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Abstract. In this paper, we prove the generalized Hyers-Ulam stability for

the following functional inequality

ρ(f(x+y)+f(x−y)−2f(x)−2f(y)) ≥ ρ(k[f(ax+by)+f(ax−by)−2a2f(x)−2b2f(y)])

in modular spaces without 42-conditions.

1. Introduction and preliminaries

In 1940, Ulam proposed the following stability problem (cf. [16]):
“Let G1 be a group and G2 a metric group with the metric d. Given a constant

δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 −→
G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists a unique
homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”
In the next year, Hyers [4] gave the first affirmative partial answer to the ques-
tion of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [2] for
additive mappings and by Rassias [13] for linear mappings by considering an un-
bounded Cauchy difference, the latter of which has influenced many developments
in the stability theory. This area is then referred to as the generalized Hyers-Ulam
stability. A generalization of the Rassias’ theorem was obtained by Gǎvruta [3]
by replasing the unbounded Cauchy difference by a general control function in the
spirit of Rassias’ approach.

A problem that mathematicians has dealt with is ”how to generalize the classical
function space Lp”. A first attempt was made by Birnhaum and Orlicz in 1931. The
more abstract generalization was given by Nakano [11] in 1950 based on replacing
the particular integral form of the functional by an abstract one that satisfies some
good properties. This functional was called modular( [1], [6], [7], [8], [9], [12], [15],
[18]). This idea was refined and generalized by Musielak and Orlicz [10] in 1959.

Recently, Sadeghi [14] presented a fixed point method to prove the general-
ized Hyers-Ulam stability of functional equations in modular spaces with the 42-
condition and Wongkum, Chaipunya, and Kumam [17] proved the fixed point theo-
rem and the generalized Hyers-Ulam stability for quadratic mappings in a modular
space whose modular is convex, lower semi-continuous but do not satisfy the 42-
condition.
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2 CHANGIL KIM AND GILJUN HAN

In this paper, we prove the generalized Hyers-Ulam stability for the following
quadratic functional equation

ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

≥ ρ(k[f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y)])
(1.1)

in modular spaces without 42-conditions by using a fixed point theorem.

Definition 1.1. Let X be a vector space over a field K(R, C, or N).
(1) A generalized functional ρ : X −→ [0,∞] is called a modular if

(M1) ρ(x) = 0 if and only if x = 0 ,
(M2) ρ(αx) = ρ(x) for every scalar α with |α| = 1, and
(M3) ρ(z) ≤ ρ(x) + ρ(y) whenever z is a convex combination of x and y.

(2) If (M3) is replaced by
(M4) ρ(αx+ βy) ≤ αρ(x) + βρ(y)

for all x, y ∈ V and for all nonnegative real numbers α, β with α+ β = 1, then we
say that ρ is convex.

For any modular ρ on X, the modular space Xρ is defined by

Xρ = {x ∈ X | ρ(λx)→ 0 as λ→ 0}

and the modular space Xρ can be equipped with a norm called the Luxemburg
norm, defined by

‖x‖ρ = inf
{
λ > 0 | ρ

(x
λ

)
≤ 1
}
.

Let Xρ be a modular space and {xn} a sequence in Xρ. Then (i) {xn} is called
ρ-Cauchy if for any ε > 0, one has ρ(xn − xm) < ε for sufficiently large m,n ∈ N,
(ii) {xn} is called ρ-convergent to a point x ∈ Xρ if ρ(xn − x)→ 0 as n→∞, and
(iii) a subset K of Xρ is called ρ-complete if each ρ-Cauchy sequence is ρ-convergent
to a point in K.

A modular space Xρ is said to satisfy the 42-condition if there exists k ≥ 2 such
that Xρ(2x) ≤ kXρ(x) for all x ∈ X.

Example 1.2. ([9], [11], [12]) A convex function ζ defined on the interval [0,∞),
nondecreasing and continuous, such that ζ(0) = 0, ζ(α) > 0 for α > 0, ζ(α) → ∞
as α→∞, is called an Orlicz function. Let (Ω,Σ, µ) be a measure space and L0(µ)
the set of all measurable real valued (or complex valued) functions on Ω. Deine the
Orlicz modular ρζ on L0(µ) by the formula ρζ(f) =

∫
Ω
ζ(|f |)dµ. The associated

modular space with respect to this modular is called an Orlicz space, and will be
denoted by (Lζ ,Ω, µ) or briefly Lζ . In other words,

Lζ = {f ∈ L0(µ) | ρζ(λf) <∞ for some λ > 0}.

