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Abstract

This paper deals with the numerical solution of space fractional Burger’s
equation using the implicit finite difference scheme and Lax-Friedrichs-
implicit finite difference scheme respectively. The Riemann-Liouville based
fractional derivative (non-integer order) is fitted for the diffusion term of
fractional order 1.0 < α ≤ 2.0. The Mathematical induction is used to es-
timate a stability of both the implicit and Lax-Friedrichs-implicit schemes.
The study shows that the implicit based scheme is stable and the results
are good in agreement with the exact solution. Finally, the significance
of space fractional order with respect to the solution is discussed. It is
noted that the solution of space fractional Burger’s equation get affected
by changing the space fractional order.

Key words: Lax-Friedrichs, implicit scheme, fractional calculus, fi-
nite difference method
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1 Introduction

Fractional Calculus plays an important role in various fields of science and engi-
neering. Examples include ground water flow modeling, electric circuit design,
quantum mechanics, optics, plasma model, dengue fever transmission dynamics
and atmospheric CO2 dynamics model [1, 2, 3, 4, 5]. Due to its wide applica-
tions, solving techniques of those fractional equations are extensively improved
by the researchers. For instance, Goswami et al. [6] used Homotopy perturba-
tion Sumudu transform for solving time-fractional regularized long wave equa-
tions. Later, they used the techniques to find the solutions for the time frac-
tional Schrdinger equations and fractional equal width equations (describes the

1Department of Basic and Applied Science, NIT Arunachal Pradesh, Arunachal Pradesh,
India
2 Department of Automobile Engineering, Sathyabama University, Chennai, India
∗ Email: swapnalidoley05@gmail.com

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.2, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

343 Swapnali Doley 343-354



hydro-magnetic waves) [7, 8]. Also, Goswami et al. [9] made a mixed approach
of Homotopy perturbation and Laplace transform to solve the fifth order KdV
equations in order to illustrate the plasma’s magneto-acoustic waves. Recently,
Hashmi et al. [10] used B-spline method to solve the fractional telegraph equa-
tion and quoted that the scheme is efficient. In numerical methods there are
numerous methods including finite difference method (FDM), finite element
method, finite volume method etc. Out of this methods FDM is a pioneering
tool used among the investigators. In the present investigation, we establish
two schemes namely the implicit FDM and Lax-Friedrichs implicit FDM for the
space fractional Burger’s equation (SFBE).

Fractional calculus application gives a real system better than integer-order.
The Burger’s equations arises in various domain such as fluid and gas dynam-
ics, theory of shock waves, traffic flow, etc [11, 12, 13, 14]. Many researchers
have applied various analytical techniques, numerical algorithms/schemes for
extracting the solution for the Burger’s equation. The exact solution and ex-
plicit FDM solutions for the 1-D Burger’s equation was surveyed by Kutluay
et al. [15]. Aksan and Ozdes [16] constructed variational method for solving
the Burger’s equation. Inan and Bahadir [17] converted non-linear Burger’s
equation into linear using Hopf-Cole transformation and obtained Numerical
solution (NS) using explicit exponential FDM. Pandey et al. [18] coupled Hopf-
Cole transformation and Douglas FDM to get the NS with accuracy of second
order in time and fourth order in space.

Zhang et al.[19] used the implicit FDM to solve the fractional convection-
diffusion equation. It is found that the NS is unconditionally stable. Sousa [20]
obtained the NS for the fractional advection diffusion equation using explicit-
central difference FDM, explicit-upwind FDM and Lax-Wendroff FDM. The
study consider Riemann-Liouville fractional derivative for space fractional and
Caputo fractional derivative for the time derivative. The result shows that all
the explicit FDM schemes are stable under restricted conditions. Later, Sousa
[21] presented the explicit-Lax-Wendroff method for the Riemann-Liouville deriva-
tive based space fractional advection diffusion equation. The study illustrates
that the scheme is second order accurate and conditionally stable. Bekir and
Gnerb [22] and Das et al. [23] used (G’/G) expansion method to solve the mod-
ified Riemann-Liouville derivative based fractional Burger’s equation. Esen and
Tasbozan[24] solved the time fractional Burger’s equation by applying the B-
spline quadratic Galerkin method. Moreover, Esen and Tasbozan[25] used finite
element method based cubic B-spline for the time fractional Burger’s equation.
They also compared the NS with the various exact solutions (ES) and found
that the scheme is stable and accurate. Rawashdeh [26] proposed a new scheme
named the fractional reduced differential transform to solve the TFBE. It is
noted that the proposed scheme is accurate and good comparable with the ES.
Yokus [27] studied the FDM based NS with respect to the fractional derivatives
such as Caputo, shifted Grunwald and Riemann-Liouville and obtained the solu-
tions using the software Mathematica 11. Saad and Eman[28] have applied the
variational iteration method (VIM) for the Riemann-Liouville based fractional
Burger’s equation and compared the results with the ES.
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In this work, we propose a numerical solution based on implicit FDM scheme
and Lax-Friedrichs FDM scheme to solve a non-linear SFBE. Generally, the
Lax-Friedrichs method is used for achieving the solutions for a hyperbolic based
PDE’s [29]. In general, an implicit scheme is the most well-known schemes for
approximating the PDEs. This paper presents an approximation based on Lax-
Friedrichs-implicit FDM to non-linear SFBE with appropriate initial/boundary
conditions. The stability of a proposed scheme is analysed along with the nu-
merical results.

