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ABSTRACT

The main objective of this paper is to solve Fredholm integral equations (IEs) that involve S-
function, generalized extended Mittag-Leffler function (GEMLF), and incomplete ℵ-function as the
kernel. These types of integral equations appear frequently in applied mathematics, particularly
in mathematical physics, engineering, and finance. To solve these integral equations, we employ
two powerful mathematical tools, namely fractional calculus (FC) and integral transforms. Specif-
ically, we use the Weyl operator and Mellin transform to solve the integral equation associated
with S-functions, GEMLF, and incomplete ℵ-functions. These techniques allow us to express the
solution in a closed form, which is essential for practical applications. Moreover, we present several
special cases of the solutions obtained, which provide additional insights into the behavior of the
solutions. These results are significant for the study of integral equations, as they can be used to
derive several known results. Furthermore, the techniques used in this study can be applied to
other integral equations that involve different types of functions.

Keywords: Integral equations of Fredholm kind, S- function, generalized extended Mittag-Leffler
function, incomplete ℵ- functions, Mellin inversion theorem, Weyl fractional integral operator,
Mellin transform.

1. Introduction and Preliminaries

Integral equation is an essential tool in solving problems related to science and engineering. The
equations are highly versatile and are used in a diverse range of fields. In the problems related
to heat and mass transfer, these equations are used to model and predict the behavior of thermal
and fluid systems, such as the flow of fluids through pipes and the transfer of heat in buildings. In
scattering theory, these equations are used to study how particles or waves interact with each other
and with their environment. In the kinetic theory of gases, they are used to describe the behavior
of gases on a microscopic level, including the motion and collisions of individual gas molecules.
In integral geometry, these equations are used to study how geometric shapes interact with each

Key words: Integral equations of Fredholm kind, S- function, generalized extended Mittag-Leffler function, in-
complete ℵ- functions, Mellin inversion theorem, Weyl fractional operator, Mellin transform.
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other and with their surroundings. In construction science, they are used to understand how
materials behave under different conditions, to optimize the design and construction of buildings
and other structures. Many researchers have done notable work in these fields [3–5,22,26–32,35,36].

Among the different types of integral equations, the Fredholm integral equation is particularly
significant in the study of special functions. Incomplete special functions have a unique role in
distribution theory, mathematical modeling, probability theory, and other fields. Its properties and
applications have been extensively studied by many authors [1, 6, 9–12,16,17,20,33,34].

A specific area of focus for mathematicians has been the study of Fredholm integral equations
involving incomplete hypergeometric functions, incomplete I-functions, incomplete H-functions,
and incomplete H-functions as kernels. Singh et. al. [37] have done very novel work on applica-
tions of the fractional differential equations associated with integral operators involving ℵ-function
in the kernel. Motivated by the work mentioned above, we have now turned our attention to inves-
tigating the Fredholm integral equation that involves the multiplication of incomplete ℵ-functions,
GEMLF, and S-function as the kernel. This research will advance our understanding of the prop-
erties and applications of these functions and their role in solving complex problems in various fields.

Definition 1: L. Euler [24] investigated the Gamma function as the extension of the factorial
operation given below:

Γ(n+ 1) = n!. (1.1)

The Gamma function is defined by a convergent improper integral as:

Γ(θ) =


∫∞

0 e−ttθ−1dt, (R(θ) > 0)

Γ(θ+ω)
(θ)ω

, (θ ∈ C \ Z−0 ;ω ∈ N0).

(1.2)

where (θ)ω is the Pochhammer symbol [2] and is defined as:

(θ)ω =
Γ(θ + ω)

Γ(θ)
=

{
1, (ω = 0; θ ∈ C \ {0})
θ(θ + 1) . . . (θ + k − 1), (ω = k ∈ N; θ ∈ C).