It is known that the Orlicz space Lζ is ρζ-complete. Moreover, (Lζ , ‖ · ‖ρζ ) is a
Banach space, where the Luxemburg norm ‖ · ‖ρζ is defined as follows

‖f‖ρζ = inf
{
λ > 0

∣∣∣ ∫
Ω

ζ
( |f |
λ

)
dµ ≤ 1

}
.

Further, if µ is the Lebesgue measure on R and ζ(t) = et − 1, then ρζ does not
satisfy the 42-condition.
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QUADRATIC FUNCTIONAL INEQUALITY IN MODULAR SPACES AND ITS STABILITY 3

For a modular space Xρ, a nonempty subset C of Xρ, and a mapping T : C −→
C, the orbit of T at x ∈ C is the set

O(x) = {x, Tx, T 2x, · · ·}.

If δρ(x) = sup{ρ(u − v) | u, v ∈ O(x)} < ∞, then one says that T has a bounded
orbit at x.

Lemma 1.3. [5] Let Xρ be a modular space whose induced modular is lower semi-
continuous and let C ⊆ Xρ be a ρ-complete subset. If T : C −→ C is a ρ-
contraction, that is, there is a constant L ∈ [0, 1) such that

ρ(Tx− Ty) ≤ Lρ(x− y), ∀x, y ∈ C

and T has a bounded orbit at a point x0 ∈ C, then the sequence {Tnx0} is ρ-
convergent to a point w ∈ C.

For any modular ρ on X and any linear space V , we define a set M

M := {g : V −→ Xρ | g(0) = 0}

and the generalized function ρ̃ on M by for each g ∈M,

ρ̃(g) := inf{c > 0 | ρ(g(x)) ≤ cψ(x, 0), ∀x ∈ V },

where ψ : V 2 −→ [0,∞) is a mapping. The proof of the following lemma is similar
to the proof of Lemma 10 in [17].

Lemma 1.4. Let V be a linear space, Xρ a ρ-complete modular space where ρ is
convex lower semi-continuous and f : V −→ Xρ a mapping with f(0) = 0. Let
ψ : V 2 −→ [0,∞) be a mapping such that

ψ(ax, ax) ≤ a2Lψ(x, x)(1.2)

for all x, y ∈ V and some a and L with a ≥ 2 and 0 ≤ L < 1. Then we have the
following :
(1) M is a linear space,
(2) ρ̃ is a convex modular, and
(3) Mρ̃ = M and Mρ̃ is ρ̃-complete, and
(4) ρ̃ is lower semi-continuous.

2. Solutions of (1.1)

In this section, we consider solutions of (1.1).
For any f : V −→ Xρ, let

Af (x, y) = k[f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y)]

and

Bf (x, y) = f(x+ y) + f(x− y)− 2f(x)− 2f(y).

Lemma 2.1. Let ρ be a convex modular on X and f : V −→ Xρ an even mapping
with f(0) = 0. Suppose that ka2 ≥ 1 and b2 > a2. Then f is a quadratic mapping
if and only if f is a solution of (1.1).
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4 CHANGIL KIM AND GILJUN HAN

Proof. Since k 6= 0 and f is even, we have

(2.1) f(ax) = a2f(x), f(bx) = b2f(x)

for all x ∈ V . Putting y = ay in (1.1), by (2.1), we have

ρ(f(x+ ay) + f(x− ay)− 2f(x)− 2a2f(y))

≥ ρ(ka2[f(x+ by) + f(x− by)− 2f(x)− 2b2f(y)])
(2.2)

for all x, y ∈ V and letting y = y
a in (2.2), by (2.1), we have

(2.3) ρ(Bf (x, y)) ≥ ρ(ka2[f(x+ py) + f(x− py)− 2f(x)− 2p2f(y)])

for all x, y ∈ V ,where p = b
a . Since ρ is convex and ka2 ≥ 1, by (2.3),

(2.4) ρ(Bf (x, y)) ≥ ka2ρ(f(x+ py) + f(x− py)− 2f(x)− 2p2f(y))

for all x, y ∈ V . Letting x = py in (2.3), by (2.1), we have

ρ(f(px+ y) + f(px− y)− 2p2f(x)− 2f(y))

