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Abstract

A mathematical model is developed to predict the optimum level of
measures required to control a two-strain typhoid infection. The model
considers symptomatic individuals and carriers together with environmen-
tal bacteria with different sensitivities to antimicrobials. Treatment for
symptomatic individuals in each strain and use of sanitation and proper
hygiene practices are considered as control measures. Our simulation re-
sults show that combining the three control interventions highly influ-
enced the number of symptomatic individuals and environmental bacteria
in both the strains. However, there are still a significant number of asymp-
tomatic carriers in both the strains. This result shows that combating a
two-strain typhoid infection requires some control interventions that re-
duce the number of asymptomatic carriers to near zero, along with optimal
treatment combined with proper hygiene/sanitation practices. Further,
efficiency analysis is used to investigate the impact of each control strat-
egy on reducing the number of infected individuals and bacteria in both
the strains. The study result suggests that implementing the combination
of all the three control interventions is the most effective control strategy.

Key words: Salmonella Typhi; Two-strain typhoid infection; Asymp-
tomatic carriers; Efficiency analysis
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1 Introduction

Typhoid, a disease caused by Salmonella Typhi bacteria, is a significant cause
of illness and death in low-resource regions worldwide, especially Sub-Saharan
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Africa and South/Southeast Asia [1]. It is a severe febrile illness often accom-
panied by headache, loss of appetite, malaise, abdominal pain, diarrhea, and
(in severe cases) intestinal perforation and neurological complications [2]. It is
estimated to cause nearly 12 million cases and over 128 000 deaths globally each
year [6]. It is estimated that the case fatality rate for untreated patients ranges
between 10 and 20%, but drops to 1–4% with appropriate and timely antimicro-
bial treatment [4, 3, 5]. The infection is usually spread through contaminated
food and water from the environment and direct contact with an infected person
[7, 8].

Typhoid fever can be prevented and controlled through public health inter-
ventions such as providing safe drinking water, promoting hygiene and sanita-
tion, and ensuring adequate and timely patient care. Antimicrobial treatment
is the cornerstone for reducing severe illness and even death. However, misuse
of antimicrobials for treatment leads to the emergence of resistant strains of
Salmonella Typhi, known as treatment-induced acquired resistance [9, 10]. In
typhoid endemic areas, clinicians frequently prescribe antimicrobials to patients
with suspected typhoid without blood culture confirmation. This practice re-
sults in delayed treatment leading to the development of antimicrobial resistance
[3, 11, 12, 13]. Treatment-induced acquired resistance has complicated treat-
ment, increasing morbidity and mortality, and is considered one of the most
significant challenges in managing the disease [14, 15].

In existing litrature, several typhoid epidemiological models have been devel-
oped and analyzed to better understand the transmission dynamics of typhoid
[16, 17, 18, 19, 20, 21, 22, 23]. Among them, only a few have explored the
effect of control strategies for typhoid with optimal control theory [16, 17]. Op-
timal control theory is a mathematical optimization that deals with finding a
control for a dynamical system over a period of time. Although the impor-
tance of optimal control theory in epidemiology is well recognized, its applica-
tions in typhoid dynamics are scarce. No attempts have been made to predict
the optimal level of control measures required to combat a two-strain typhoid
infection. Our aim is to investigate the optimal control strategies in a two-
strain dynamic model involving antimicrobial-sensitive and resistant strains of
typhoid. A mathematical model for a two-strain typhoid dynamics is explored
considering treatment-induced acquired resistance and re-infection [24]. Three
time-dependent controls are introduced in this model to explore the optimal
control strategy for controlling the disease.

The paper is organized as follows: In Section 2, the model in [24] is modified
by adding three time-dependent controls u1(t), u2(t) and u3(t), and three posi-
tive parameters ϵ, b1 and b2. Also, a description of these parameters is given. In
Section 3, a mathematical analysis of the time-dependent model is performed.
In Section 4, numerical simulations and discussions of the corresponding results
are presented. A short conclusion of the study is made in Section 5.
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2 Model with controls

