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Abstract

The purpose of this paper is to establish the general solution of a Volterra–Fredholm integral

equation with discontinuous kernel in a Banach space. Banach’s fixed point theorem is used to

prove the existence and uniqueness of the solution. By using separation of variables method, the

problem is reduced to a Volterra integral equations of the second kind with continuous kernel.

Normality and continuity of the integral operator are also discussed.
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1 Introduction

It is well-known that the integral equations govern many mathematical models of various

phenomena in physics, economy, biology, engineering, even in mathematics and other fields of

science. The illustrative examples of such models can be found in the literature, (see, e.g.,

[5, 6, 9, 11, 12, 14, 18, 20]). Many problems of mathematical physics, applied mathematics, and

engineering are reduced to Volterra–Fredholm integral equations, see [1, 2].

Analytical solutions of integral equations, either do not exist or it’s hard to compute. Eventual

an exact solution is computable, the required calculations may be tedious, or the resulting

solution may be difficult to interpret. Due to this, it is required to obtain an efficient numerical

solution. There are numerous studies in literature concerning the numerical solution of integral

equations such as [4, 8, 10,13,16,17,21].

In this present paper, the existence and uniqueness solution of the Eq. (1) are discussed and

proved in the space L2(Ω)× C[0, T ], 0 ≤ T < 1. Moreover, the normality and continuity of the
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integral operator are obtained. A numerical method is used to translate the Volterra–Fredholm

integral equation (1) to a Volterra integral equations of the second kind with continuous kernel,

The outline of the paper is as follows: Sect. 1 is the introduction; In Sect. 2, the existence

of a unique solution of the Volterra–Fredholm integral equation is discussed and proved using

Picard’s method and Banach’s fixed point method. Sect. 3, include the general solution of the

Volterra–Fredholm integral equation by applying the method of separation of variables. A brief

conclusion is presented in Sect. 4.

Consider the following linear Volterra–Fredholm integral equation:

µψ(x, t)− λ
∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)ψ(y, τ)dydτ − λ
∫ t

0

F (t, τ)ψ(x, τ)dτ = g(x, t),

(x = x̄(x1, x1, . . . , xn), y = ȳ(y1, y1, . . . , yn)),

(1)

where µ is a constant, defined the kind of integral equation, λ is constant, may be complex

and has many physical meaning. The function ψ(x, t) is unknown in the Banach space L2(Ω)×
C[0, T ], 0 ≤ T < 1, where Ω is the domain of integration with respect to position and the

time t ∈ [0, T ] and it called the potential function of the Volterra–Fredholm integral equation.

The kernels of time Φ(t, τ), F (t, τ) are continuous in C[0, T ] and the known function g(x, t) is

continuous in the space L2(Ω)×C[0, T ], 0 ≤ t ≤ T. In addition the kernel of position k(|x− y|)
is discontinuous function.

2 The existence of a unique solution of the Volterra–

Fredholm integral equation

In this paper, for discussing the existence and uniqueness of the solution of Eq. (1), we

assume the following conditions:

(i) The kernel of position k(|x − y|) ∈ L2([Ω] × [Ω]), x, y ∈ [Ω] satisfies the discontinuity

condition: {∫
Ω

∫
Ω

k2(|x− y|)dxdy

} 1
2

= k∗, k∗ is constant.

(ii) The kernels of time Φ(t, τ), F (t, τ) ∈ C[0, T ] and satisfies |Φ(t, τ)| ≤ M1, |F (t, τ)| ≤
M2, s.tM1, M2 are constants, ∀t, τ ∈ [0, T ].

(iii) The given function g(x, t) with its partial derivatives with respect to the position and time

is continuous in the space L2(Ω)× C[0, T ], 0 ≤ τ ≤ T < 1 and its norm is defined as,

‖g(x, t)‖ = max
0≤t≤T

∫ t

0

(∫
Ω

g2(x, τ)dx

) 1
2

dτ = N, N is a constant.
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Theorem 1. If the conditions (i)–(iii) are satisfied, then Eq. (1) has a unique solution ψ(x, t)

in the Banach space L2(Ω)× C[0, T ], 0 ≤ T < 1, under the condition,

|λ| < |µ|
M1k∗ +M2T

.