(1.3)

Definition 2: The incomplete gamma function [13] is widely applicable in various fields, including
physics and medical sciences. The properties of the real incomplete gamma functions are commonly
used in complex analysis.
The upper and lower incomplete gamma functions are defined as:

γ(u, x) =

∫ x

0
vu−1e−vdv (<(u) > 0;x ≥ 0), (1.4)

and

Γ(u, x) =

∫ ∞
x

vu−1e−vdv (x ≥ 0;<(u) > 0), (1.5)

where

γ(u, x) + Γ(u, x) = Γ(u) (R(u) > 0). (1.6)
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Definition 3: Sdland et. al. [23] have introduced a new concept called the ℵ-function. This func-
tion has recently been expanded upon by Bansal et. al. [19], who have introduced the incomplete
ℵ-function. This new function is a generalization of the original ℵ-function, which leads to further
advancements in mathematical theory and applications.

(Γ)ℵM,N
Pi,Qi,δi;R

[z] = (Γ)ℵM,N
Pi,Qi,δi,R

z
∣∣∣∣∣∣

(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi


=

1

2πi

∫
L

Φ(ν, x)z−νdν,

(1.7)

where z 6= 0 and

Φ(ν, x) =
Γ (1− b1 −B1ν, x)

∏M
j=1 Γ (aj + Ajν)

∏N
j=2 Γ (1− bj −Bjν)∑R

i=1 δi

[∏Qi
j=M+1 Γ (1− aji − Ajiν)

∏Pi
j=N+1 Γ (bji + Bjiν)

] . (1.8)

(γ)ℵM,N
Pi,Qi,δi;R

[z] = (γ)ℵM,N
Pi,Qi,δi,R

z
∣∣∣∣∣∣

(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi


=

1

2πi

∫
L

Ψ(ν, x)z−νdν,

(1.9)

where where z 6= 0 and

Ψ(ν, x) =
γ (1− b1 −B1ν, x)

∏M
j=1 Γ (aj + Ajν)

∏N
j=2 Γ (1− bj −Bjν)∑R

i=1 δi

[∏Qi
j=M+1 Γ (1− aji − Ajiν)

∏Pi
j=N+1 Γ (bji + Bjiν)

] . (1.10)

The both incomplete ℵ-functions

(
(Γ)ℵM,N

Pi,Qi,δi;R
[z] and (γ)ℵM,N

Pi,Qi,δi;R
[z]

)
given by Eq. (1.7) and

Eq. (1.9) exist for all x ≥ 0 with the following conditions:

• The contour L extends from C − ι∞ to C + ι∞ on the complex plane, C ∈ <.

• Poles of Γ (1− bj −Bjζ), j = 2, N never match exactly with the poles of Γ (aj + Ajζ),
j = 1,M .

• The parameters M,N,Pi, Qi are non negative integers that satisfy 0 ≤ N ≤ Pi, 0 ≤M ≤ Qi
and i = 1, R.

• Parameters Bj,Aj,Bji,Aji are positive real numbers and bj, aj, bji, aji are complex numbers.

• All the poles of Φ(ζ, y) and Ψ(ζ, y) are supposed to be simple, and the null product is
considered as unity.

•
Fi ≥ 0, | arg(z)| < π

2
Fi and R (Gi) + 1 < 0, i = 1, R, (1.11)
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where

Fi =
N∑
j=1

Bj +
M∑
j=1

Aj −

 Pi∑
j=N+1

Bji +

Qi∑
j=M+1

Aji

 , (1.12)

Gi =
M∑
j=1

aj −
N∑
j=1

bj +

 Qi∑
j=M+1

Bji −
Pi∑

j=N+1

Aji

+
1

2
(Pi −Qi) . (1.13)

Definition 4: GEMLF is defined by Bansal et al. [18] as:

Eφ;ρ
µ,λ

(
y; ξ, ψ, ω

)
=
∞∑
m=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

ym

(m)!
, (1.14)

(ξ ≥ 0,<(ρ) > <(φ) > 0,<(µ) > 0,<(λ) > 0).

Here Bψ,ω
p (α, β) is generalized beta function [8].

