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Abstract

We present two non polynomial spline methods based on quasi-variable
mesh using off-step points to solve the system of boundary value prob-
lems which are nonlinear. We also discuss how the methods handle the
presence of singularity. The proposed methods has been shown second
and third-order convergent for a model linear problem. The methods are
implemented on existing problems which are linear, non linear as well as
singular. The obtained numerical results approximate the exact solutions
very well and validate the theoretical findings.
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1 Introduction

In this paper, we seek solution for the following system of M boundary value
problems(BVPs) which are non linear as well as singular.

d2yi

dx2
= f i(x, y1, ..., yi, ..., yM ,

dy1

dx
, ...,

dyi

dx
, ...,

dyM

dx
), (1.1)

yi(0) = ai, y
i(1) = bi, where ai, bi ∈ R, i = 1(1)M. (1.2)

We consider −∞ < yi, dy
i

dx <∞ and the conditions such that f i is continuous

and its partial derivatives w.r.t. yj and dyi

dx exist, continuous and are positive.

Also partial derivative w.r.t. dyi

dx is bounded by some K > 0, j, i = 1(1)M, to
ensure the existence [13] of a unique solution (1.1)− (1.2).
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Such systems like the fourth order Euler differential equations [5], coupled
Navier stokes in fluid dynamics and Maxwell’s equations of electromagnetism[9],
system of differential equations[28], fourth order non linear differential equations
[27] simulates many real world problems. A few more examples are as follows:
(i)In Plate deflection theory

(−1)ny(2n)(x) = f(x, y(x)), n ∈ N
y(2i)(a) = A2i, y

(2i)(b) = B2i, i ∈ [0, k − 1]

(ii)Three box cars on a level track connected by springs is modelled as follows:

mx′′1 = −sx1 + sx2,

mx′′2 = sx1 − 2sx2 + sx3,

mx′′3 = −sx3,
where m,x1, x2, x3 and s are masses,positions of the boxcars and Hooke’s constant.

(iii)A horizontal earthquake wave F affects every floor of a building. If there
are three floors, then equations for the floor is modelled as follows:

M1x
′′
1 = −(r1 + r2)x1 + r2x2,

M2x
′′
2 = r2x1 − (r2 + r3)x2 + r3x3,

M3x
′′
3 = r3x2 − (r3 + r4)x3,

where Mi, x1, x2, x3 and ri are point masses of each floor, location of masses

and Hooke’s constant.

Such systems of BVPs comprising first or second order BVPs not only models
many real life problems but are also instrumental in solving many higher or-
der problems by decomposing them. Authors like Aftabizadeh[1], Agarwal[2],
Regan[24] have developed theories related to existence and uniqueness of so-
lutions for these BVPs. But, for our work, we focus on system of second or-
der BVPs which are non linear as well singular in nature. These problems
have extensive application and has been the cause of interest for many authors.
Many efficient numerical methods have been developed to solve second order
BVPs and ‘Splines’ have been very instrumental for solving such problems. Mo-
hanty et.al.([15],[16], [18], [21]) developed AGE iterative methods. In these
methods, using Taylor’s theorem derivatives are approximated and accordingly
a finite difference scheme was developed. Then the resultant system solved
by splitting the coefficient matrix into sum of three matrices. Also Mohanty
et.al.([17],[19],[20],[22]) derived polynomial and non polynomial spline methods
based on uniform and variable mesh to solve class of problems ranging from
linear, nonlinear, singular and singularly perturbed BVP. A third order cubic
spline method based on non uniform mesh was developed by Kadalbajoo et.
al[12] to solve singularly perturbed BVPs. BVPs of eighth order were solved
by Akram and Rehman[4] using kernel space method. Eighth and sixth order
BVPs were solved by Siddiqi and Akram ([30], [31]) using non-polynomial and
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septic spline. Jha and Bieniasz[11] developed a scheme based on geometric mesh
to solve sixth order differential equation by converting it into system of second
order differential equations. Infact, very recently, apart from the schemes based
on classical finite differences some other kinds of methods were also developed.
Bhrawy et. al.[6] developed collocation method based on Jacobi polynomials
and solved nonlinear second-order initial value problems. Dwivedi and Singh
[7] developed collocation method based on Fibbonacci polynomial to solve sub
diffusion equations. Singh et.al.[32] developed finite difference scheme based on
homotopy analysis transform technique to solve fractional non-linear coupled
problem. Such considerable amount of work has motivated us to develop a nu-
merical method to solve the higher order problem as well as system of linear
and non linear singular BVPs.