The mathematical model developed by Irena and Gakkhar [24] is considered to
investigate the infection dynamics in a two-strain typhoid disease. The state
variables Ij , Cj , and Bj represent the number of symptomatic infectious indi-
viduals, asymptomatic carriers, and bacteria for the strain j, respectively, while
S represents the susceptible individuals. The model presented in [24] is

dS
dt = π − µS − (λ1 + λ2)S + (1− p)r1I1 + r2I2
dI1
dt = (1− α)[λ1S − ψλ2I1]− (µ+ d1 + r1)I1 + ϕ1C1

dC1

dt = αλ1S − ψλ2C1 − (µ+ ϕ1)C1

dB1

dt = δ1I1 + ω1C1 − ξ1B1

dI2
dt = (1− α)λ2[S + ψ(I1 + C1)] + pr1I1 − (µ+ d2 + r2)I2 + ϕ2C2

dC2

dt = αλ2(S + ψC1)− (µ+ ϕ2)C2

dB2

dt = δ2I2 + ω2C2 − ξ2B2

(2.1)

where

λj =
βj(Ij + θCj)

N
+ ηf(B)gj(B)

and j = 1, 2 represent the sensitive and resistant strains, respectively.
On the basis of sensitivity analysis of the model, three time-dependent con-

trols are introduced in the model: (i) treatment of the symptomatic individuals
in each strain (u1(t), u2(t)), which were constant parameters in our previous
work [24], and (ii) proper hygiene/sanitation practices in order to prevent con-
tamination of food and water to reduce both direct and environmental trans-
mission (u3(t)). The first two controls, u1 and u2, also decrease the bacteria
excretion of symptomatic individuals in both strains so that the bacteria shed-
ding rates by symptomatic individuals δ1 and δ2 in model (2.1) are replaced by
(1− (1− p)u1)δ1 and (1− ϵu2)δ2, respectively. The parameter ϵ represents the
efficacy of treatment for symptomatic individuals with resistant strain. Also,
the second control u3 increases the decay rate of bacteria so that the bacteria
decay rates ξ1 and ξ1 are replaced by ξ1 + b1u3 and ξ2 + b2u3, respectively.
The parameters b1 and b2 denote the bacteria decay rates (sensitive and AMR
strains, respectively) induced by sanitation and proper hygiene practices. The
schematic diagram in Figure 1 shows the transmission dynamics of the time-
dependent model. Thus, the resulting dynamic model is given by the following
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Figure 1: Flow diagram of the model.

system of nonlinear ODEs:

dS
dt = π − µS − (1− u3)(λ1 + λ2)S + (1− p)u1I1 + ϵu2I2
dI1
dt = (1− u3)(1− α)[λ1S − ψλ2I1]− (µ+ d1 + u1)I1 + ϕ1C1

dC1

dt = (1− u3)[αλ1S − ψλ2C1]− (µ+ ϕ1)C1

dB1

dt = δ1(1− (1− p)u1)I1 + ω1C1 − (ξ1 + b1u3)B1

dI2
dt = (1− α)(1− u3)λ2[S + ψ(I1 + C1)] + pu1I1

−(µ+ d2 + ϵu2)I2 + ϕ2C2

dC2

dt = (1− u3)αλ2(S + ψC1)− (µ+ ϕ2)C2

dB2

dt = δ2(1− ϵu2)I2 + ω2C2 − (ξ2 + b2u3)B2

(2.2)

The model is associated with the nonnegative initial conditions:

S(0), Ij(0), Cj(0), Bj(0) for j = 1, 2.

The description of the associated model parameters are given in Table 1 and
are assumed to be nonnegative.

4

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.2, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

358 Tsegaye Kebede Irena 355-369



Table 1: Description the model parameters.
Parameter Description

α Fraction of newly infected individuals who becomes asymp-
tomatic carriers

β1, β2 Ingestion rate of sensitive and resistant strains of bacteria
through human-to-human interaction

δ1, δ2 Shedding rate of bacteria by symptomatic cases with sensitive
and resistant strains

ϵ Efficacy of treatment of symptomatic individuals with resistant
strain

η Ingestion rate of bacteria from the contaminated environment
θ Relative infectiousness of asymptomatic carriers
µ Natural mortality rate of human population

ξ1, ξ2 Decay rate of sensitive and resistant strains of bacteria in the
environment