2 Mathematical equation

Time fractional Burgers’ equation was discussed in the articles [16, 24, 25, 26].
Following their study, we consider the non-linear SFBE as,

∂u(x, t)

∂t
+ u

∂u(x, t)

∂x
= µ

∂αu(x, t)

∂xα
, (x, t) ∈ [a, b]× (0, Tmax] (2.1)

included with initial values

u(x, 0) = u0(x) (2.2)

and respective boundary values

u(0, t) = h1(t);u(1, t) = h2(t), t ∈ [0, T ] (2.3)

where µ > 0 is kinematic viscosity, u0(x) , h1(t) and h2(t) are specified bound-
aries. u(x) is unknown functional.

To solve the SFBE in this work, let us consider the Riemann-Liouville frac-
tional derivatives [20, 21, 30].

(0D
α
x )u(x, t) =

1

Γ(r − α)

dr

dxr

∫ x

L

u(t)

(x− t)α−r+1
dt, α > 0 (2.4)

where Γ (.) is the Gamma function.
For space fractional derivative (0D

α
x)u (x, t), we taken the Grunwald and

shifted-Grunwald formula at level tn+1 [31].

∂αu(x, t)

∂xα
=

1

hα

i+1∑
j=0

gαj u
k+1
i−j+1+O (h) (2.5)

where gαj =
α (α− 1) . . . .(α− k + 1)

j!
,

We can express, gα0 = 1, . . . , gαj =

(
1− α

j

)
gαj−1, j = 1, 2, 3, . . . .
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2.1 Implicit scheme

The implicit scheme is one of the more accurate scheme for a non-linear Burger’s
equation [32]. Here, we consider a same for SFBE due to its stability than the
explicit scheme [21, 31, 33, 34].

Let u(xi, tk) is denoted as uki . Define, tk = kτ, k = 0, 1, 2, ...., n; xi =
ih, i = 0, 1, 2, ....,m. Here, h = L/m is the step size on space and τ = T/n is
the step size on time respectively. Now,let us consider the nonlinear term,
uk+1uk+1

x by denoting it on Taylor expansion using the explicit time layer. We
approximate the equation (2.1) by using an implicit FDM and approximated
Riemann-Liouville derivatives equation (2.5) in space fractional viscous terms
as follows.

(uk+1
i − uki )

τ
+
uki
2

(
uk+1
i+1 − u

k+1
i−1

2h

)
+
uk+1
i

2

(
uki+1 − uki−1

2h

)
=

µ

hα

i+1∑
j=0

gαj u
k+1
i−j+1

(2.6)

(
uk+1
i − uki

)
+ τ

uki
2

(
uk+1
i+1 − u

k+1
i−1

2h

)
+ τuk+1

i

(
uki+1 − uki−1

4h

)
= τ

µ

hα

i+1∑
j=0

gαj u
k+1
i−j+1

(2.7)

−τ
(
uki
4h

+
µ

hα
gα2

)
uk+1
i−1 +

(
1 +

τ
(
uki+1 − uki−1

)
4h

− µτ

hα
gα1

)
uk+1
i

+τ

(
uki
4h
− µ

hα
gα0

)
uk+1
i+1 − τ

µ

hα

i+1∑
j=3

gαj u
k+1
i−j+1 = uki

(2.8)

When k = 0,

−τ
(
u0i
4h

+
µ

hα
gα2

)
u1i−1 +

(
1 +

τ
(
u0i+1 − u0i−1

)
4h

− µτ

hα
gα1

)
u1i

+τ

(
u0i
4h
− µ

hα
gα0

)
u1i+1 − τ

µ

hα

i+1∑
j=3

gαj u
1
i−j+1 = u0i

(2.9)