In this paper, generalized non polynomial spline schemes have been devel-
oped which are based on off-step points using quasi-variable mesh. We use a
second order BVP to derive the methods. As per the methods developed, we de-
compose the higher order BVP into system of second order BVPs (1) alongwith
modifying the boundary conditions. Also, we have solved singular BVPs. The
off-step points used in the method allows us to overcome the singularity. More-
over, since we use the quasi-variable mesh the error gets uniformly distributed
throughout the solution domain. Finally, as we use the boundary conditions in
the scheme, we get a tri-diagonal matrix with block elements representing the
system of equations to be solved.

We have solved seven problems and demonstrated the accuracy of the pro-
posed methods. The BVPs considered in this paper have been solved by other
methods as well. Twizell [29] used modified extrapolation method to solve fourth
order linear BVPs, Akram and Siddiqi[3] used non polynomial spline method
which is second order convergent to solve linear sixth order BVPs. Khan and
Khandelwal[14]and Sakai and Usmani[25] used splines to solve nonlinear fourth
and sixth order BVPs.

2 Method Formulation

We use a non linear BVP of second order and derive the method in scalar form:

y′′ = f(x, y, y′), subject to y(0) = a, y(1) = b. (2.1)

Now, we divide the solution region [0,1] into N + 1 points such as xj , j =

0(1)N with mesh size hj such that xj = xj−1 + hj ,
hj+1

hj
= σj , j = 1(1)N − 1

where the σj is the mesh ratio. When mesh ratio is one, the quasi-variable
mesh converts to a uniform mesh with width, say h. Now, we choose σj = σ
a constant ∀j without loss of generality. Also, let the exact solution of (2.1)
be y(xj) or yj at the grid points xj . Now, we define the the following non
polynomial spline function:

Sj(x) = dj sin(kx− kxj) + cj cos(kx− kxj) + bj(x− xj) + aj , xj−1 ≤ x ≤ xj .(2.2)
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Here, Sj(x) has continuous second derivative in [0, 1] and Sj(x), S′j(x) inter-
polates at the mesh points xj . Using the definition of the spline, we determine
values for the unknowns aj , bj , cj and dj as:

aj = yj +
fj
k2
, (2.3)

bj =
fj − fj− 1

2

k2hj
− yj−1 − yj

hj
,

cj = − fj
k2
,

and dj = −
fk cos θj − fj− 1

2

k2 sin khj
. (2.4)

Using the spline’s first derivative continuity conditions, we get the non poly-
nomial spline method based on off-step points as:

σyj−1 − yj(1 + σ) + yj+1 = h2j (Pσfj− 1
2

+Qσfj +Rσfj+ 1
2
) + T 3

j , (2.5)

where

R =
2khj+1 − sin khj+1

2k2hj+1 sin khj+1
, P =

khj − sin khj cos khj
khj sin khj

, (2.6)

Q =
2(σj + 1)( cos(khjσ − khj)− cos(khjσ + khj))− 2σkhj sin(khjσ + khj)

(khj)2( cos(khjσ − khj)− cos(khjσ + khj))
.(2.7)

Now, we also derive the consistency condition using (2.5)− (2.7) i.e.,

tan(
khj
2

) + tan(
khj+1

2
) =

khj
2

+
khj+1

2
. (2.8)

We solve equation (2.8) for khj and consider the non-zero smallest positive
root khj = 8.98681891. But, with this, the order of error term T 3

j in (2.5)
remains four. Now, we derive another off-step method using Taylor’s expansion
for j = 1(1)N − 1 as

yj−1 − yj(1 + σ) + σyj+1 = h2jσ(Afj− 1
2

+Bfj+ 1
2
) + T 2

j , (2.9)

for A =
(2 + σ)

6
, B =

(2σ + 1)

6
. (2.10)
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Now, the following approximations are defined at xj , j = 1(1)N − 1,

Sj = (σ + 1)σ, (2.11)

ȳj+ 1
2

=
yj + yj+1

2
, (2.12)

ȳj− 1
2

=
yj + yj−1

2
, (2.13)

ȳ′j+ 1
2

=
yj+1 − yj
hjσ

, (2.14)

ȳ′j− 1
2

=
yj − yj−1

hj
, (2.15)