π Influx rate of individuals into susceptible class
ϕ1, ϕ2 Symptoms development rate by asymptomatic carriers with

sensitive and resistant strains
ψ Factor reducing the risk of re-infection with resistant strain

due to activates of immune cells to the previous infection with
a sensitive strain

ω1, ω2 Shedding rate of bacteria by asymptomatic carriers with sen-
sitive and resistant strains

b1, b2 Sanitation-induced bacteria decay rates (sensitive and resistant
strains)

d1, d2 Disease-induced death rate for symptomatic cases with sensi-
tive and resistant strains

p Fraction of those symptomatic individuals infected with a sen-
sitive strain who acquire treatment-induced resistance

The objective functional to be minimized is

J(u1, u2, u3) =

∫ T

0

 2∑
i=1

Ai(Ii + Ci) +A3

2∑
j=1

Bj +
1

2

3∑
k=1

Dku
2
k

 dt (2.3)

subject to the state system (2.2), where Ai and Di (i = 1, 2, 3) are appropriate
weight constants. The aim is to minimize the total number of infective individ-
uals as well as bacteria while keeping the implementation cost of the strategies
associated to the controls low.
We seek to find an optimal control triplet (u∗1, u

∗
2, u

∗
3) such that

J(u∗1, u
∗
2, u

∗
3) = min

Ω
J(u1, u2, u3)

where
Ω =

{
(u1, u2, u3) ∈ L1(0, T ) | 0 ≤ ui ≤ 1, i = 1, 2, 3

}
5
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is the control set.

3 Optimal control analysis

The existence of optimal control triplet (u∗1, u
∗
2, u

∗
3) is guaranteed due to a priori

boundedness of the state solutions, convexity of the integrand of J on Ω, and
the Lipschitz property of the state system [25].

The necessary conditions that an optimal solution must satisfy come from
Pontryagin’s Maximum Principle [26]. This principle converts (2.2) and (2.3)
into a problem of minimizing pointwise a Hamiltonian H with respect to u1, u2
and u3:

H = A1(I1 + C1) +A2(I2 + C2) +A3(B1 + B2) +
D1

2
u21 +

D2

2
u22 +

D3

2
u23

+λ1[π − µS − (1− u3)(λ1 + λ2)S + (1− p)u1I1 + ϵu2I2]

+λ2[(1− u3)(1− α)(λ1S − ψλ2I1)− (µ+ d1 + u1)I1 + ϕ1C1]

+λ3[(1− u3)(αλ1S − ψλ2C1)− (µ+ ϕ1)C1]

+λ4[δ1(1− (1− p)u1)I1 + ω1C1 − (ξ1 + b1u3)B1] (3.1)

+λ5[(1− u3)(1− α)λ2(S + ψ(I1 + C1)) + pu1I1

−(µ+ d2 + ϵu2)I2 + ϕ2C2]

+λ6[(1− u3)αλ2(S + ψC1)− (µ+ ϕ2)C2]

+λ7[δ2(1− ϵu2)I2 + ω2C2 − (ξ2 + b2u3)B2]

where λi, i = 1, 2, ..., 7 are the adjoint functions.
By applying Pontryagin’s Maximum Principle [26] and the existence result

for the optimal control triplet from [25], the following adjoint system is obtained
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together with transversality conditions λk(T ) = 0:

dλ1
dt

=
1

B1 + B2

× [(1− u3)ηf(B)((λ1 − (1− α)λ2 − αλ3)B1 + (λ1 − (1− α)λ5 − αλ6)B2)

+ µ(B1 + B2)λ1]

+
(1− u3)

N2
[B1(λ1 − (1− α)λ2 − αλ3)(I1 + θC1)(I1 + C1 + I2 + C2)]

+
β2(1− u3)(I2 + θC2)

N2
[(λ1 − (1− α)λ5 − αλ6 + (λ5 − λ2)(1− α)ψ)I1

+ (λ1 − (λ5(1− α) + αλ− 6)(1− ψ)− ψλ3)C1

+ (λ1 − (1− α)λ5 − αλ6)I2 + (λ1 − (1− α)λ5 − αλ6)C2],

dλ2
dt

=−A1 − [(1− p)u1 − S(1− u3)
β1(S + (1− θ)C1 + I2 + C2)− β2(I2 + θC2)