Proof. To prove the existence of a unique solution of Eq. (1) we use the successive approximations

method (Picard’s method), or we can used Banach’s fixed point theorem.

2.1 Picard’s method

We assume the solution of Eq. (1) takes the form:

ψ(x, t) = lim
n→∞

ψn(x, t),

where

ψn(x, t) =
n∑

i=0

Hi(x, t), t ∈ [0, T ], n = 1, 2, . . .

where the functions Gi(x, t), i = 0, 1, . . . , n are continuous functions of the form:

Hn(x, t) = ψn(x, t)− ψn−1(x, t),

H0(x, t) = g(x, t)

}
. (2)

Now we should prove the following lemmas:

Lemma 1. The series
∑n

i=0Hi(x, t) is uniformly convergent to a continuous solution function

ψ(x, t).

Proof. We construct the sequences,

µψn(x, t) = g(x, t) + λ

∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)ψn−1(y, τ)dydτ + λ

∫ t

0

F (t, τ)ψn−1(x, τ)dτ,

ψ0(x, t) = g(x, t).

Then, we get

ψn(x, t)− ψn−1(x, t) =
λ

µ

∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)(ψn−1(y, τ)− ψn−2(y, τ))dydτ

+
λ

µ

∫ t

0

F (t, τ)(ψn−1(x, τ)− ψn−2(x, τ))dτ.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.1, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

13 Nasr 11-24



From Eq. (2), then, we have

Hn(x, t) = |γ|
∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)Hn−1(y, τ)dydτ + |γ|
∫ t

0

F (t, τ)Hn−1(x, τ)dτ ; γ =
λ

µ
,

using the properties of the norm, we obtain

‖Hn(x, t)‖ ≤ |γ|
∥∥∥∥∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)Hn−1(y, τ)dydτ

∥∥∥∥+ |γ|
∥∥∥∥∫ t

0

F (t, τ)Hn−1(x, τ)dτ

∥∥∥∥ . (3)

For n = 1, the formula (3) yields

‖H1(x, t)‖ ≤ |γ|
∥∥∥∥∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)H0(y, τ)dydτ

∥∥∥∥+ |γ|
∥∥∥∥∫ t

0

F (t, τ)H0(x, τ)dτ

∥∥∥∥ ,
by applying Cauchy–Schwarz inequality and using the condition (ii) we get

‖H1(x, t)‖ ≤|γ|M1

∥∥∥∥∥
(∫

Ω

|k(|x− y|)|2dy

) 1
2

. max
0≤t≤T

∣∣∣∣∣
∫ t

0

(∫
Ω

|H0(y, τ)|2dy

) 1
2

dτ

∣∣∣∣∣
∥∥∥∥∥

+ |γ|M2

∫ t

0

‖H0(x, τ)‖ dτ,

using the conditions (i) and (iii), we have

‖H1(x, t)‖ ≤ |γ|M1k
∗N + |γ|M2N‖t‖, (4)

where max0≤t≤T |t| = T , so that formula (4) becomes

‖H1(x, t)‖ ≤ |γ|N(M1k
∗ +M2T ),

by induction, we get

‖Hn(x, t)‖ ≤ βnN ; β = |γ|(M1k
∗ +M2T ) < 1; n = 1, 2, . . . .

Since

|λ| < |µ|
M1k∗ +M2T

,

this leads us to say that the sequence ψn(x, t) has a convergent solution. So that, for n → ∞,
we have

ψ(x, t) =
∞∑
i=0

Hi(x, t). (5)

The above formula represents an infinite convergence series.

Lemma 2. The function ψ(x, t) of the series (5) represents an unique solution of Eq. (1).
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Proof. To show that ψ(x, t) is the only solution of Eq. (1), we assume the existence of another

solution ϕ(x, t) of Eq. (1), then we obtain

µ[ψ(x, t)− ϕ(x, t)] =λ

∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)[ψ(y, τ)− ϕ(y, τ)]dydτ

+ λ

∫ t

0

F (t, τ)[ψ(x, τ)− ϕ(x, τ)]dτ,

which leads us to the following

‖ψ(x, t)− ϕ(x, t)‖ =|γ|
∥∥∥∥∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)(ψ(y, τ)− ϕ(y, τ))dydτ