ȳ′j =
yj+1 − yj(1− σ2)− σ2yj−1

Sjhj
, (2.16)

f̄j = f(xj , yj , ȳ′j), (2.17)

f̄j− 1
2

= f(xj− 1
2
, ȳj− 1

2
, ȳ′j− 1

2
), (2.18)

f̄j+ 1
2

= f(xj+ 1
2
, ȳj+ 1

2
, ȳ′j+ 1

2
). (2.19)

Next, we define higher order approximation of yj and y′j to raise order of the

error term T 3
j in equation (2.5) :

ŷj = yj + h2jδ(f̄j− 1
2

+ f̄j+ 1
2
), (2.20)

ŷ′j = ȳ′j − hjγ(f̄j− 1
2
− f̄j+ 1

2
), (2.21)

where γ, δ are unknowns. This gives us the modified f̄j i.e.,

f̂j = f(xj , ŷj , ŷ′j). (2.22)

Now, expanding the approximations (2.12)− (2.22) we get the following:
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P =
σ

3
+O(khj

2), (2.23)

R =
1

3
+O(khj

2), (2.24)

Q =
(σ + 1)

6
+O(khj

2), (2.25)

ȳj+ 1
2

= yj+ 1
2

+
(hjσ)2

8
y′′j +O(h3j ), (2.26)

ȳj− 1
2

= yj− 1
2

+
(hj)

2

8
y′′j +O(h3j ), (2.27)

ȳ′j+ 1
2

= y′j+ 1
2

+
(hjσ)2

24
y′′′j +O(h3j ), (2.28)

ȳ′j− 1
2

= y′j− 1
2

+
(hj)

2

24
y′′′j +O(h3j ), (2.29)

ŷj = yj + δh2j (2y
′′
j ) +O(h3j ), σ 6= 1, (2.30)

ŷ′j = y′j +
h2jy
′′′
j

6
((1 + 3γ)σ + 3γ) +O(h3j ), (2.31)

f̄j+ 1
2

= fj+ 1
2

+
(hjσ)2y′′j

8

∂f

∂yj
+

(hjσ)2y′′′j
24

∂f

∂y′j
+O(h3j ), (2.32)

f̄j− 1
2

= fj− 1
2

+
h2jy
′′
j

8

∂f

∂yj
+
h2jy
′′′
j

24

∂f

∂y′j
+O(h3j ), (2.33)

f̂j = fj + 2h2jδy
′′
j

∂f

∂yj
+
h2j
6

(σ + 3γ(1 + σ))y′′′j
∂f

∂y′j
+O(h3j ). (2.34)

Thus, we develop the first method by discretizing the proposed BVP (2.1)
based on the method (2.9) as:

σyj−1 − (1 + σ)yj + yj+1 = h2j (Aσf̄j− 1
2

+Bσf̄j+ 1
2
) + T 2

j . (2.35)

In this method, we can show that for σ 6= 1, the order of truncation error T 2
j

is O(h4j ) using the approximations (2.32) − (2.33). Also, if we use the off-step
non-polynomial scheme(2.5) along with the approximation (2.26) − (2.34), we
get the second method as:

yj+1 − (1 + σ)yj + σyj−1 = h2jσ(P f̄j− 1
2

+Qf̂j +Rf̄j+ 1
2
)

− h4j [(
Rσ2 +Q4((1 + 3γ)σ + 3γ) + P

24
)y′′′j

∂f

∂y′j

+ (
Rσ2

8
+ 2Qδ +

P

8
)y′′j

∂f

∂yj
] + T 3

j . (2.36)

The coefficients of order four of hj is equated to zero to get the value
of δ, γ so as to raise the order of local truncation error T 3

j . Thus, we get
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γ = − (Rσ2+P+4Qσ)
12Q(1+σ) , δ = − (R+Pσ2)

16Q . In case of uniform mesh, the local trun-

cation error becomes of order six. We also ensure the necessary condition for
convergence of the methods provided by Jain [10], that the coefficients A,B in
method (2.35)and in method (2.36) P,Q and R are positive for σ > 0. Hence,
both the proposed off-step three point discretization using the approximate so-
lutions Yj at xj are as follows:

Yj+1 − (σ + 1)Yj + σYj−1 = h2jσ(AF̄j− 1
2

+BF̄j+ 1
2
), (2.37)

and

Yj+1 − (σ + 1)Yj + σYj−1 = h2jσ(RF̄j+ 1
2

+QF̂j + PF̄j− 1
2
). (2.38)

3 Generalised Methods

We develop the generalized methods by using the following approximations and
scalar methods developed in the last section, thus, solving (1.1)− (1.2) we get,

Sj = (σ + 1)σ, (3.1)

