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QUADRATIC FUNCTIONAL INEQUALITY IN MODULAR
SPACES AND ITS STABILITY

CHANG IL KIM AND GILJUN HAN*

ABSTRACT. In this paper, we prove the generalized Hyers-Ulam stability for
the following functional inequality

p(f (@4y)+f(x—y)—2f(2)—2f(y)) > p(klf (ax+by)+f(az—by)—2a° f (z)—2b* f (y)])

in modular spaces without A2-conditions.

1. INTRODUCTION AND PRELIMINARIES

In 1940, Ulam proposed the following stability problem (cf. [16]):

“Let GG be a group and G5 a metric group with the metric d. Given a constant

0 > 0, does there exist a constant ¢ > 0 such that if a mapping f : G; —
G satisfies d(f(xy), f(z)f(y)) < c for all z,y € G1, then there exists a unique
homomorphism h : Gy — Gy with d(f(z), h(x)) < § for all x € G17”
In the next year, Hyers [4] gave the first affirmative partial answer to the ques-
tion of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [2] for
additive mappings and by Rassias [13] for linear mappings by considering an un-
bounded Cauchy difference, the latter of which has influenced many developments
in the stability theory. This area is then referred to as the generalized Hyers-Ulam
stability. A generalization of the Rassias’ theorem was obtained by Gavruta [3]
by replasing the unbounded Cauchy difference by a general control function in the
spirit of Rassias’ approach.

A problem that mathematicians has dealt with is "how to generalize the classical
function space LP”. A first attempt was made by Birnhaum and Orlicz in 1931. The
more abstract generalization was given by Nakano [11] in 1950 based on replacing
the particular integral form of the functional by an abstract one that satisfies some
good properties. This functional was called modular( [1], [6], [7], [8], [9], [12], [15],
[18]). This idea was refined and generalized by Musielak and Orlicz [10] in 1959.

Recently, Sadeghi [14] presented a fixed point method to prove the general-
ized Hyers-Ulam stability of functional equations in modular spaces with the As-
condition and Wongkum, Chaipunya, and Kumam [17] proved the fixed point theo-
rem and the generalized Hyers-Ulam stability for quadratic mappings in a modular
space whose modular is convex, lower semi-continuous but do not satisfy the Ao-
condition.
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In this paper, we prove the generalized Hyers-Ulam stability for the following
quadratic functional equation

p(f(x+y)+ f(z—y) —2f(x) —2f(v))
> p(k[f (az + by) + f(az — by) — 2a° f (x) — 2b° f (y)])

in modular spaces without As-conditions by using a fixed point theorem.

(1.1)

Definition 1.1. Let X be a vector space over a field K(R, C, or N).
(1) A generalized functional p : X — [0, o0] is called a modular if
(M1) p(z) =0if and only if x =0,
(M2) p(ax) = p(x) for every scalar o with |a| = 1, and
(M3) p(z) < p(z) + p(y) whenever z is a convex combination of z and y.
(2) If (M3) is replaced by
(M4) p(az + By) < ap(z) + Bp(y)
for all z,y € V and for all nonnegative real numbers «, 8 with o + 8 = 1, then we
say that p is conver.

For any modular p on X, the modular space X, is defined by
X, ={zeX|p(Ax) > 0as A = 0}

and the modular space X, can be equipped with a norm called the Luxemburg
norm, defined by

]|, = mf{)\ >0 | p( ) < 1}

Let X, be a modular space and {z,} a sequence in X,. Then (i) {x,} is called
p-Cauchy if for any ¢ > 0, one has p(x, — x,,) < € for sufficiently large m,n € N,
(ii) {zn} is called p-convergent to a point « € X, if p(z, —z) — 0 as n — oo, and
(i) a subset K of X, is called p-complete if each p-Cauchy sequence is p-convergent
to a point in K.

A modular space X, is said to satisfy the Aq-condition if there exists k > 2 such
that X,(22) < kX,(x) for all z € X.

Example 1.2. ([9], [11], [12]) A convex function ¢ defined on the interval [0, c0),
nondecreasing and continuous, such that ¢(0) = 0,{(«) > 0 for a > 0, {(a) = o©
as a — 00, is called an Orlicz function. Let (2, %, 1) be a measure space and L°(p)
the set of all measurable real valued (or complex valued functions on €). Deine the
Orlicz modular p; on L°(u) by the formula pe(f fQ (IfDdw. The associated
modular space with respect to this modular is called an Orlicz space, and will be
denoted by (L¢,, 1) or briefly L¢. In other words,

LS ={f € L) | pc(\f) < oo for some A > 0}.

