)x−1y0z−2+1

(n−1)x−1y0z−2+1+x−1y0z−2
(n−1)x−1y0z−2+1

=
z−2

nx−1y0z−2 + 1
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This completes the proof.
The following cases can be proved similarly.

6 On The System

xn+1 =
xn−2

−1+xn−2yn−1zn , yn+1 =
yn−2

−1+yn−2zn−1xn , zn+1 =
zn−2

−1+zn−2xn−1yn

In this section we study the solution of the following system of difference equations

xn+1 =
xn−2

−1 + xn−2yn−1zn
, yn+1 =

yn−2
−1 + yn−2zn−1xn

, zn+1 =
zn−2

−1 + zn−2xn−1yn
, (6)

where the initial conditions n ∈ N0 are arbitrary non zero real numbers.
Theorem 5. Let {xn, yn, zn}+∞n=−2 be solutions of system (5). Then
1- {xn}+∞n=−2, {yn}+∞n=−2 and {zn}

+∞
n=−2 and are periodic with period six i.e.,

xn+6 = xn, yn+6 = yn, zn+6 = zn.

2- We have the following form

x6n−2 = x−2, x6n−1 = x−1, x6n = x0,

x6n+1 =
x−2

x−2y−1z0 − 1
, x6n+2 = x−1(x−1y0z−2 − 1), x6n+3 =

x0
x0y−2z−1 − 1

,

y6n−2 = y−2, y6n−1 = y−1, y6n = y0,

y6n+1 =
y−2

x0y−2z−1 − 1
, y6n+2 = y−1(x−2y−1z0 − 1), y6n+3 =

y0
x−1y0z−2 − 1

,

z6n−2 = z−2, z6n−1 = z−1, z6n = z0,

z6n+1 =
z−2

x−1y0z−2 − 1
, z6n+2 = z−1(x0y−2z−1 − 1), z6n+3 =

z0
x−2y−1z0 − 1

,

Or equivalently

{xn}+∞n=−2 =
½
x−2, x−1, x0,

x−2
x−2y−1z0 − 1

, x−1(x−1y0z−2 − 1),
x0

x0y−2z−1 − 1

¾
,

{yn}+∞n=−2 =
½
y−2, y−1, y0,

y−2
x0y−2z−1 − 1

, y−1(x−2y−1z0 − 1),
y0

x−1y0z−2 − 1

¾
.

{zn}+∞n=−2 =
½
z−2, z−1, z0,

z−2
x−1y0z−2 − 1

, z−1(x0y−2z−1 − 1),
z0

x−2y−1z0 − 1

¾
.
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7 On The System

xn+1 =
xn−2

−1−xn−2yn−1zn , yn+1 =
yn−2

−1−yn−2zn−1xn , zn+1 =
zn−2

−1−zn−2xn−1yn

In this section we study the solution of the following system of difference equations

xn+1 =
xn−2

−1− xn−2yn−1zn
, yn+1 =

yn−2
−1− yn−2zn−1xn

, zn+1 =
zn−2

−1− zn−2xn−1yn
,

(7)
where the initial conditions n ∈ N0 are arbitrary non zero real numbers.

Theorem 6. Let {xn, yn, zn}+∞n=−2 be solutions of system (6). Then
1- {xn}+∞n=−2, {yn}+∞n=−2 and {zn}

+∞
n=−2 and are periodic with period six i.e.,

xn+6 = xn, yn+6 = yn, zn+6 = zn.

2- We have the following form

x6n−2 = x−2, x6n−1 = x−1, x6n = x0,

x6n+1 = −
x−2

x−2y−1z0 + 1
, x6n+2 = −x−1(x−1y0z−2 + 1), x6n+3 = −

x0
x0y−2z−1 + 1

,

y6n−2 = y−2, y6n−1 = y−1, y6n = y0,

y6n+1 = −
y−2

x0y−2z−1 + 1
, y6n+2 = −y−1(x−2y−1z0 + 1), y6n+3 = −

y0
x−1y0z−2 + 1

,

z6n−2 = z−2, z6n−1 = z−1, z6n = z0,

z6n+1 = −
z−2

x−1y0z−2 + 1
, z6n+2 = −z−1(x0y−2z−1 + 1), z6n+3 = −

z0
x−2y−1z0 + 1

,

Or equivalently

{xn}+∞n=−2 =
½
x−2, x−1, x0,−

x−2
x−2y−1z0 + 1

,−x−1(x−1y0z−2 + 1),−
x0

x0y−2z−1 + 1

¾
,

{yn}+∞n=−2 =
½
y−2, y−1, y0,−

y−2
x0y−2z−1 + 1

,−y−1(x−2y−1z0 + 1),−
y0

x−1y0z−2 + 1

¾
.