Ȳ ij+ 1
2

=
Y ij + Y ij+1

2
, (3.2)

Ȳ ij− 1
2

=
Y ij + Y ij−1

2
, (3.3)

Ȳ ′
i
j+ 1

2
=

Y ij − Y ij+1

hjσ
, (3.4)

Ȳ ′
i
j− 1

2
=

Y ij − Y ij−1
hj

, (3.5)

Ȳ ′
i
j =

Y ij+1 − (1− σ2)Y ij − σ2Y ij−1
Sjhj

, (3.6)
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f̄ ij = f i(xj , Yj , Y
(1)
j , Y

(2)
j , ..., Y ij , ..., Y

(M)
j , Ȳ ′

(1)
j , Ȳ ′

(2)
j , ..., Ȳ ′

i
j , ..., Ȳ

′(M)
j ),(3.7)

f̄ ij− 1
2

= f i(xj− 1
2
, Ȳj− 1

2
, Ȳ

(1)

j− 1
2

, Ȳ
(2)

j− 1
2

, ..., Ȳ ij− 1
2
, ..., Ȳ

(M)

j− 1
2

,

Ȳ ′
(1)

j− 1
2
, Ȳ ′

(2)

j− 1
2
, ..., Ȳ ′

i
j− 1

2
, ..., Ȳ ′

(M)

j− 1
2
), (3.8)

f̄ ij+ 1
2

= f i(xj+ 1
2
, Ȳj+ 1

2
, Ȳ

(1)

j+ 1
2

, Ȳ
(2)

j+ 1
2

, ..., Ȳ ij+ 1
2
, ..., Ȳ

(M)

j+ 1
2

,

Ȳ ′
(1)

j+ 1
2
, Ȳ ′

(2)

j+ 1
2
, ..., Ȳ ′

i
j+ 1

2
, ..., Ȳ ′

(M)

j+ 1
2
), (3.9)

Ŷ ij = Y ij + h2jδi(f̄
i
j+ 1

2
+ f̄ ij− 1

2
), (3.10)

Ŷ ′
i

j = Ȳ ′
i
j + hjγi(f̄

i
j+ 1

2
− f̄ ij− 1

2
), (3.11)

f̂ ij = f i(xj , Ŷj , Ŷ
(1)
j , Ŷ

(2)
j , ..., Ŷ ij , ..., Ŷ

(M)
j , Ŷ ′

(1)

j , Ŷ ′
(2)

j , ..., Ŷ ′
i

j , ..., Ŷ
′(M)

j ),(3.12)

Y ij+1 − (1 + σ)Y ij + σY ij−1 = h2jσ(Af̄ ij− 1
2

+Bf̄ ij+ 1
2
), (3.13)

Y ij+1 − (1 + σ)Y ij + σY ij−1 = h2jσ(Rf̄ ij+ 1
2

+Qf̂ ij + P f̄ ij− 1
2
), (3.14)

where

A =
(2 + σ)

6
, B =

(2σ + 1)

6
, (3.15)

P =
khj − sin khj cos khj

k2khj sin khj
, R =

2khj+1 − sin khj+1

2k2khj+1 sin khj+1
, (3.16)

Q =
2(σ + 1)( cos(khjσ − khj)− cos(khjσ + khj))− 2σkhj sin(khjσ + khj)

(khj)2( cos(khjσ − khj)− cos(khjσ + khj))
.(3.17)

4 Illustration of the Method

Consider a linear singular BVP of fourth order as follows:

d4y(x)

dx4
= a(x)y(x) + d(x), x 6= 0, (4.1)

y(0) = c1, y(1) = d1,
d2y

dx2
(0) = c2,

d2y

dx2
(1) = d2. (4.2)

where a(x) is singular and c1, c2, d1, d2 are real constants. Using (1.1), we
write the problem (4.1)− (4.2) as follows:

d2y

dx2
(x) = z(x), (4.3)

d2z

dx2
(x) = a(x)y(x) + d(x), (4.4)

y(0) = c1, y(1) = d1, (4.5)

z(0) = c2, z(1) = d2. (4.6)
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We use the method(3.14) to the BVP (4.3)− (4.6). The method is given as
follows:

σYj−1 − Yj(1 + σ) + Yj+1 = h2
jσ(RZ̄j+ 1

2
+QẐj + PZ̄j− 1

2
), (4.7)

σZj−1 − Zj(1 + σ) + Zj+1 = h2
jσ(R(aj+ 1

2
Ȳj+ 1

2
+ dj+ 1

2
)