Definition 5: The S-function [7] is defined as follows:

Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq; y

]
=
∞∑
n=0

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

yn

n!
, (1.15)

where the κ-Pochhammer symbol [25] is defined as:

(ε)n,κ =


Γκ(κn+ε)

Γκ(ε) ,
(
κ ∈ <, ε ∈ C

{0}

)
ε(ε+ κ) . . . (ε+ (n− 1)κ), (n ∈ N, ε ∈ C).

(1.16)

Definition 6: The Mellin transforms of incomplete ℵ-functions are investigated by Bansal et.
al. [19] in following manner:

M

(Γ)ℵM,N
Pi,Qi,δi;R

kzµ
∣∣∣∣∣∣

(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 ; p

 =
k−p/µ

µ
Φ

(
p

µ
, x

)
,

(1.17)
and

M

(γ)ℵM,N
Pi,Qi,δi;R

kzµ
∣∣∣∣∣∣

(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 ; p

 =
k−p/µ

µ
Ψ

(
p

µ
, x

)
,

(1.18)
where Φ and Ψ are defined by Eq.(1.8) and Eq. (1.10) respectively.

Definition 7: The Weyl fractional integral operator of order β [14] is defined as:

W−β{F(z)} =
1

Γ(β)

∫ ∞
z

(t− z)β−1F(z)dt, (<(β) > 0,F ∈ A), (1.19)

here A indicates the space of all functions F defined on R = [0,∞) [15].
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2. Solution of Integral Equation of Fredholm Kind Involving In-
complete ℵ-function, GEMLF and S-Function

In this section, we will be applying the Mellin transform method as well as the Weyl fractional
integral operator to solve the Fredholm integral equation which involves incomplete ℵ-function,
GEMLF, and S-function. By utilizing these mathematical techniques, we aim to provide a com-
prehensive and precise solution to the problem.

Lemma 1. Let

(i) The parameters M,N,Pi, Qi are non negative integers that satisfy 0 ≤ N ≤ Pi, 0 ≤M ≤ Qi
and i = 1, R.

(ii) <(α− s) > 0; R (Gi) + 1 < 0 (i = 1, R) where Gi is given by Eq. (1.13).

(iii) x ≥ 0, β > 0 and α ∈ C.

(iv) | arg(C)| < π
2Fi where Fi is given by Eq. (1.12).

Then,

W s−α

{
u−αEφ;ρ

µ,λ

(
u; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq;u

]

× (Γ)ℵM,N
Pi,Qi,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

}

= u−s
∞∑
m=0

∞∑
n=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

um+n

m!n!

× (Γ)ℵM,N+1
Pi+1,Qi+1,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (1− s+m+ n, β), (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi
, (1− α+m+ n, β)

 .
(2.1)

Proof. To attain the desired result, we commence our process by expressing the incomplete ℵ-
function in terms of the Mellin Barne contour integral. Afterward, we proceed to expand the
GEMLF and S-function in series form and then change the order of integral and summation.
At last, we apply the Weyl operator, interpret the result using the definition of the incomplete
ℵ-function, and get the desired result.

Lemma 2. Let

(i) The parameters M,N,Pi, Qi are non negative integers that satisfy 0 ≤ N ≤ Pi, 0 ≤M ≤ Qi
and i = 1, R.

(ii) <(α− s) > 0; R (Gi) + 1 < 0 (i = 1, R) where Gi is given by Eq. (1.13).
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(iii) x ≥ 0, β > 0 and α ∈ C.

(iv) | arg(C)| < π
2Fi where Fi is given by Eq. (1.12).

Then,

W s−α

{
u−αEφ;ρ

µ,λ

(
u; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g, g2, . . . , gp;h1, h2, . . . , hq;u

]

× (γ)ℵM,N
Pi,Qi,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

}

= u−s
∞∑
m=0

∞∑
n=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

um+n

m!n!

× (γ)ℵM,N+1
Pi+1,Qi+1,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (1− s+m+ n, β), (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi
, (1− α+m+ n, β)

 .
(2.2)

Proof. To attain the desired result, we commence our process by expressing the incomplete ℵ-
function in terms of the Mellin Barne contour integral. Afterward, we proceed to expand the
GEMLF and S-function in series form and then change the order of integral and summation.
At last, we apply the Weyl operator, interpret the result using the definition of the incomplete
ℵ-function, and get the desired result.