When k ≥ 1,

−τ
(
uki
4h

+
µ

hα
gα2

)
uk+1
i−1 +

(
1 +

τ
(
uki+1 − uki−1

)
4h

− µτ

hα
gα1

)
uk+1
i

+τ

(
uki
4h
− µ

hα
gα0

)
uk+1
i+1 − τ

µ

hα

i+1∑
j=3

gαj u
k+1
i−j+1 = uki

(2.10)
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Rewriting above equation, we get

aki u
k+1
i−1 + bki u

k+1
i + cki u

k+1
i+1 = uki + dki (2.11)

where, aki = −τ
(
uki
4h

+
µ

hα
gα2

)
, bki =

(
1+

τ
(
uki+1 −uki −1

)
4h

−µτ
hα
gα1

)
, cki =

τ

(
uki
4h
− µ

hα
gα0

)
, dki = τ

µ

hα
∑i+1
j=3 g

α
j u

k+1
i−j+1

The boundary/initial conditions are,

u0i = u (ih) , uk0 = h1 (t) , ukm = h2 (t)

where k = 0, 1, 2, ..., n, i = 0, 1, 2, ....,m. The truncation error is
O
(
τ2, h2

)
.

2.1.1 Stability analysis - implicit FDM

Let us investigate the stability of the numerical implicit scheme (2.8) by using
von-Neumann analysis. Let Ukj is the ES of u(x, t) at the point (xj , tk). Define

ekj = Ukj − u
k

j
(2.12)

Then, by substituting Equation (2.12) into Equation (2.11),we have

aki e
k+1
i−1 + bki e

k+1
i + cki e

k+1
i+1 = eki + dki (2.13)

We put eki = ρk eipjh (i =
√
−1), in equation (2.6) and p is the wave number.

ρk+1

[
τ

(
ρk eipjh

2h

)
isin (ph) +

(
1 +

τ
(
isin (ph) ρk

)
2h

)
− τ µ

hα

i+1∑
r=0

gαj e
ip(1−r)h

]
= ρk

(2.14)

ρk+1

ρk
=

1[
τ

(
ρk eipjh

2h

)
isin (ph) +

(
1 +

τ
(
isin (ph) ρk eipjh

)
2h

)
− τ µ

hα
∑i+1
r=0 g

α
j e

ip(1−r)h

]
≤ 1

(2.15)

It is obvious that the above scheme is unconditionally stable.
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2.2 Lax-Friedrichs Scheme

As a result of its application to a nonlinear space fractional problem and the
dissipative nature of the solution, the Lax-Friedrichs scheme is considered to
be a classic first-order method. The Lax-Friedrichs scheme of the fractional
equation (2.1) is approximated by as below:

uk+1
i −1

2

(
uki−1 + u

k

i+1

)
τ

+
uki
2

(
uk+1
i+1 − u

k+1
i−1

2h

)
+
uk+1
i

2

(
uki+1 − uki−1

2h

)

=
µ

hα

i+1∑
j=0

gαj u
k+1
i−j+1

(2.16)

−τ(
uk

4h
)uk+1
i−1 + (1 +

τ(uki+1 − uki−1)

4h
)uk+1
i +τ

(
uk

4h

)
uk+1
i+1−τ

µ

hα

i+1∑
j=0

gαj u
k+1
i−j+1

=
1

2

(
uki−1 + u

k

i+1

)
(2.17)

When k = 0

−τ(
u0

4h
)u1i−1 + (1 +

τ(u0i+1 − u0i−1)

4h
)u1i + τ(

u0

4h
)u1i+1 − τ

µ

hα

i+1∑
j=0

gαj u
1
i−j+1

=
1

2
(u0i−1 + u0i+1)

(2.18)

When k ≥ 1

−τ(
uk

4h
)uk+1
i−1 + (1 +

τ(uki+1 − uki−1)

4h
)uk+1
i + τ(

uk

4h
)uk+1
i+1 − τ

µ

hα

i+1∑
j=0

gαj u
k+1
i−j+1

=
1

2
(uki−1 + uki+1)

(2.19)

2.2.1 Stability Analysis - Lax-Friedrichs-implicit FDM

Let us consider the von-Neumann based method in preparation for estimating
the stability of Lax-Friedrichs implicit scheme for SFBE. Let Uki be the approx-
imate solution of fractional schemes (2.17).