N2
]λ1

+ (µ+ d1 + u1)λ2

− (1− u3)(1− α)[
β1S(S + (1− θ)C1 + I2 + C2)

N2
− β2ψ(S + C1 + I2 + C2)(I2 + θC2)

N2

− ψηf(B)B2

B1 + B2
]λ2 − (1− u3)[

αβ1S(S + (1− θ)C1 + I2 + C2)

N2
+
β2ψC1(I2 + θC2)

N2
]λ3

− (1− u1)δ1λ4 − pu1λ5

− (1− u3)(1− α)[
β2(I2 + θC2)(S(ψ − 1) + ψ(I2 + C2))

N2
+
ψηf(B)B2

B1 + B2
]λ5

+
(1− u3)αβ2(S + ψC1)(I2 + θC2)

N2
λ6,

dλ3
dt

=−A1 + S(1− u3)
β1(−I1 + θ(S + I1 + I2 + C2))− β2(I2 + θC2)

N2
λ1 + (µ+ ϕ1)λ3

+ [(1− u3)(1− α)
β1S(−I1 + θ(S + I1 + I2 + C2)) + β2ψI1(I2 + θC2)

N2
+ ϕ1]λ2

− (1− u3)
αβ1S(−I1 + θ(S + I1 + I2 + C2))− β2ψ(I2 + θC2)(S + I1 + I2 + C2)

N2
λ3

+ (1− u3)
ψηf(B)B2

B1 + B2
λ3 − ω1λ4

− (1− u3)(1− α)[
β2(I2 + θC2)(S(ψ − 1) + ψ(I2 + C2))

N2
+
ψηf(B)B2

B1 + B2
]λ5

− (1− u3)α[
β2(I2 + θC2)(S(ψ − 1) + ψ(I1 + I2 + C2))

N2
+
ψηf(B)B2

B1 + B2
]λ6,
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dλ4
dt

=−A3 +
(1− u3)ηS

(1 + B1)2(1 + B2)
λ1 + (ξ1 + b1u3)λ4

− (1− u3)ηf(B)B2

(B1 + B2)2
[(1− α)((S + ψI1)λ2 − (S + ψ(I1 + C1))λ5)

+ (αS + ψC1)λ3 − α(S + ψC1)λ6]− (1− u3)η[
B1S((1− α)λ2 + αλ3)

(1 + B1)2(1 + B2)(B1 + B2)

+
B2{−ψC1λ3 + αλ6(S + ψC1) + ψ(−1 + α)λ2I1 + (1− α)λ5 (S + ψ(C1 + I1))}

(1 + B1)2(1 + B2)(B1 + B2)
],

dλ5
dt

=−A2 − [u2 + S(1− u3)
β1(I1 + θC1)− β2(S + I1 + C1 + (1− θ)C2)

N2
]λ1

+ (1− u3)(1− α)
β1S(I1 + θC1) + β2ψI1(S + I1 + C1 + (1− θ)C2)

N2
λ2

+ (1− u3)
β1αS(I1 + θC1) + β2ψC1(S + I1 + C1 + (1− θ)C2)

N2
λ3

+ [(µ+ d2 + u2)−
(1− u3)(1− α)(S + I1 + C1 + (1− θ)C2)(S + ψ(I1 + C1))β2

N2
]λ5

− (1− u3)α(S + ψC1)(S + I − 1 + C1 + (1− θ)C2)β2
N2

λ6 − (1− ϵu2)δ2λ7,

dλ6
dt

=−A2 + S(1− u3)
β2(−I2 + θ(S + I1 + C1 + I2))− β1(I1 + θC1)

N2
λ1

+ (1− u3)(1− α)
β1S(I1 + θC1) + β2ψI1(−I2 + θ(C1 + S + I1 + I2))

N2
λ2

+ (1− u3)
αβ1S(I1 + θC1) + β2ψC1(−I2 + θ(S + I1 + C1 + I2))

N2
λ3

− [
(1− u3)(1− α)(S + ψ(I1 + C1))(−I2 + θ(S + I1 + C1 + I2))β2

N2
+ ϕ2]λ5 + (µ+ ϕ2)λ6

− (1− u3)α(S + ψC1)(−I2 + θ(S + I1 + C1 + I2))β2
N2

λ6 − ω2λ7,

dλ7
dt

=−A3 +
(1− u3)ηS

(1 + B1)(1 + B2)2
λ1 + (ξ1 + b1u3)λ4

− (1− u3)ηf(B)B1

(B1 + B2)2
[(1− α)((S + ψI1)λ2 − (S + ψ(I1 + C1))λ5)