It is known that the Orlicz space L¢ is pc-complete. Moreover, (LS, || - [|,.) is a
Banach space, where the Luxemburg norm || - ||, is defined as follows

£l = int {3 >0 ] [ ¢(H)an<1}.

Further, if p is the Lebesgue measure on R and ((f) = e’ — 1, then p¢ does not
satisfy the As-condition.
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For a modular space X,, a nonempty subset C' of X,, and a mapping T': C' —
C, the orbit of T at x € C is the set

O(z) = {z, Tz, T?x,- - -}.

If 6,(x) = sup{p(u —v) | u,v € O(x)} < oo, then one says that T has a bounded
orbit at x.

Lemma 1.3. [5] Let X, be a modular space whose induced modular is lower semi-
continuous and let C C X, be a p-complete subset. If T : C — C is a p-
contraction, that is, there is a constant L € [0,1) such that

p(Tx —Ty) < Lp(z —y), Yz,y € C

and T has a bounded orbit at a point xg € C, then the sequence {T"xo} is p-
convergent to a point w € C.

For any modular p on X and any linear space V', we define a set M
M:={g:V — X, | g(0) =0}
and the generalized function p on M by for each g € M,
#g) i= inf{e > 0 | plg(x)) < ct(a,0), Vo € V1,

where 1 : V2 — [0, 00) is a mapping. The proof of the following lemma is similar
to the proof of Lemma 10 in [17].

Lemma 1.4. Let V be a linear space, X, a p-complete modular space where p is
convex lower semi-continuous and f : V. — X, a mapping with f(0) = 0. Let
Y : V2 — [0,00) be a mapping such that

(1.2) Y(ax,ar) < a*Lp(z, )

for all x,y € V and some a and L with a > 2 and 0 < L < 1. Then we have the
following :

(1) M is a linear space,

(2) p is a convexr modular, and

(3) Mz =M and My is p-complete, and

(4) p is lower semi-continuous.

2. SOLUTIONS OF (1.1)

In this section, we consider solutions of (1.1).
For any f:V — X, let

Af(z,y) = k[f(az + by) + f(ax — by) — 2a® f(x) — 2b° f (y)]
and
By(z,y) = f(x +y) + flz —y) — 2f(x) — 2f(y).

Lemma 2.1. Let p be a convex modular on X and f : V — X, an even mapping
with £(0) = 0. Suppose that ka®> > 1 and b*> > a®. Then f is a quadratic mapping
if and only if f is a solution of (1.1).
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Proof. Since k # 0 and f is even, we have

(2.1) flax) = a®f(z), f(bx) =b*f(z)

for all z € V. Putting y = ay in (1.1), by (2.1), we have
p(f(x+ay) + fz —ay) — 2f(x) — 2a*f(y))

> p(ka®[f(x +by) + f(z — by) — 2f(x) — 2b° f(y)])

for all z,y € V and letting y = £ in (2.2), by (2.1), we have

(23)  p(Bs(x,)) = p(ka®[f(z +py) + fx — py) — 2f(x) — 20" f(y)])
for all z,y € V,where p = % Since p is convex and ka? > 1, by (2.3),
(24)  p(By(x,y)) = ka®p(f(z +py) + f(x = py) — 2f(x) = 20" f(y))
for all x,y € V. Letting « = py in (2.3), by (2.1), we have

p(f(px +y) + f(px —y) — 20°f () — 2 (y))
> kb’ p(f(z +y) + flz —y) — 2f(z) — 2f(y))

for all z,y € V, because p is convex and b > a?. Interchanging z and y in (2.5),
we have

(2.6) p(f(x +py) + f(z —py) = 2f () — 2p° f(y)) > kb p(By (x,y))
for all z,y € V. By (M4), (2.4), and (2.6), we have
p(f (x4 py) + flz — py) — 2f(x) — 20°f(y))
> k2a*0p(f(z + py) + f(x — py) — 2f (x) — 2p° f(y))
for all z,y € V. Since k%a?b? > 1, by (2.7) and (M1), we get
flx+py) + flz—py) —2f(x) = 2p° f(y) = 0

for all x,y € V and hence f is a quadratic mapping. The converse is trivial. ([l

(2.2)

(2.5)

2.7)

Theorem 2.2. Let p be a conver modular on X and f : V — X, a mapping with
f(0) = 0. Suppose that ka® > 2 and b*> > a®. Then f is a quadratic mapping if and
only if f is a solution of (1.1).