{zn}+∞n=−2 =
½
z−2, z−1, z0,−

z−2
x−1y0z−2 + 1

,−z−1(x0y−2z−1 + 1),−
z0

x−2y−1z0 + 1

¾
.
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8 The System

xn+1 =
xn−2

1−xn−2yn−1zn , yn+1 =
yn−2

1−yn−2zn−1xn , zn+1 =
zn−2

1−zn−2xn−1yn

In this section, we study the solution of the following system of difference equations.

xn+1 =
xn−2

1− xn−2yn−1zn
, yn+1 =

yn−2
1− yn−2zn−1xn

, zn+1 =
zn−2

1− zn−2xn−1yn
(8)

where n ∈ N0 and the initial conditions are arbitrary nonzero real numbers.
The following theorem is devoted to the form of the solutions of system (7).

Theorem 7. Suppose that {xn, yn, zn} are solutions of the system (7). Then for
n = 0, 1, 2, ..., we have the following formulas

x3n−2 = −x−2
n−1Q
i=0

(−1 + (3i)x−2y−1z0)
(−1 + (3i+ 1)x−2y−1z0)

, x3n−1 = x−1
n−1Q
i=0

(−1 + (3i+ 1)x−1y0z−2)
(−1 + (3i+ 2)x−1y0z−2)

,

x3n = x0
n−1Q
i=0

(−1 + (3i+ 2)x0y−2z−1)
(−1 + (3i+ 3)x0y−2z−1)

,

y3n−2 = −y−2
n−1Q
i=0

(−1 + (3i)x0y−2z−1)
(−1 + (3i+ 1)x0y−2z−1)

, y3n−1 = y−1
n−1Q
i=0

(−1 + (3i+ 1)x−2y−1z0)
(−1 + (3i+ 2)x−2y−1z0)

,

y3n = y0
n−1Q
i=0

(−1 + (3i+ 2)x−1y0z−2)
(−1 + (3i+ 3)x−1y0z−2)

,

z3n−2 = −z−2
n−1Q
i=0

(−1 + (3i)x−1y0z−2)
(−1 + (3i+ 1)x−1y0z−2)

, z3n−1 = z−1
n−1Q
i=0

(−1 + (3i+ 1)x0y−2z−1)
(−1 + (3i+ 2)x0y−2z−1)

,

z3n = z0
n−1Q
i=0

(−1 + (3i+ 2)x−2y−1z0)
(−1 + (3i+ 3)x−2y−1z0)

,

Proof. For n = 0 the result holds. Suppose that the result holds for n− 1.

x3n−5 = −x−2
n−2Q
i=0

(−1 + (3i)x−2y−1z0)
(−1 + (3i+ 1)x−2y−1z0)

, x3n−4 = x−1
n−2Q
i=0

(−1 + (3i+ 1)x−1y0z−2)
(−1 + (3i+ 2)x−1y0z−2)

,

x3n−3 = x0
n−2Q
i=0

(−1 + (3i+ 2)x0y−2z−1)
(−1 + (3i+ 3)x0y−2z−1)

,

y3n−5 = −y−2
n−2Q
i=0

(−1 + (3i)x0y−2z−1)
(−1 + (3i+ 1)x0y−2z−1)

, y3n−4 = y−1
n−2Q
i=0

(−1 + (3i+ 1)x−2y−1z0)
(−1 + (3i+ 2)x−2y−1z0)

,

y3n−3 = y0
n−2Q
i=0

(−1 + (3i+ 2)x−1y0z−2)
(−1 + (3i+ 3)x−1y0z−2)

,
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z3n−5 = −z−2
n−2Q
i=0

(−1 + (3i)x−1y0z−2)
(−1 + (3i+ 1)x−1y0z−2)