+Q(aj Ŷj + dj) + P (aj− 1
2
Ȳj− 1

2
+ dj− 1

2
)). (4.8)

Then, we approximate aj± 1
2

for the BVP (4.7)− (4.8) as

aj− 1
2

= aj −
hja
′
j

2
+
h2ja
′′
j

8
+O(h3j ), (4.9)

aj+ 1
2

= aj +
σhja

′
j

2
+

(hjσ)2a′′j
8

+O(h3j ). (4.10)

Similarily, we approximate dj± 1
2
. Using the relations (4.9)−(4.10) in (4.7)−(4.8)

we get,

σYj−1 − Yj(1 + σ) + Yj+1 = h2
jσ(RZ̄j+ 1

2
+QẐj + PZ̄j− 1

2
), (4.11)

σZj−1 − Zj(1 + σ) + Zj+1 = h2
jσ(R(aj+ 1

2
Ȳj+ 1

2
+ dj+ 1

2
)

+Q(aj Ŷj + dj) + P (aj− 1
2
Ȳj− 1

2
+ dj− 1

2
)).(4.12)

Finally, substituting (3.1)− (3.12) in (4.11)− (4.12) we get the difference equation
of BVP (4.3)− (4.6)as follows:

[
b11j b12j
b21j b22j

] [
Yj−1

Zj−1

]
+

[
d11j d12j
d21j d22j

] [
Yj
Zj

]
+

[
p11j p12j
p21j p22j

] [
Yj+1

Zj+1

]
=

[
ψ1
j

ψ2
j

]
, (4.13)

9
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where

b11j = −σ +
h4
j

2
σ2Qδaj , b12j =

h2
jσ

2

2
,

b21j =
h2
j

2
σ2Raj− 1

2
, b22j = −σ +

h4
j

2
σ2Qδaj ,

d11j = (1 + σ) +Qδajh
4
jσ

2, d12j =
h2
jσ

2(2Q+R+ P )

2
,

d21j =
σ2

2
[h2
jaj(2Q+R+ P ) + h3

j (−P + σR)
a′j
2

+R
h4
jσ

2a′′j
8

],

diag22j = (1 + σ) +Qδajh
4
jσ

2,

p11j = −1 +
ajh

4
jσ

2Qδ

2
, p12j =

Rh2
jσ

2

2
,

p21j = h2
jσ

2R

2
aj+ 1

2
, p22j = −1 +

ajh
4
jσ

2Qδ

2
,

ψ1
j = −h4

j2bjQσ
2,

ψ2
j = −σ2[h2

jdj(2Q+ P +R) +
d′jh

3
j

2
(−P +R) +

d′′j h
4
j

8
(R+ P )].

5 Convergence Analysis

We provide the convergence of method (3.14) for the coupled second order BVP (4.3)−
(4.6). The convergence of scalar singular BVP has been already provided by Mohanty
[23]. Now, once the condition (4.5) − (4.6) is substituted in the difference equation
(4.13), it is written in matrix form as follows:

HŶ + ψ̂ =
[
bj dj pj

]  ˆYj−1

Ŷj
ˆYj+1

+ ψ̂j = 0̂, (5.1)

where bj , pj , dj are block elements of order 2 in tridiagonal block matrix H.

Ŷ = [Ŷ1, Ŷ2, ..., Ŷj , ...ŶN−1]T , where Ŷj = [Yj , Zj ]
T ,

ψ̂ = [ψ̂1 + b1[c1, c2]T , ψ̂2, ..., ψ̂j , ...ψ̂N−1 + pN−1[d1, d2]T ]T , where ψ̂j = [ψ1
j , ψ

2
j ]T ,

0̂ is a zero vector with N − 1 components.

Let [[y1, z1]T , [y2, z2]T ......, [yj , zj ]
T , ...[yN−1, zN−1]T ]T ∼= ŷ be the exact solution satisfying

Hŷ + ψ̂ + T̂ 3
j = 0, (5.2)

where T̂ 3
j is the truncation error, then the error vector E is given by ŷ− Ŷ. We get the error

equation from(5.1)and(5.2), i.e., HE = T̂ 3
j . (5.3)

For some k1, k2 > 0, let |aj |≤ k1 and |a′j |≤ k2. Using (4.13) and neglecting the
higher order terms of hj we get,

‖pj‖∞≤ max
1≤j≤N−2

1 +
h2
jσ

2P

2
,

1 +
h2
jσ

2P

2
(k1 +

hjσ

2
k2),

(5.4)
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‖bj‖∞≤ max
2≤j≤N−1

σ +
h2jσ

2R

2
,

σ +
h2jσ

2R

2
(k1 +

hj

2
k2).