Theorem 2.1 Let

(i) The parameters M,N,Pi, Qi are non negative integers that satisfy 0 ≤ N ≤ Pi, 0 ≤M ≤ Qi
and i = 1, R

(ii) <(α− s) > 0; R (Gi) + 1 < 0 (i = 1, R) where Gi is given by (1.13)

(iii) x ≥ 0, β > 0 and α ∈ C

Then, the relation given below holds :

6
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∫ ∞
0

u−s
∞∑
m=0

∞∑
n=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

um+n

m!n!

× (Γ)ℵM,N+1
Pi+1,Qi+1,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (1− s+m+ n, β), (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi
, (1− α+m+ n, β)

 g(u)du

=

∫ ∞
0

u−αEφ;ρ
µ,λ

(
u; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq;u

]

× (Γ)ℵM,N
Pi,Qi,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 Ds−α{g(u)}du,

(2.3)
provided that F ∈ A and y > 0.

Proof. Let I refers to the left-hand side of Eq. (2.3), then

I =

∫ ∞
0

u−s
∞∑
m=0

∞∑
n=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

um+n

m!n!

× (Γ)ℵM,N+1
Pi+1,Qi+1,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (1− s+m+ n, β), (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi
, (1− α+m+ n, β)

 g(u)du

=

∫ ∞
0

g(u)W s−α

{
u−αEφ;ρ

µ,λ

(
u; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq;u

]

× (Γ)ℵM,N
Pi,Qi,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

}du. (using Eq. (2.1))

Using Eq. (1.19) and changing the order of integration, we obtain

I =

∫ ∞
0

t−αEφ;ρ
µ,λ

(
t; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq; t

]

× (Γ)ℵM,N
Pi,Qi,δi,R

C(y
t

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 (∫ t

0

(t− u)α−s−1

Γ(α− s)
g(u)du

)
dt.

7
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Afterward, by utilizing Riemann-Liouville’s fractional derivative [14], we get

I =

∫ ∞
0

t−αEφ;ρ
µ,λ

(
t; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq; t

]

× (Γ)ℵM,N
Pi,Qi,δi,R

C(y
t

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 Ds−α{g(t)}dt,

which is the right-hand side of Eq. (2.3).

Theorem 2.2 Let

(i) The parameters M,N,Pi, Qi are non negative integers that satisfy 0 ≤ N ≤ Pi, 0 ≤M ≤ Qi
and i = 1, R.

(ii) <(α− s) > 0; R (Gi) + 1 < 0 (i = 1, R) where Gi is given by (1.13).

(iii) x ≥ 0, β > 0 and α ∈ C.

Then, the relation given below holds :∫ ∞
0

u−s
∞∑
m=0

∞∑
n=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

um+n

m!n!

× (γ)ℵM,N+1
Pi+1,Qi+1,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (1− s+m+ n, β), (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi
, (1− α+m+ n, β)

 g(u)du

=

∫ ∞
0

u−αEφ;ρ
µ,λ

(
u; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq;u

]

× (γ)ℵM,N
Pi,Qi,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 Ds−α{g(u)}du,

(2.4)
provided that F ∈ A and y > 0.

Proof. The proof of this theorem follows a similar process to that of Theorem 2.1.

3. Conclusions

Our research yields significant implications across a wide range of fields. Our methodology involves
the solution of an integral equation of Fredholm kind, which includes S-function, generalized ex-
tended Mittag-Leffler function (GEMLF), and incomplete ℵ-function in the kernel. Specifically, we
have discovered that a vast array of results as derived by authors [12, 21, 34, 35], can be obtained
by setting specific values for different parameters of the S-function, generalized extended Mittag-
Leffler function (GEMLF), and incomplete ℵ-function. As a result, the outcomes presented in this
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article have the potential to contribute to numerous advancements in science and engineering by
providing valuable insights into the behavior of special functions relevant to these fields.
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