≥ kb2ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))
(2.5)

for all x, y ∈ V , because ρ is convex and b2 > a2. Interchanging x and y in (2.5),
we have

(2.6) ρ(f(x+ py) + f(x− py)− 2f(x)− 2p2f(y)) ≥ kb2ρ(Bf (x, y))

for all x, y ∈ V . By (M4), (2.4), and (2.6), we have

ρ(f(x+ py) + f(x− py)− 2f(x)− 2p2f(y))

≥ k2a2b2ρ(f(x+ py) + f(x− py)− 2f(x)− 2p2f(y))
(2.7)

for all x, y ∈ V . Since k2a2b2 > 1, by (2.7) and (M1), we get

f(x+ py) + f(x− py)− 2f(x)− 2p2f(y) = 0

for all x, y ∈ V and hence f is a quadratic mapping. The converse is trivial. �

Theorem 2.2. Let ρ be a convex modular on X and f : V −→ Xρ a mapping with
f(0) = 0. Suppose that ka2 ≥ 2 and b2 > a2. Then f is a quadratic mapping if and
only if f is a solution of (1.1).

Proof. By (1.1), we have

ρ(Afo(x, y)) ≤ 1

2
ρ(Af (x, y)) +

1

2
ρ(Af (−x,−y))

≤ 1

2
ρ(Bf (x, y)) +

1

2
ρ(Bf (−x,−y))

≤ 1

2
ρ(2Bfo(x, y)) +

1

2
ρ(2Bfe(x, y))

(2.8)

for all x, y ∈ V and similarly, we have

(2.9) ρ(Afe(x, y)) ≤ 1

2
ρ(2Bfo(x, y)) +

1

2
ρ(2Bfe(x, y))

for all x, y ∈ V . Letting x = 0 in (2.8), by (M4), we have

(2.10)
1

2
ρ(4fo(y)) ≥ ρ(2kb2fo(y)) ≥ kb2

2
ρ(4fo(y))
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for all y ∈ V , because ρ is convex and kb2 > 2. Since kb2 > 1, by (2.10) and (M1),
we have fo(y) = 0 for all y ∈ V and hence by (2.9), we have

(2.11) ρ(Afe(x, y)) ≤ ρ(2Bfe(x, y))

for all x, y ∈ V . Since ka2 ≥ 2 and b2 > a2, by Lemma 2.1 and (2.11), 2fe is a
quadratic mapping and since fo(x) = 0 for all x ∈ X, f is a quadratic mapping. �

For k = 1 in Theorem 2.2, we have the following corollary:

Corollary 2.3. Let ρ be a convex modular on X and f : V −→ Xρ a mapping with
f(0) = 0. Suppose that b2 > a2 ≥ 2. The f is quadratic if and only if

ρ(Bf (x, y)) ≥ ρ(f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y))

for all x, y ∈ V .

Corollary 2.4. Let ρ be a convex modular on X and f : V −→ Xρ a mapping with
f(0) = 0. Suppose that ka2 ≥ 2 and b2 > a2. Then the following are equivalent

(1) f is quadratic,
(2) f satisfies (1.1), and
(3) f satisfies the following

ρ(rBf (x, y)) ≥ ρ(rAf (x, y))

for all x, y ∈ V and all real number r.

3. The generalized Hyers-Ulam stability for (1.1) in modular spaces

Throughout this section, we assume that every modular is convex and lower semi-
continuous. In this section, we will prove the generalized Hyers-Ulam stability for
(1.1).

Lemma 3.1. Let ρ be a convex modular on X and t a real number with 2 ≤ t.
Then

ρ
(1

t
x+

1

t
y
)
≤ 1

t
ρ(x) +

1

t
ρ(y)

for all x, y ∈ X.