(5.5)

We prove the irreducibility of H for sufficiently small hj as well as ‖bj‖∞≤ σ and
‖pj‖∞≤ 1 from (5.4)− (5.5).
Let the sum of elements of jth row of H be sumj ,

sumj =

σ +
h2
jσ

2

12
(P + 2(R+Q)), j = 1,

σ +
h2
jσ

2a′j
24

(R+ 2(P +Q))aj + σ2

2
(h2
jRaj + h3

j (−P + 2Rσ)), j = 2,
(5.6)

sumj =


h2
jσ

2

2
(R+Q+ P ), j = 3(2)N − 4,

h2
jσ

2aj

2
(R+Q+ P ) +

h3
jσ

2a′j
4

(−2P + σR), j = 4(2)N − 3,
(5.7)

sumj =

1 +
h2jσ

2

12
(R+ 2(Q+ P )), j = N − 2,

1 +
h2jσ

2aj

12
(R+ 2(Q+ P )) +

h3
jσ

2a′j
4

(−2R+ Pσ), j = N − 1.
(5.8)

We can easily prove that H is Monotone using 0 < L ≤ min(L1, L2) in (5.6)− (5.8)
and for sufficiently small hj . Therefore, H−1 ≥ 0 and exist. Hence by (5.3) we have,

||E||= ||H−1||||T̂ 3
j ||. (5.9)

Now for sufficiently small hj , by (2.23)− (2.25) and (5.6)− (5.8) we can say that:

sumj >


h2
jσ(2+3σ)

12
, j = 1,

h2
jσ(2+3σ)L

12
, j = 2,

(5.10)

sumj ≥


h2
j (σ+1)

2
, j = 3(2)N − 4,

h2
j (σ+1)L

2
, j = 4(2)N − 3,

(5.11)

sumj >


h2
jσ(2σ+3)

12
, j = N − 2,

h2
jσ(2σ+3)L

12
, j = N − 1.

(5.12)

We can also say for σ 6= 0:

sumj > max[
h2
jσ(2 + 3σ)

12
,
h2
jσ(2 + 3σ)L

12
]

=
h2
jσ(2 + 3σ)L

12
, for j = 1, 2, (5.13)

sumj ≥ max[
h2
j (1 + σ)

2
,
h2
j (1 + σ)L

2
]

=
h2
j (1 + σ)L

2
, for j = 3(1)N − 3, (5.14)

sumj > max[
h2
jσ(2σ + 3)

12
,
h2
jσ(2σ + 3)L

12
]

=
h2
jσ(2σ + 3)L

12
, for j = N − 2, N − 1. (5.15)
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Then, we use a result proved by Varga [33] for i = 1(1)N − 1,

Hi,j
−1 ≤ 1

sumj
, where Hi,j

−1 is the (i, j)thelement of H−1 (5.16)

By using (5.13)− (5.15), we have

1

sumj
≤


12

h2
j (3σ+2)σL

, j = 1, 2,

2
h2
j (σ+1)L

, j = 3(1)N − 3,

12
h2
j (2σ+3)σL

, j = N − 2, N − 1.

(5.17)

Now, we show that the error defined in equation (5.9) is bounded and is of order O(h3
j ).

For this, we define norm of H−1 and T̂ 3
j such that,

‖ Hj,i−1 ‖= max
j∈[1,N−1]

N−1∑
i=1

| Hj,i−1 |, also ‖ T ‖= max
j∈[1,N−1]

| T̂ 3
j | . (5.18)

Thus, using (5.3) and (5.16)− (5.18) we get the bound for the error term as follows:

‖ E ‖≤ O(h5
j )

12

h2
jLσ

(6σ3 + 18σ2 + 16σ + 5)

(6σ3 + 19σ2 + 19σ + 6)
= O(h3

j ). (5.19)

This proves the method (3.14) has third order convergence for BVPs (4.1)− (4.2).
Therefore, we can say that method (3.14) has third order convergence for BVP (1.1)−
(1.2). Similarly, method (3.13) has second order convergence.