Proof. By (1.1), we have
p(Ag,(,)) < 5p(As(r,9) + 5pl(As(~2, )
(28) < 3p(By(e,) + 5p(By(—2,~))

< 302y, (2.9)) + 30(2By. (2. 9))

for all x,y € V and similarly, we have

(29) p(A7(,9)) < 5p(2By(5,9) + 5p(2By, (2.9))
for all z,y € V. Letting = 0 in (2.8), by (M4), we have

kb?
(210) SP(o(w) = p(2kD Lo (w)) = (a1, 1)
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for all y € V, because p is convex and kb® > 2. Since kb? > 1, by (2.10) and (M1),
we have f,(y) =0 for all y € V' and hence by (2.9), we have

(2.11) p(Ay, (z,y)) < p(2By, (2, y))

for all z,y € V. Since ka? > 2 and b* > a?, by Lemma 2.1 and (2.11), 2f. is a

quadratic mapping and since f,(x) = 0 for all z € X, f is a quadratic mapping. O
For k£ =1 in Theorem 2.2, we have the following corollary:

Corollary 2.3. Let p be a convex modular on X and f :V — X, a mapping with
f(0) = 0. Suppose that b*> > a?> > 2. The f is quadratic if and only if

p(By(x,y)) > p(f(az + by) + f(az — by) — 2a*f(z) — 2b* f(y))
forallx,y € V.

Corollary 2.4. Let p be a convex modular on X and f : V — X, a mapping with
f(0) = 0. Suppose that ka® > 2 and b*> > a®. Then the following are equivalent
(1) f is quadratic,

(2) f satisfies (1.1), and

(3) f satisfies the following

p(rBs(z,y)) > p(rAs(z,y))
for all x,y € V and all real number r.

3. THE GENERALIZED HYERS-ULAM STABILITY FOR (1.1) IN MODULAR SPACES

Throughout this section, we assume that every modular is convex and lower semi-
continuous. In this section, we will prove the generalized Hyers-Ulam stability for

(1.1).

Lemma 3.1. Let p be a convex modular on X and t a real number with 2 < t.
Then

(13:—1-1 )<1 (x)-i—1 (v)
P\7 V)= 3P P\
forallz,y e X.

Proof. Since p is a convex modular on X, we have
1 1 1 1 1
oo+ gv) < 3o+ (1=7)o(7=7) <
for all x,y € X, because 2 < t. O

Theorem 3.2. Let p be a modular on X, V' a linear space, X, a p-complete modular
space and f:V — X, a mapping with f(0) = 0. Suppose that a > 2, k > a?, and
b2 > a?. Let ¢: V? — [0,00) be a mapping such that

(3.1) ¢(az,ay) < a’Lo(z,y)
forallz,y € V and some L with 0 < L <1 and
(3.2) p(rAs(z,y)) < p(rBy(z,y)) + |rlp(z,y)

forallx,y € V and all real number r. Then there exists a unique quadratic mapping
Q:V — X, such that

(33) o(Q@) = 5 @)) € o= g00)
forallz € V.
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Proof. By Lemma 1.4, p is a lower semi-continuous convex modular on Mz, Mz =

~ 1
M, and Mj; is p-complete. Define T' : My — Mj; by Tg(z) = Eg(ax) for all
g € Mj and all € V. Let g,h € Mj. Suppose that p(g — h) < c for some
nonnegative real number ¢. Then by (3.1), we have

1

p(Tg(a) ~ Th(z)) < g p(glax) — h(ax)) < Leo(r,0)
for all z € V and so p(Tg — Th) < Lp(g — h). Hence T is a p-contraction. Since
2k > 1, by (3.2), for r = 1, we get
(34)  p(flaz) —a*f(@)) < —p(%f(ax) — 2ka?f(2)) <
for all x € X. Since a > 2, by (3.4),

(35) p(Tf ()~ () = p( g flaz)~ F(@)) < 5l f(ar)—a>f(x)) <

for all x € X.
Now, we claim that T has a bounded orbit at ;—zf By Lemma 3.1 and (3.5), for
any nonnegative integer n, we obtain