Proof. Since ρ is a convex modular on X, we have

ρ
(1

t
x+

1

t
y
)
≤ 1

t
ρ(x) +

(
1− 1

t

)
ρ
( 1

t− 1
y
)
≤ 1

t
ρ(x) +

1

t
ρ(y)

for all x, y ∈ X, because 2 ≤ t. �

Theorem 3.2. Let ρ be a modular on X, V a linear space, Xρ a ρ-complete modular
space and f : V −→ Xρ a mapping with f(0) = 0. Suppose that a ≥ 2, k ≥ a2, and
b2 > a2. Let φ : V 2 −→ [0,∞) be a mapping such that

(3.1) φ(ax, ay) ≤ a2Lφ(x, y)

for all x, y ∈ V and some L with 0 < L < 1 and

(3.2) ρ(rAf (x, y)) ≤ ρ(rBf (x, y)) + |r|φ(x, y)

for all x, y ∈ V and all real number r. Then there exists a unique quadratic mapping
Q : V −→ Xρ such that

(3.3) ρ
(
Q(x)− 1

a2
f(x)

)
≤ 1

ka4(1− L)
φ(x, 0)

for all x ∈ V .
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Proof. By Lemma 1.4, ρ̃ is a lower semi-continuous convex modular on Mρ̃, Mρ̃ =

M, and Mρ̃ is ρ̃-complete. Define T : Mρ̃ −→ Mρ̃ by Tg(x) =
1

a2
g(ax) for all

g ∈ Mρ̃ and all x ∈ V . Let g, h ∈ Mρ̃. Suppose that ρ̃(g − h) ≤ c for some
nonnegative real number c. Then by (3.1), we have

ρ(Tg(x)− Th(x)) ≤ 1

a2
ρ(g(ax)− h(ax)) ≤ Lcφ(x, 0)

for all x ∈ V and so ρ̃(Tg − Th) ≤ Lρ̃(g − h). Hence T is a ρ̃-contraction. Since
2k > 1, by (3.2), for r = 1, we get

(3.4) ρ
(
f(ax)− a2f(x)

)
≤ 1

2k
ρ(2kf(ax)− 2ka2f(x)) ≤ 1

2k
φ(x, 0)

for all x ∈ X. Since a ≥ 2, by (3.4),

(3.5) ρ(Tf(x)−f(x)) = ρ
( 1

a2
f(ax)−f(x)

)
≤ 1

a2
ρ(f(ax)−a2f(x)) ≤ 1

2ka2
φ(x, 0)

for all x ∈ X.
Now, we claim that T has a bounded orbit at 1

a2 f . By Lemma 3.1 and (3.5), for
any nonnegative integer n, we obtain

ρ
(1

a
Tnf(x)− 1

a
f(x)

)
≤ 1

a
ρ
(
Tnf(x)− 1

a2
f(ax)

)
+

1

a
ρ
( 1

a2
f(ax)− f(x)

)
≤ 1

a2
ρ
(1

a
Tn−1f(ax)− 1

a
f(ax)

)
+

1

2ka3
φ(x, 0)

for all x ∈ V and by (3.1), we have

(3.6) ρ
(1

a
Tnf(x)− 1

a
f(x)

)
≤ 1

2ka3

n−1∑
i=0

Liφ(x, 0) ≤ 1

2ka3(1− L)
φ(x, 0)

for all x ∈ V and all n ∈ N. By Lemma 3.1 and (3.6), we get

ρ
( 1

a2
Tnf(x)− 1

a2
Tmf(x)

)
= ρ
( 1

a2
Tnf(x)− 1

a2
Tmf(x)

)
≤ 1

ka4(1− L)
φ(x, 0)

(3.7)

for all x ∈ V and all nonnegative integers n,m. Hence T has a bounded orbit at
1
a2 f .

By Lemma 1.3, there is a Q ∈Mρ̃ such that {Tn 1
a2 f} is ρ̃-convergent to Q. Since

ρ̃ is lower semi-continuous, we get

0 ≤ ρ̃(TQ−Q) ≤ lim inf
n→∞

ρ̃
(
TQ− Tn+1 1

a2
f
)
≤ lim inf

n→∞
Lρ̃
(
Q− Tn 1

a2
f
)

= 0

and hence Q is a fixed point of T in Mρ̃. Since a ≥ 2, there is a a natural number
t with k < at−6 and 2kb2 < at−3 and hence we have

ρ
( 1

at

[
AQ(x, y)− 1

a2n+2
Af (anx, any)

])
≤ k

at
ρ
(
Q(ax+ by)− 1

a2n+2
f(an+1x+ anby)