6 Numerical Illustrations

We have solved seven problems. For quasi-variable mesh and uniform mesh, we have
tabulated root mean square errors and maximum absolute errors respectively in Tables
1-7. We have chosen h1 = (1−σ)

(1−σN )
, σ 6= 1. The remaining hj ’s are calculated by the

relation hj = σhj−1, j = 2(1)N − 1. Figures 1-7 presents the graphs of numerical
solution and the exact solution in case of fourth order method based on uniform mesh.
Related numerical results are provided in Table 1-7.

Gauss Elimination and Newton’s method for block elements has been used for
solving system of linear and nonlinear BVPs respectively with initial approximation
y0 = 0. The order of convergence (OC) for fourth order method based on uniform
mesh is also provided. Matlab 07 has been used for doing all calculations.

Problem 6.1 (Nonlinear boundary value problem)

d4y(x)

dx4
= 6e−4 y − 12

(1 + x)4
,

y(0) = 0, y(1) = .6931,
d2y

dx2
(0) = −1,

d2y

dx2
(1) = −.25.

12
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Table 1: Problem 6.1
Off-step mesh |

N Method1 Method2 | Uniform mesh method [29]
8 4.4398e-003 4.8610e-006 | 7.2499e-007 0.37e-005
16 2.0758e-003 1.2961e-006 | 4.6937e-008 0.29e-006
32 1.3702e-003 6.7628e-007 | 2.9600e-009 0.19e-007

The exact solution is given by y(x) = log(1 + x). In Table 1, results for quasi-variable
mesh taking σ = 0.9 and for uniform mesh is tabulated.

Problem 6.2 (Sixth order linear boundary value problem ):

d6y(x)

dx6
+ y(x) = 6(5 sin(x) + 2x cos(x)), x ∈ [0, 1]

y(0) = 0,
d2y

dx2
(0) = 0,

d4y

dx4
(0) = 0,

y(1) = 0,
d2y

dx2
(1) = 3.84416,

d4y

dx4
(1) = −14.42007.

The exact solution is y(x) = (x2 − 1) sin(x). In Table 2, results for quasi-variable
mesh taking σ = 0.9 and for uniform mesh is tabulated.

Problem 6.3 (Fourth order non linear boundary value problem)

d4y(x)

dx4
= 3(

dy

dx
)2 + 4.5y3, x ∈ [0, 1]

y(0) = 4,
d2y

dx2
(0) = 24, y(1) = 1,

d2y

dx2
(1) = 1.5e.

The exact solution is y(x) = 4
(1+2x+x2)

. In Table 3, results for quasi-variable mesh

taking σ = 0.9 and for uniform mesh is tabulated.

Figure 1: Exact solution vs Numerical solution in uniform mesh method
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Table 2: Problem 6.2
Off-step mesh |

N Method1 Method2 | Uniform mesh method [3] [26]

8 6.4952e-004 4.2946e-006 | 6.5901e-007 1.5379 e-006 8.1514e-005
16 5.9397e-004 9.9183e-007 | 4.1831e-008 1.9790 e-007 2.1052 e-005
32 5.1433e-004 4.7874e-007 | 2.6133e-009 4.0596 e-008 5.3084 e-006

Table 3: Problem 6.3
Off-step mesh |

N Method1 Method2 | Uniform mesh method [25]
8 1.2451e-003 8.4710e-005 | 2.2780e-005 1.44 e-003
16 2.7555e-004 2.1499e-005 | 1.5362e-006 9.33 e-004
32 4.0919e-004 9.7519e-006 | 9.8628e-008 5.90 e-005
64 3.1887e-004 6.4390e-006 | 6.2300e-009 3.69 e-006

Problem 6.4 (Sixth order non linear boundary value problem)

d6y(x)

dx6
= y2e−x, x ∈ [0, 1]

y(0) = 1, y(1) = e,

d2y

dx2
(0) = 1,

d2y

dx2
(1) = e,

d4y

dx4
(0) = 1,

d4y

dx4
(1) = e.

The exact solution is y(x) = ex. In Table 4, results for quasi-variable mesh taking
σ = 0.9 and for uniform mesh is tabulated.

Figure 2: Exact solution vs Numerical solution in uniform mesh method
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Table 4: Problem 6.4
Off-step mesh |

N Method1 Method2 | Uniform mesh method [14]
8 2.64952e-004 2.0457e-007 | 5.1651e-008 7.02e-006
16 5.9397e-004 4.9805e-008 | 3.2495e-009 4.35e-006
32 5.1433e-004 2.4007e-008 | 2.0334e-010 7.87e-007

Problem 6.5 (Fourth order non-linear singular boundary value problem)

x
d4y(x)

dx4
+

4d3y(x)

dx3
= xy2 − 4 cos(x)− xsin(x), x 6= 0.