+ (αS + ψC1)λ3 − α(S + ψC1)λ6]− (1− u3)η[
B1S((1− α)λ2 + αλ3)

(1 + B1)(1 + B2)2(B1 + B2)

+
B2{−ψC1λ3 + αλ6(S + ψC1) + ψ(−1 + α)λ2I1 + (1− α)λ5(S + ψ(C1 + I1))}

(1 + B1)(1 + B2)2(B1 + B2)
]

(3.2)
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Furthermore, the optimal control characterization is

u∗1 = max

{
0,min

(
(λ2 + (1− p)(δ1λ4 − λ1)− pλ5)I

∗
1

D1
, 1

)}
u∗2 = max

{
0,min

(
ϵ(λ5 + δ2λ7 − λ1)I

∗
2

D2
, 1

)}
(3.3)

u∗3 = max {0,min (ũ3, 1)}

where

ũ3 =
ηf(B)
D3

[−λ1S∗ +
S∗B∗

1(1− α)λ2 + αλ3
B∗
1 + B∗

2

+
B∗
2 (ψ(1− α)(λ5 − λ2)I

∗
1 + ((1− α)λ5 + αλ6)(S

∗ + ψC∗
1 )− ψλ3C

∗
1 )

B∗
1 + B∗

2

]

+
b1λ4B∗

1 + b2λ7B∗
2

D3
− β1
D3N∗ (I

∗
1 + θC∗

1 )(λ1 − λ2 + α(λ2 − λ3))S
∗

− β2
D3N∗ (I

∗
2 + θC∗

2 )[λ1S
∗ + ψλ3C

∗
1 + (S∗ + ψC∗

1 )(−λ5 + α(λ5 − λ6))

+ψ(1− α)(λ2 − λ5)I
∗
1 ].

4 Numerical results

This section presents the numerical simulation results by solving the optimality
system, which comprises the state system (2.2), adjoint system (3.2), control
characterization (3.3), and corresponding initial and final conditions, using the
forward-backward sweep method [27, 28].

For numerical simulations, we consider the model parameter values presented
in Table 2.

Table 2: Model parameter values used in numerical simulations [24], the unit is
per week if appropriate.
α = 0.3 β1 = 0.006 β2 = 0.0052 δ1 = 1.0
δ2 = 1.05 η = 1.379× 10−10 θ = 0.35 µ = 0.0005
ξ1 = 0.2415 ξ2 = 0.2415 π = 105/52 ϕ1 = 0.00096
ϕ2 = 0.0017 ψ = 0.95 ω1 = 0.05 ω2 = 0.06
d1 = 0.00125 d2 = 0.002 p = 0.1

Additionally, the following parameter values are chosen:

A1 = A2 = 10, A3 = 25, D1 = 5, D2 = 8, D3 = 10, b1 = 0.2, b2 = 0.1,

ϵ = 0.75, T = 100 weeks.

The following control strategies are explored in order to determine the optimum
strategy that significantly reduces typhoid transmission:
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A: Treatment of the symptomatic individuals in each strain (u1, u2) only;

B: Employing sanitation and proper hygiene (u3) only;

C: Employing all the three control interventions (u1, u2, u3).

The control profile for each control strategy is shown in Fig. 2, and the effect
of each control strategy on the reduction of infection is depicted in Fig. 3.

(a) (b)

(c)

Figure 2: Control profile for (a) optimal treatment only, (b) optimal sanitation
and proper hygiene only, and (c) optimal treatment combined with sanitation
and proper hygiene

Our simulation results reveal that the combination of all control interventions
highly influenced the symptomatic individuals and environmental bacteria in
both the strains. However, there are still a significant number of asymptomatic
carriers in both the strains, which play an important role in the evolution and
transmission of typhoid infections. This reflects that asymptomatic carriers may
have long-term impacts on the spread of typhoid infection even in the presence
of the two control interventions.