∥∥∥∥
+ |γ|

∥∥∥∥∫ t

0

F (t, τ)(ψ(x, τ)− ϕ(x, τ))dτ

∥∥∥∥ ,
by applying the Cauchy–Schwarz inequality and using the conditions (i) and (ii), we get

‖ψ(x, t)− ϕ(x, t)‖ ≤ |γ|M1k
∗
∫ t

0

∫
Ω

‖ψ(y, τ)− ϕ(y, τ)‖dydτ

+ |γ|M2

∫ t

0

‖ψ(x, τ)− ϕ(x, τ)‖dτ,

≤ β‖ψ(x, t)− ϕ(x, t)‖, β = |γ|M1k
∗ + |γ|M2T < 1.

(6)

The formula (6) can be adapted as,

(1− β)‖ψ(x, t)− ϕ(x, t)‖ ≤ 0.

Since β < 1, so that ψ(x, t) = ϕ(x, t), that is the solution is unique.

2.2 Banach’s fixed point theorem

When the Picard’s method fails to prove the existence of a unique solution for the homogeneous

integral equations or for the integral equations of the first kind, we must use Banach’s fixed point

theorem. For this, we write the formula (1) in the integral operator form:

(Uψ)(x, t) =
1

µ
g(x, t) + (Uψ)(x, t),

(Uψ)(x, t) =
λ

µ

∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)ψ(y, τ)dydτ +
λ

µ

∫ t

0

F (t, τ)ψ(x, τ)dτ.

(7)

To prove the existence of a unique solution of Eq. (1), using Banach’s fixed point theorem,

we must prove the normality and continuity of the integral operator (7).

(a) For the normality, we use Eq. (7) to get

‖(Uψ)(x, t)‖ =

∣∣∣∣λµ
∣∣∣∣ ∥∥∥∥∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)ψ(y, τ)dydτ

∥∥∥∥+

∣∣∣∣λµ
∣∣∣∣ ∥∥∥∥∫ t

0

F (t, τ)ψ(x, τ)dτ

∥∥∥∥ ; µ 6= 0.
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Using the condition (ii), then applying Cauchy–Schwarz inequality, we get

‖(Uψ)(x, t)‖ ≤
∣∣∣∣λµ
∣∣∣∣M1

∥∥∥∥∥
(∫

Ω

|k(|x− y|)|2dy

) 1
2

. max
0≤t≤T

∣∣∣∣∣
∫ t

0

(∫
Ω

|H0(y, τ)|2dy

) 1
2

dτ

∣∣∣∣∣
∥∥∥∥∥

+

∣∣∣∣λµ
∣∣∣∣M2

∥∥∥∥∫ t

0

‖H0(x, τ)‖dτ
∥∥∥∥ ,

using the condition (i), we obtain

‖(Uψ)(x, t)‖ ≤
∣∣∣∣λµ
∣∣∣∣ (M1k

∗ +M2T )‖ψ(x, t)‖,

since

‖(Uψ)(x, t)‖ ≤ β‖ψ(x, t)‖; β =

∣∣∣∣λµ
∣∣∣∣ (M1k

∗ +M2T ) < 1,

where

|λ| < |µ|
M1k∗ +M2T

.

Therefore, the integral operator U has a normality, which leads immediately after using the

condition (iii) to the normality of the operator U .

(b) For the continuity, we suppose the two potential functions ψ1(x, t) and ψ2(x, t) in the

space L2(Ω)× C[0, T ] are satisfied Eq. (7), then

(Uψ1)(x, t) =
1

µ
g(x, t) +

λ

µ

∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)ψ1(y, τ)dydτ +
λ

µ

∫ t

0

F (t, τ)ψ1(x, τ)dτ,

(Uψ2)(x, t) =
1

µ
g(x, t) +

λ

µ

∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)ψ2(y, τ)dydτ +
λ

µ

∫ t

0

F (t, τ)ψ2(x, τ)dτ,

(8)

Using equations (8), we get

U [ψ1(x, t)− ψ2(x, t)] =
λ

µ

∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)[ψ1(y, τ)− ψ2(y, τ)]dydτ

+
λ

µ

∫ t

0

F (t, τ)[ψ1(x, τ)− ψ2(x, τ)]dτ.