The exact solution is y(x) = sin(x). In Table 5, results for quasi-variable mesh
taking σ = 0.9 and for uniform mesh is tabulated.

Figure 3: Exact solution vs Numerical solution in uniform mesh method

Figure 4: Exact solution vs Numerical solution in uniform mesh method
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Table 5: Problem 6.5
Off-step mesh |

N Method1 Method2 | Uniform mesh method OC
8 1.4374e-004 4.2067e-006 | 1.6791e-006 -
16 8.8426e-005 1.2629e-006 | 1.5413e-007 3.4455
32 5.7765e-005 6.0728e-007 | 1.2889e-008 3.5810
64 4.0494e-005 4.0146e-007 | 7.7938e-010 4.1476

Problem 6.6 (Sixth order non-linear singular boundary value problem)

x
d6y(x)

dx6
+ 6

d5y(x)

dx5
+ 2xy(x) = xey, x 6= 0.

The exact solution is y(x) = ex. In Table 6, results for quasi-variable mesh taking
σ = 0.9 and for uniform mesh is tabulated.

Table 6: Problem 6.6
Off-step mesh |

N Method1 Method2 | Uniform mesh method OC
8 6.1864e-004 5.6862e-007 | 4.5498e-007 -
16 3.1623e-004 1.4817e-007 | 3.7876e-008 3.5865
32 2.2083e-004 7.6631e-008 | 2.9520e-009 3.6815
64 2.0493e-004 6.7278e-008 | 2.2125e-010 3.7379

Figure 5: Exact solution vs Numerical solution in uniform mesh method
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Problem 6.7 (System of second order boundary value problem)

d2y(x)

dx2
+
dy(x)

dx
+ xy(x) +

dz(x)

dx
+ 2xz(x) = g1(x),

d2z(x)

dx2
+ z(x) + 2

dy(x)

dx
+ x2y(x) = g2(x),

y(0) = 0, z(0) = 1, y(1) = 0, z(1) = 1,

where g1(x) = −2 cos(x)(1 + x) + πcos(xπ) + 2xsin(xπ) + 2 sin(x)(2x − 2 − x2) ,
g2(x) = −4 cos(x)(x− 1) + 2 sin(x)(2− x2 + x3) + (1− π2) sin(xπ) and x ∈ [0, 1]. The
exact solution is y(x) = 2(1− x) sin(x), z(x) = sin(xπ).

Table 7: Problem 6.7
z | y

N [8] Uniform mesh method | [8] Uniform mesh method
.08 7.5e-004 3.5686e-007 | 2.2e-004 1.8284e-006
.24 8.2e-004 1.4754e-006 | 2.3e-004 2.0723e-006
.40 6.5e-004 2.5123e-006 | 2.3e-004 6.2430e-007
.56 2.8e-004 3.1366e-006 | 2.2e-004 3.9577e-006
.72 2.6e-004 2.9899e-006 | 2.6e-004 5.6498e-006
.88 8.0e-004 1.2382e-005 | 5.5e-004 3.9716e-006
.96 4.8e-004 1.4964e-006 | 3.1e-004 1.5857e-006

7 Final Remarks

In this paper, two methods of second and third order respectively have been developed
to solve singular BVPs both linear as well as nonlinear. For numerical illustration, we
have considered seven problems consisting of fourth and sixth order linear and nonlin-
ear BVPs. Table 1−4, 7 proves improvement in results when compared with problems

Figure 6: Exact solution vs Numerical solution in uniform mesh method
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solved by methods using extrapolation, polynomial and non polynomial splines and
also by using reproducing kernel space method.

In our methods minimal grid points i.e., three grid points at a time has been used
as compared to existing methods. Due to the use of three grid points, the numerical
scheme is converted to a tri-diagonal representation of system of difference equations
which can be easily solved by any standard method available in the literature. Also,
due to the use of off-step mesh, singularity has been controlled in singular BVPs.
We have also solved nonlinear singular BVP and so far such kind of BVP has not
been solved. Therefore, for such problems we have presented the numerical order of
convergence(OC) based on uniform mesh.

The methods developed are effective and straight forward and can be extended to
solve boundary value problems with cartesian as well as polar coordinates. Due to
the ability to operate with polar coordinate, many problems on fluid flow with polar
symmetry can be attended. Moreover, we can also use the methods to solve wide
variety of higher order singularly perturbed BVPs.
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