4.1 Efficiency analysis

Here an efficiency analysis is performed to determine the best control strategy
without considering costs associated with each control strategy [29, 30]. So, we

10
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(a) (b)

(c) (d)

(e)   (f)

Figure 3: Effect of each control strategy on reducing the number of infectious
humans and bacteria: (a) Symptomatic individuals with sensitive strain, (b)
Asymptomatic carriers with sensitive strain, (c) Symptomatic individuals with
resistant strain, (d) Asymptomatic carriers with resistant strain, (e) Sensitive
strain of bacteria in the environment, (f) Resistant strain of bacteria in the
environment

investigate the impact of each control strategies on the reduction of infectious
humans and bacteria by introducing the efficiency index, F. The efficiency index
for human and bacteria population in the strain j are, respectively, computed

11
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as:

FIj+Cj =

(
1− A

Ij+Cj
c

A
Ij+Cj
o

)
× 100 and FBj =

(
1− A

Bj
c

A
Bj
o

)
× 100

where

AIj+Cj =

∫ T

0

(
Ij(t) + Cj(t)

)
dt and ABj =

∫ T

0

Bj(t)dt

represent the cumulative number of infectious humans and bacteria with strain
j, respectively, during the time interval [0, T ]. The efficiency index is calculated
for human and bacteria population in both the strains and presented in Table
3. Note that the control strategy with the highest efficiency index will be the
best. From Table 3, it follows that strategy C is the most effective for reducing

Table 3: Efficiency index
Strategy AI1+C1

c AB1
c FI1+C1 FB1 AI2+C2

c AB2
c FI2+C2 FB2

No control 87084 340679 0.0 0.0 3617 16767 0.0 0.0
A 1958 4567 97.75 98.66 508 3933 85.96 76.54
B 6541 12887 92.45 96.22 3143 10817 13.11 35.49
C 1918 2525 97.80 99.23 493 2792 86.37 83.35

the disease burden, followed by strategy A and strategy B.

5 Conclusions

The novelty of this study is its ability to predict the optimal level of control
interventions that include treatment and proper hygiene/ sanitation practices.
On the basis of sensitivity analysis of a two-strain typhoid model incorporat-
ing symptomatic infection, asymptomatic carriers, and environmental bacteria,
some control measures were suggested in [24]. Accordingly, the time-dependent
functions representing the treatment of sensitive and resistant strains are con-
sidered as control measures. Proper hygiene and sanitation are also considered
as another control measure to prevent contamination of food and water. The
necessary and sufficient conditions for the existence of optimal controls are es-
tablished and the optimality system is developed. The characterization of the
optimal control is determined by the Pontryagin’s maximum principle. The nu-
merical simulations are performed for every single control and combination of
the two controls. The simulation results reveal that with the combination of the
two control interventions, the number of symptomatic individuals and doses of
S. Typhi bacteria in both the strains reduced to near zero. However, there is
still a significant number of asymptomatic carriers in both strains, which play
an essential role in the evolution and transmission of typhoid infections. So, ad-
ditional preventive measures need to be implemented in order to further reduce
the population of asymptomatic carriers. The effects of each control strategy on
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the reduction of infection in both the strains is investigated through efficiency
analysis. From the study results, we conclude that the fight against a two-strain
typhoid infection requires some control interventions that reduce the number of
asymptomatic carriers to near zero, along with optimal treatment combined
with sanitation and proper hygiene.
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Bicomplex Laplace Transform of Fractional

Order, Properties and applications
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Abstract

The aim of this research article is to define bicomplex Laplace trans-
form of fractional order or fractional Laplace transform by the application
of the Mittag-Leffler function. Various properties of bicomplex fractional
Laplace transform along with the convolution theorem have also been
given. Inverse bicomplex fractional Laplace transform has also been de-
fined. Application of bicomplex fractional Laplace transform in the solu-
tion of diffusion equation has been given.
Key words: Bicomplex numbers, Fractional derivative, fractional Laplace
transform, Mittag-Leffler function.
Mathematics Subject Classification(2010): 30G35, 44A10, 33E12.

1 Introduction

In recent years, mathematicians and physicists have focused their efforts on
bicomplex algebra. In 1882, Segre [25] introduced bicomplex numbers. Detailed
study of bicomplex numbers are presented by Riley [20], Price [18], Rönn [24].
A bicomplex number is defined as an ordered pair of complex numbers, similar
like how a complex number is defined as an ordered pair of real numbers.