1
S-0(,0)

1
53 6(.0)

p(51 1) = 21 @) < 2p(T" @) — (@) + =p( 5 ) - (@)
< (T flaz) ~ = fla)) + 52 0(,0)

for all x € V and by (3.1), we have

36) o7 - @) < Zw (@.0) < g5 0.0)

for all z € V and all n € N. By Lemma 3.1 and (3.6), we get
(3.7)

(257" (@) — 5T @) = p( T F @) ~ 5T (@) < gt =62, 0)

P\a2 a? P = ka*(1-L)"
for all x € V and all nonnegative integers n, m. Hence T has a bounded orbit at
1
=/

By Lemma 1.3, there is a ) € M such that {T”a—lzf} is p-convergent to ). Since
p is lower semi-continuous, we get

1 1
0 < p(TQ — Q) < liminf ﬁ(TQ — T f) < lim inf Lﬁ(Q - f) —0
n—o00 a n— o0 a

and hence @ is a fixed point of T' in Mz. Since a > 2, there is a a natural number
t with k& < a’=% and 2kb? < a'=3 and hence we have

(o [Aate) - st ay)])

k 1 2k 1
< —p(Qlaw +by) — s fla o+ a"by)) + —5p(Q(@) — 5 fla"a))

k 1 2kb? 1
+ Ep(Q(ax —by) — Wf(a”“x - a"by)) + p p(Q(y) - Wf(a”y))

for all x,y € V and all n € N. Letting n — oo in the above inequality, we get

(3.8) lim p(% [AQ(I,y) — #Af(a"x, a"y)D =0

n—oo
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for all z,y € V, because { %H f} is p-convergent to Q. Similarly, we have

(3.9) lim p( [BQ(IE y) — 2i+2 Bf(a”x,a"y)D =0

n—oo

for all z,y € V. Since a® < k, by (3.2), we have

p(,miﬂ Aq(z, y))

<= 1 (k; t {AQ(iE y) — %Af(anx,any)}) + 2P(WﬁAf(a”x,a"y))
< a13/)< [AQ( y) — ﬁAf(a”x,a”y)D + ép<ﬁBJc(a”x,b”y))
+ Wﬁb(a”% a"y)

1 1 L 1 /1
< 2o( 2 [Aav) — i Asan )] ) + (e Bala.y)
1 17 1 o L
t 2o( [ Br(a"a, a%y) — Ba(e,)] ) + ezl n)
for all z,y € V and all n € N. Letting n — oo in the last inequality, by (3.8) and
(3.9), we get

p(rer Aa() < o 7 Batey)
for all z,y € V. By Corollary 2.3, @) is a quadratic mapping. Moreover, since p is
lower semi-continuous, by (3.7), we have (3.3). O

Corollary 3.3. Let X and Y be normed spaces and €, 0, and p real numbers with
€>0,0>0, and 0 < p < 1. Suppose that a > 2, k > a?, and b*> > a®. Let
f: X —Y be a mapping such that f(0) =0 and

1Ay (@ )l < 1By, 9)|| + e+ 0z ]* + [[ylI*” + [[«]1?ly]*)

for all x,y € X. Then there is a quadratic mapping Q : X — 'Y such that

Q) ~ @) < gz e+ Olel)

2p)
forallx € X.

Proof. Let p(z) = ||2|| for all y € Y and ¢(z,y) = e+ 0([[z]|* + [[y[|* + [[=]|”[ly|]*)
for all z,y € V. Then p is a convex modular on a normed space Y, Y =Y, and
d(ax,ay) < a*?¢(x,y) for all z,y € V. By Theorem 3.2, we have the results. [0

Using Example 1.1, we get the following example.

Example 3.4. Let 6, and p be real numbers with 8 > 0 and 0 < p < 1. Suppose
that @ > 2, k > a2, and b*> > a®. Let ¢ be an Orlicz function and L¢ the Orlicz
space. Let f : V — LS be a mapping such that f(0) = 0 and

/Q C(rAp(x,y))dp < / CrBy(a, y))dp + P01z + [y + 2117 19]1?)

for all z,y € X and all real number r. Then there is a quadratic mapping @ :
X — Y such that

| (@ = @) < gy 1
for all x € X.
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