using the condition (ii) and applying the Cauchy–Schwarz inequality we get ,

‖U [ψ1(x, t)− ψ2(x, t)]‖ ≤
∣∣∣∣λµ
∣∣∣∣M1

∥∥∥∥∥
(∫

Ω

|k(|x− y|)|2dy

) 1
2

. max
0≤t≤T

∣∣∣∣∣
∫ t

0

(∫
Ω

|ψ1(y, τ)− ψ2(y, τ)|2dy

) 1
2

dτ

∣∣∣∣∣
∥∥∥∥∥+

∣∣∣∣λµ
∣∣∣∣M2

∥∥∥∥∫ t

0

|ψ1(x, τ)− ψ2(x, τ)|dτ
∥∥∥∥ .
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By using the condition (i), the last inequality becomes,

‖U [ψ1(x, t)− ψ2(x, t)]‖ ≤
∣∣∣∣λµ
∣∣∣∣ (M1k

∗ +M2T )‖ψ1(x, t)− ψ2(x, t)‖,

hence, we have

‖U [ψ1(x, t)− ψ2(x, t)]‖ ≤ β‖ψ1(x, t)− ψ2(x, t)‖; β =

∣∣∣∣λµ
∣∣∣∣ (M1k

∗ +M2T ) < 1, (9)

with

|λ| < |µ|
(M1k∗ +M2T )

.

Inequality (9) leads us to the continuity of the integral operator U . So that, U is a contraction

operator. Therefore by Banach’s fixed point theorem, there is an unique fixed point ψ(x, t),

which is the solution of the linear mixed integral equation (1).

3 Separation of variables method

To obtain the general solution of Eq. (1), we do the following:

For t = 0, the formula (1) becomes

µψ(x, 0) = g(x, 0). (10)

Then, seek the solution of equation (1) in the form:

ψ(x, t) =
∞∑
n=1

cn(t)ψn(x),

in this aim, we write

ψ(x, t) = ψ0(x, t) + ψ1(x, t), (11)

where ψ0(x, t), ψ1(x, t) are called, respectively, the complementary and particularly solution of

(1). Using Eq. (11) in Eq. (1), we get

µψk(x, t)− λ
∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)ψk(y, τ)dydτ − λ
∫ t

0

F (t, τ)ψk(x, τ)dτ = δkg(x, t); k = 0, 1,

(12)

also, for Eq. (10), we have

µψk(x, 0) = δkg(x, 0), (13)

where,

δk =

{
0; k = 0

1; k = 1
.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.1, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

17 Nasr 11-24



From the two Eqs. (12), (13), we get

µ[ψk(x, t)−ψk(x, 0)]− λ
∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)ψk(y, τ)dydτ

− λ
∫ t

0

F (t, τ)ψk(x, τ)dτ = δk[g(x, t)− g(x, 0)].

(14)

Now, we can represent the solution of (11) in the series form

ψk(x, t) =
∞∑
n=1

(
c

(k)
2n (t)ψ2n(x) + c

(k)
2n−1(t)ψ2n−1(x)

)
, (15)

where ψ2n(x), ψ2n−1(x) are the even and odd functions respectively.

Using Eq. (15) in Eq. (14), we obtain

µ
∞∑
n=1

(
c

(k)
2n (t)− c(k)

2n (0)
)
ψ2n(x) + µ

∞∑
n=1

(
c

(k)
2n−1(t)− c(k)

2n−1(0)
)
ψ2n−1(x)

− λ
∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)
∞∑
n=1

(
c

(k)
2n (τ)ψ2n(y) + c

(k)
2n−1(τ)ψ2n−1(y)

)
dydτ

− λ
∫ t

0

F (t, τ)
∞∑
n=1

(
c

(k)
2n (τ)ψ2n(x) + c

(k)
2n−1(τ)ψ2n−1(x)

)
dτ = δk[g(x, t)− g(x, 0)].

(16)

Taking k = 0, in Eq. (14), yields

µ
∞∑
n=1

(
c

(0)
2n (t)− c(0)

2n (0)
)
ψ2n(x) + µ

∞∑
n=1

(
c

(0)
2n−1(t)− c(0)

2n−1(0)
)
ψ2n−1(x)

− λ
∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)
∞∑
n=1

(
c

(0)
2n (τ)ψ2n(y) + c

(0)
2n−1(τ)ψ2n−1(y)

)
dydτ

− λ
∫ t

0

F (t, τ)
∞∑
n=1

(
c

(0)
2n (τ)ψ2n(x) + c

(0)
2n−1(τ)ψ2n−1(x)

)
dydτ = 0.