, z3n−4 = z−1
n−2Q
i=0

(−1 + (3i+ 1)x0y−2z−1)
(−1 + (3i+ 2)x0y−2z−1)

,

z3n−3 = z0
n−2Q
i=0

(−1 + (3i+ 2)x−2y−1z0)
(−1 + (3i+ 3)x−2y−1z0)

,

It follows from Eq.(7) that

x3n−2 =
x3n−5

1 + x3n−5y3n−4z3n−3

=
−x−2

n−2Q
i=0

(−1+(3i)x−2y−1z0)
(−1+(3i+1)x−2y−1z0)

1+(−x−2
n−2Q
i=0

(−1+(3i)x−2y−1z0)
(−1+(3i+1)x−2y−1z0)

)(y−1

n−2Q
i=0

(−1+(3i+1)x−2y−1z0)
(−1+(3i+2)x−2y−1z0)

)(z0

n−2Q
i=0

(−1+(3i+2)x−2y−1z0)
(−1+(3i+3)x−2y−1z0)

)

=

−x−2
n−2Q
i=0

(−1+(3i)x−2y−1z0)
(−1+(3i+1)x−2y−1z0)

1− x−2y−1z0
n−2Q
i=0

(( (−1+(3i)x−2y−1z0)
(−1+(3i+1)x−2y−1z0))(

(−1+(3i+1)x−2y−1z0)
(−1+(3i+2)x−2y−1z0))(

(−1+(3i+2)x−2y−1z0)
(−1+(3i+3)x−2y−1z0)))

=

−x−2
n−2Q
i=0

(−1+(3i)x−2y−1z0)
(−1+(3i+1)x−2y−1z0)

1− x−2y−1z0
n−2Q
i=0

( (−1+(3i)x−2y−1z0)
(−1+(3i+3)x−2y−1z0))

= −x−2
n−2Q
i=0

(−1 + (3i)x−2y−1z0)
(−1 + (3i+ 1)x−2y−1z0)

1

1 + ( x−2y−1z0
(−1+(3n−3)x−2y−1z0))

= −x−2
n−2Q
i=0

(−1 + (3i)x−2y−1z0)
(−1 + (3i+ 1)x−2y−1z0)

(
(−1 + (3n− 3)x−2y−1z0)

(−1 + (3n− 3)x−2y−1z0) + x−2y−1z0
)

= −x−2
n−2Q
i=0

(−1 + (3i)x−2y−1z0)
(−1 + (3i+ 1)x−2y−1z0)

(
(−1 + (3n− 3)x−2y−1z0)
(−1 + (3n− 2)x−2y−1z0)

)

Then, we see that

x3n−2 = −x−2
n−1Q
i=0

(−1 + (3i)x−2y−1z0)
(−1 + (3i+ 1)x−2y−1z0)
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Also, we see from Eq.(1) that

y3n−2 =
y3n−5

1 + y3n−5z3n−4x3n−3

=
−y−2

n−2Q
i=0

(−1+(3i)x0y−2z−1)
(−1+(3i+1)x0y−2z−1)

1+(−y−2
n−2Q
i=0

(−1+(3i)x0y−2z−1)
(−1+(3i+1)x0y−2z−1)

)(z−1

n−2Q
i=0

(−1+(3i+1)x0y−2z−1)
(−1+(3i+2)x0y−2z−1)

)(x0

n−2Q
i=0

(−1+(3i+2)x0y−2z−1)
(−1+(3i+3)x0y−2z−1)

)

=

−y−2
n−2Q
i=0

(−1+(3i)x0y−2z−1)
(−1+(3i+1)x0y−2z−1)

1− x0y−2z−1
n−2Q
i=0

(−1+(3i)x0y−2z−1)
(−1+(3i+3)x0y−2z−1)

= −y−2
n−2Q
i=0

(−1 + (3i)x0y−2z−1)
(−1 + (3i+ 1)x0y−2z−1)

(
1

1 + x0y−2z−1
−1+(3n−3)x0y−2z−1−

)

= −y−2
n−2Q
i=0

(−1 + (3i)x0y−2z−1)
(−1 + (3i+ 1)x0y−2z−1)

(
−1 + (3n− 3)x0y−2z−1

−1 + (3n− 3)x0y−2z−1 + x0y−2z−1
)