eki = Uki − uki (2.20)
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Define, eki = ρkeipjh(i =
√

(−1) in Eq. (2.17), We get

ρk+1

[
τ

(
ρkeipjh

2h

)
isin (ph) +

(
1+

τ
(
isin (ph) eipjh ρk

)
2h

)
−τ µ

hα

i+1∑
r=0

gαj e
ip(1−r)h

]
=
(
ρk cos(ph)

)
(2.21)

ρk+1

ρk
=

cos(ph)[(
1+

τ
(
isin (ph) eipjh ρk

)
2h

)
+ τ

(
ρkeipjh

2h

)
isin (ph) −τ µ

hα
∑i+1
r=0 g

α
j e

ip(1−r)h

]
(2.22)

We know, the value of the sin (ph) and cos (ph) ≤ 1

3 Numerical Results

The verification of NS and accuracy of the schemes (implicit FDM and Lax-
Friedrichs-implicit FDM) are illustrated in this section. In addition, the be-
havior of the solution with respect to change in the parameters are considered.
This types of Burger’s equation are used in predicting the important real world
applications such as fluid flow, contaminant flow, boundary layer flow, aquifer
flow, etc.

The accuracy of the FDM based schemes are measured using the L∞ error
norm, which is defined below:

L∞ =‖ Uk − uN ‖∞= Maxj |Uk − (uN )j | (3.1)

where Uk and uN denotes the ES and NS respectively at the node points xk,
for some fixed time.

3.1 Example 1

Consider the space fractional Burger’s equation with source term to find error
values as follows:

∂u(x, t)

∂t
+ u

∂u(x, t)

∂x
=
∂αu(x, t)

∂xα
+ f(x, t), (x, t) ∈ [a, b]× (0, Tmax] (3.2)

with initial and boundary conditions as

u (x, 0) = x; and u (0, t) = 0; u (1, t) =
1

1 + t

The exact solution [27]
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(𝑎) (𝑏)

Figure 1: Comparison of (a). ES and (b). NS

u (x, t) =
x

1 + t
(3.3)

and the respective source term is,

f (x, t) = − 1

1 + t
.

1

Γ (2− α)
µx1−α (3.4)

Table 1: Comparison the Maximum errors (L∞) between ES and NS
τ α implicit FDM Lax-Friedrichs FDM
1/100 1.9 6.68689189E − 03 4.27211449E − 03
1/100 1.7 1.03293294E − 02 9.42116044E − 03
1/100 1.5 1.12734595E − 02 1.07855788E − 02
1/100 1.3 1.18441200E − 02 1.14968475E − 02
1/100 1.1 1.22581907E − 02 1.18474280E − 02
1/1000 1.9 3.30544871E − 03 1.65415841E − 03
1/1000 1.7 9.85641548E − 03 7.98325112E − 03
1/1000 1.5 9.89541454E − 03 9.75634282E − 03
1/1000 1.3 9.90254650E − 03 9.76487132E − 03
1/1000 1.1 9.91051481E − 03 9.80037527E − 03

The verification of NS for the SFBE (2.18) with the ES is illustrated in the
Fig. 1. The comparison is done against the time, t = 0 to 1 and space, x = 0 to
1. Both the NS and ES are good in comparable. Also, the Table. 3.1 shows the
L2 between the ES and NS. It is found that the Lax-Friedrichs-implicit FDM
has lesser L2 than the implicit FDM for every α.
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(𝑎) (𝑏)

Figure 2: variation of U at (a) µ = 0.1 (b) µ = 1.0

3.2 Example 2

Also, consider the SFBE without source term to find the characteristics of NS
as

∂U(x, t)

∂t
+ u

∂U(x, t)

∂x
= µ

∂αU(x, t)

∂xα
(3.5)

with initial and boundary conditions as

U (x, 0) = 0; U (0, t) = 1; U (1, t) = 0

Figure 2 shows the variation of U with respect to the space fractional pa-
rameter (α) and space coordinates (x) at kinematic viscosity µ = 0.1 and 1.0
respectively. It is noted that, by increasing the parameter α, U decreases its
intensity and travelling distance along the space.

4 Conclusion

The NS of SFBE has been evaluated by using implicit and Lax-Friedrichs-
implicit FDM respectively. It is noted that both the implicit scheme is un-
conditionally stable and are good in agreement with the ES. It is found that L2

of the Lax-Friedrichs-implicit is lesser than the implicit FDM. Also, it is found
that the variation in space fractional order strongly affects the flow character-
istics.
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