(17)

Theorem 2. (see [3,19]). For a symmetric and positive kernel of Fredholm integral term of Eq.

(1), the integral operator,

(Kψn)(x) =

∫
Ω

k(|x− y|)ψn(y)dy,

through the time interval 0 ≤ t ≤ T < 1 is compact and self–adjoint operator. So, we may

write (Kψn)(x) = αnψn(x), where αn and ψn(x) are the eigenvalues and the eigenfunctions of

the integral operator, respectively.
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In view of theorem 2, and Eq. (17), we arrive to the following

µ

∞∑
n=1

(
c

(0)
2n (t)− c(0)

2n (0)
)
ψ2n(x) + µ

∞∑
n=1

(
c

(0)
2n−1(t)− c(0)

2n−1(0)
)
ψ2n−1(x)

− λ
∫ t

0

Φ(t, τ)
∞∑
n=1

(
α2nc

(0)
2n (τ)ψ2n(x) + α2n−1c

(0)
2n−1(τ)ψ2n−1(x)

)
dτ

− λ
∫ t

0

F (t, τ)
∞∑
n=1

(
c

(0)
2n (τ)ψ2n(x) + c

(0)
2n−1(τ)ψ2n−1(x)

)
dydτ = 0.

Separating the odd and even terms, we obtain

c
(0)
2n (t)− γ

∫ t

0

(α2nΦ(t, τ) + F (t, τ))c
(0)
2n (τ)dτ = c

(0)
2n (0); γ =

λ

µ
, (18)

and,

c
(0)
2n−1(t)− γ

∫ t

0

(α2n−1Φ(t, τ) + F (t, τ))c
(0)
2n−1(τ)dτ = c

(0)
2n−1(0), (19)

the two Eqs. (18) and (19) give the same results for even and odd functions, so it is suffice to

study the following equation,

c(0)
n (t)− γ

∫ t

0

(αnΦ(t, τ) + F (t, τ))c(0)
n (τ)dτ = c(0)

n (0); γ =
λ

µ
, (20)

where c
(0)
n (0) is constant will be determined.

Also, taking k = 1 in formula (16), we obtain

µ
∞∑
n=1

(
c

(1)
2n (t)− c(1)

2n (0)
)
ψ2n(x) + µ

∞∑
n=1

(
c

(1)
2n−1(t)− c(1)

2n−1(0)
)
ψ2n−1(x)

− λ
∫ t

0

∫
Ω

Φ(t, τ)k(|x− y|)
∞∑
n=1

(
c

(1)
2n (τ)ψ2n(y) + c

(1)
2n−1(τ)ψ2n−1(y)

)
dydτ

− λ
∫ t

0

F (t, τ)
∞∑
n=1

(
c

(1)
2n (τ)ψ2n(x) + c

(1)
2n−1(τ)ψ2n−1(x)

)
dydτ = [g(x, t)− g(x, 0)].

(21)

Using theorem 2 in Eq. (21), to have

µ

∞∑
n=1

(
c

(1)
2n (t)− c(1)

2n (0)
)
ψ2n(x) + µ

∞∑
n=1

(
c

(1)
2n−1(t)− c(1)

2n−1(0)
)
ψ2n−1(x)

− λ
∫ t

0

Φ(t, τ)
∞∑
n=1

(
α2nc

(1)
2n (τ)ψ2n(x) + α2n−1c

(1)
2n−1(τ)ψ2n−1(x)

)
dτ

− λ
∫ t

0

F (t, τ)
∞∑
n=1

(
c

(1)
2n (τ)ψ2n(x) + c

(1)
2n−1(τ)ψ2n−1(x)

)
dydτ

=
∞∑
n=1

a2nψ2n(x)[g(x, t)− g(x, 0)],

(22)
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where,

1 =
∞∑
n=1

a2nψ2n(x),

the formula (22) can be separated to the following equations

c
(1)
2n (t)− γ

∫ t

0

(α2nΦ(t, τ) + F (t, τ))c
(1)
2n (τ)dτ =

1

µ
a2n[g(x, t)− g(x, 0)] + c

(1)
2n (0); γ =

λ

µ
,

c
(1)
2n−1(t)− γ

∫ t

0

(α2n−1Φ(t, τ) + F (t, τ))c
(1)
2n−1(τ)dτ = c

(1)
2n−1(0).