= −y−2
n−2Q
i=0

(−1 + (3i)x0y−2z−1)
(−1 + (3i+ 1)x0y−2z−1)

(
−1 + (3n− 3)x0y−2z−1
−1 + (3n− 2)x0y−2z−1

)

Then, we see that

y3n−2 = −y−2
n−1Q
i=0

(−1 + (3i)x0y−2z−1)
(−1 + (3i+ 1)x0y−2z−1)

Finally, we see that

z3n−2 =
z3n−5

1 + z3n−5x3n−4y3n−3

=
−z−2

n−2Q
i=0

(−1+(3i)x−1y0z−2)
(−1+(3i+1)x−1y0z−2)

1+(−z−2
n−2Q
i=0

(−1+(3i)x−1y0z−2)
(−1+(3i+1)x−1y0z−2)

)(x−1

n−2Q
i=0

(−1+(3i+1)x−1y0z−2)
(−1+(3i+2)x−1y0z−2)

)(y0

n−2Q
i=0

(−1+(3i+2)x−1y0z−2)
(−1+(3i+3)x−1y0z−2)

)

=

−z−2
n−2Q
i=0

(−1+(3i)x−1y0z−2)
(−1+(3i+1)x−1y0z−2)

1− x−1y0z−2
n−2Q
i=0

(−1+(3i)x−1y0z−2)
(−1+(3i+3)x−1y0z−2

= −z−2
n−2Q
i=0

(−1 + (3i)x−1y0z−2)
(−1 + (3i+ 1)x−1y0z−2)

(
1

1 + x−1y0z−2
−1+(3n−3)x−1y0z−2−

)

= −z−2
n−2Q
i=0

(−1 + (3i)x−1y0z−2)
(−1 + (3i+ 1)x−1y0z−2)

(
−1 + (3n− 3)x−1y0z−2
−1 + (3n− 2)x−1y0z−2

)
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Then,

z3n−2 = −z−2
n−1Q
i=0

(−1 + (3i)x−1y0z−2)
(−1 + (3i+ 1)x−1y0z−2)

This completes the proof

8.1 Numerical Examples

For confirming the results of this section, we consider the following numerical example
which represent solutions to the previous systems.
Example 1. We consider interesting numerical example for the difference equations
system (1) with the initial conditions x−2 = 13, x−1 = 0.4, x0 = 3, y−2 = 0.5,
y−1 = 7, y0 = 3.7, z−2 = 0.9, z−1 = 17 and z0 = 0.72. (See Fig. 1).
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Figure 1.

Example 2. We put the initial conditions for system (2) as follows: x−2 = 1.3, x−1 =
−0.4, x0 = 0.3, y−2 = 0.5, y−1 = 0.1, y0 = −0.7, z−2 = −0.9, z−1 = 0.7 and z0 =
0.2. (See Fig. 2).
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Figure 2.

Example 3. For the difference equations system (3) where the initial conditions
x−2 = 1.3, x−1 = 0.4, x0 = 0.3, y−2 = 0.25, y−1 = 0.1, y0 = 0.7, z−2 = 0.9, z−1 =
0.7 and z0 = 0.2. (See Fig. 3).
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Figure 3.
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Example 4. We assume x−2 = 1.3, x−1 = 0.4, x0 = 0.3, y−2 = 0.25, y−1 = 0.1,
y0 = 0.7, z−2 = 0.9, z−1 = 0.7 and z0 = 0.2 for system (4) see Fig. 4.
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Example 5. See Fig. 5, if we take system (5) with x−2 = 3, x−1 = −0.4, x0 =
2, y−2 = −0.5, y−1 = 0.9, y0 = 0.7, z−2 = 0.19, z−1 = −0.4 and z0 = 0.1.
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Example 6. See Fig. 6, if we consider system (6) with x−2 = −9, x−1 = 0.4, x0 =
−2, y−2 = 0.2, y−1 = 0.7, y0 = 1.8, z−2 = 9, z−1 = −0.4 and z0 = −2.
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Example 7. We take the difference equations system (7) with the initial conditions
x−2 = 9, x−1 = 4, x0 = 2, y−2 = 3, y−1 = 7, y0 = 18, z−2 = 11, z−1 = −4 and z0 =
5. (See Fig. 7).
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