)
+

2k

at−2
ρ
(
Q(x)− 1

a2n+2
f(anx)

)
+
k

at
ρ
(
Q(ax− by)− 1

a2n+2
f(an+1x− anby)

)
+

2kb2

at
ρ
(
Q(y)− 1

a2n+2
f(any)

)
for all x, y ∈ V and all n ∈ N. Letting n→∞ in the above inequality, we get

(3.8) lim
n→∞

ρ
( 1

at

[
AQ(x, y)− 1

a2n+2
Af (anx, any)

])
= 0
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for all x, y ∈ V , because { 1
a2n+2 f} is ρ̃-convergent to Q. Similarly, we have

(3.9) lim
n→∞

ρ
( 1

at

[
BQ(x, y)− 1

a2n+2
Bf (anx, any)

])
= 0

for all x, y ∈ V . Since a2 ≤ k, by (3.2), we have

ρ
( 1

kat+1
AQ(x, y)

)
≤ 1

a
ρ
( 1

kat

[
AQ(x, y)− 1

a2n+2
Af (anx, any)

])
+

1

a
ρ
( 1

a2n+t+4
Af (anx, any)

)
≤ 1

a3
ρ
( 1

at

[
AQ(x, y)− 1

a2n+2
Af (anx, any)

])
+

1

a
ρ
( 1

a2n+t+4
Bf (anx, bny)

)
+

1

a2n+t+5
φ(anx, any)

≤ 1

a3
ρ
( 1

at

[
AQ(x, y)− 1

a2n+2
Af (anx, any)

])
+

1

a2
ρ
( 1

at+1
BQ(x, y)

)
+

1

a3
ρ
( 1

at

[ 1

a2n+2
Bf (anx, any)−BQ(x, y)

])
+

Ln

at+5
φ(x, y)

for all x, y ∈ V and all n ∈ N. Letting n → ∞ in the last inequality, by (3.8) and
(3.9), we get

ρ
( 1

kat+1
AQ(x, y)

)
≤ ρ
( 1

at+1
BQ(x, y)

)
for all x, y ∈ V . By Corollary 2.3, Q is a quadratic mapping. Moreover, since ρ is
lower semi-continuous, by (3.7), we have (3.3). �

Corollary 3.3. Let X and Y be normed spaces and ε, θ, and p real numbers with
ε ≥ 0, θ ≥ 0, and 0 < p < 1. Suppose that a ≥ 2, k ≥ a2, and b2 > a2. Let
f : X −→ Y be a mapping such that f(0) = 0 and

‖Af (x, y)‖ ≤ ‖Bf (x, y)‖+ ε+ θ(‖x‖2p + ‖y‖2p + ‖x‖p‖y‖p)
for all x, y ∈ X. Then there is a quadratic mapping Q : X −→ Y such that

‖Q(x)− f(x)‖ ≤ 1

k(a2 − a2p)
(ε+ θ‖x‖2p)

for all x ∈ X.

Proof. Let ρ(z) = ‖z‖ for all y ∈ Y and φ(x, y) = ε+ θ(‖x‖2p + ‖y‖2p + ‖x‖p‖y‖p)
for all x, y ∈ V . Then ρ is a convex modular on a normed space Y , Y = Yρ, and
φ(ax, ay) ≤ a2pφ(x, y) for all x, y ∈ V . By Theorem 3.2, we have the results. �

Using Example 1.1, we get the following example.

Example 3.4. Let θ, and p be real numbers with θ ≥ 0 and 0 < p < 1. Suppose
that a ≥ 2, k ≥ a2, and b2 > a2. Let ζ be an Orlicz function and Lζ the Orlicz
space. Let f : V −→ Lζ be a mapping such that f(0) = 0 and∫

Ω

ζ(rAf (x, y))dµ ≤
∫

Ω

ζ(rBf (x, y))dµ+ |r|θ(‖x‖2p + ‖y‖2p + ‖x‖p‖y‖p)

for all x, y ∈ X and all real number r. Then there is a quadratic mapping Q :
X −→ Y such that∫

Ω

ζ
(∣∣∣Q(x)− 1

a2
f(x)

∣∣∣)dµ ≤ θ

ka2(a2 − a2p)
‖x‖2p

for all x ∈ X.
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