(23)

Eqs. (20) and (23) represent Volterra integral equations of the second kind that have the same

continuous kernel Φ(t, τ) ∈ C([0, T ]× [0, T ]), and each of them has a unique solution in the class

C[0, T ] the books edited by Linz [15] and Burton [7] contain many different methods to solve

the integral equations (20) and (23).

The values of c
(0)
n (0), c

(1)
2n (0) and c

(1)
2n−1(0) can be obtained, we return to the equation (10), and

we seek the solution of this equation in the form,

ψ(x, 0) =
∞∑
n=1

cn(0)ψn(x).

Hence, in this respect, we write

ψ(x, t) = ψ0(x, t) + ψ1(x, t), (24)

where ψ0(x, t) is a complementary solution while ψ1(x, t) is a particularly solution. So, from Eq.

(10) we write

µψk(x, 0) = δkg(x, 0), (25)

and expand the solution of equation (24) in the form

ψk(x, 0) =
∞∑
n=1

(
c

(k)
2n (0)ψ2n(x) + c

(k)
2n−1(0)ψ2n−1(x)

)
, (26)

using Eq. (26) in Eq. (25), we obtain

µ

∞∑
n=1

(
c

(k)
2n (0)ψ2n(x) + c

(k)
2n−1(0)ψ2n−1(x)

)
= δkg(x, 0). (27)

If we take k = 0 in Eq. (27), we obtain

µ
∞∑
n=1

(
c

(0)
2n (0)ψ2n(x) + c

(0)
2n−1(0)ψ2n−1(x)

)
= 0,
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equating the odd and even terms in both sides, we get

c
(0)
2n (0) = 0, c

(0)
2n−1(0) = 0,

then , we have

c(0)
n (0) = 0.

Taking k = 1 in Eq. (27), we have

µ
∞∑
n=1

(
c

(1)
2n (0)ψ2n(x) + c

(1)
2n−1(0)ψ2n−1(x)

)
= g(x, 0).

Equating both sides of the last equation, we get

c
(1)
2n (0) = 0, c

(1)
2n−1(0) = 0,

so, the last two formulas give us

c(1)
n (0) = 0.

In view of Eqs. (20) and (23), the general solution of (1) can be adapted in the form

ψN(x, t) =
N∑

n=1

(
c(0)
n (t) + c(1)

n (t)
)
ψn(x), (28)

where c
(0)
n (t) and c

(1)
n (t) must satisfy the inequality

N∑
n=1

∣∣c(0)
n (t) + c(1)

n (t)
∣∣ < ε, (N →∞, ε� 1, 0 ≤ t ≤ T < 1). (29)

Theorem 3. If, for t ∈ [0, T ], the inequality (29) holds, the series (28) is uniformly convergent

in the space `2(Ω) × C[0, T ], N → ∞. Hence the solution of the Volterra–Fredholm integral

equation (1) can be obtained in a series form of (28).

Theorem 4. For the given functions g(x, t) ∈ L2(Ω)×C[0, T ],Φ(t, τ) ∈ C([0, T ]×[0, T ]), k(x, y) ∈
C([Ω]× [Ω]), and under the condition (29), we have

‖ψ(x, t)− ψN(x, t)‖ → 0 as N →∞,

where ψ(x, t) represents the unique solution of Eq. (1) and the error takes the form:

EN = ‖ψ(x, t)− ψN(x, t)‖,

where

EN → 0 as N → 1.
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4 Conclusion and remarks

From the above results and discussion, the following may be concluded:

1. Equation (1) has a unique solution ψ(x, t) in the space L2(Ω) × C[0, T ], under some con-

ditions.

2. The Volterra–Fredholm integral equation of the second kind, in time and position, after

using separation of variables method leads to a Volterra integral equations of the second

kind with continuous kernel.

3. Solutions of the Volterra integral equations can be obtained by numerical methods.
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