In recent years, the fractional order differential equations with boundary
conditions have gained more attention in a variety of scientific and engineering
domains. The Mittag-Leffler function (see, e.g. [7, 10]) has an important contri-
bution in the study of fractional calculus, it has been used to solve fractional or-
der differential equations. The Mittag-Leffler function has caught the interest of
a number of authors working in the field of fractional calculus (FC) and its appli-
cations such as, usage of a fractional operator involving Mittag–Leffler function
for the generalized Casson fluid flow [29], to established the fractional calculus
operators with Appell function kernels and Caputo-type fractional differential
operators [16], Epidemiological analysis of fractional order COVID-19 model
with Mittag-Leffler kernel [6]. In recent developments authors have worked on
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the area of fractional calculus such as, to study a guava fruit model associated
with a non-local additionally non-singular fractional derivative [27], the approx-
imate solution of nonlinear Caudrey-Dodd-Gibbon equation of fractional order
[28], analysis of fractional blood alcohol model [26].

Many authors have studied the applications of the fractional integral trans-
form [9, 13, 14, 17, 23]. Efforts have been made by authors to introduce the
Mittag-Leffler function (ML function) in bicomplex space along with applica-
tions to fractional calculus and integral transform [4, 5]. In 2011 bicomplex
Laplace transform is introduced by Kumar et al. [15] and its convolution the-
orem and applications in bicomplex space are discussed by Agarwal et al. [1],
bicomplex double Laplace transform is derived by Goswami et al. [8].

Following the path, efforts are made to extend the fractional Laplace trans-
form in bicomplex space. Fractional Laplace transformation method is a effec-
tive and strong tool for finding a solution of the fractional differential equation.
In this article bicomplex fractional Laplace transform and its properties in bi-
complex space are introduced.

2 Preliminaries

2.1 Bicomplex Numbers

Definition 2.1 (Bicomplex Number). A bicomplex number ξ ∈ T can be writ-
ten as [25]

ξ = x0 + i1x1 + i2x2 + jx3, where x0, x1, x2, x3 ∈ R. (2.1)

Here T, R represents the set of bicomplex numbers and real numbers respec-
tively.

We shall use the notations, x0 = Re(ξ), x1 = Imi1(ξ), x2 = Imi2(ξ), x3 =
Imj(ξ).

Idempotent representation is particularly important since it allows for term-
by-term addition, multiplication, and division.

Definition 2.2 (Idempotent Representation). Every bicomplex number has
following idempotent representation [18]

ξ = z1 + i2z2 = (z1 − i1z2)e1 + (z1 + i1z2)e2. (2.2)

Hence if ξ1 = (z1 − i1z2) and ξ2 = (z1 + i1z2) then

ξ = ξ1e1 + ξ2e2, (2.3)

where e1, e2 are idempotent elements in T such that e1 =
1 + i1i2

2
=

1 + j

2
, e2 =

1− i1i2
2

=
1− j

2
and e1 + e2 = 1, e1.e2 = 0.

Projection Mappings
P1 : T → T1 ⊆ C, P2 : T → T2 ⊆ C for a bicomplex number ξ = z1 + i2z2 are

2
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given by (see, e.g. [2, 22]):

P1(ξ) = P1(z1 + i2z2) = (z1 − i1z2) ∈ T1, (2.4)

and
P2(ξ) = P2(z1 + i2z2)(z1 + i1z2) ∈ T2, (2.5)

where

T1 = {ξ1 = z1 − i1z2 |z1, z2 ∈ C} and T2 = {ξ2 = z1 + i1z2 |z1, z2 ∈ C}. (2.6)

2.2 Bicomplex One-Parameter Mittag-Leffler Function

The bicomplex one parameter ML function defined Agarwal et al. [5] is given
by

Eα(ξ) =
∞∑
n=0

ξn

Γ(αn+ 1)
, (2.7)

where ξ,α ∈ T, ξ = z1 + i2z2 and |Imj(α)|< Re(α).

2.3 Modified Riemann- Liouville Derivative

Definition 2.3 (Modified Riemann-Liouville Derivative, [12] ). Let g : R →
R, y → g(y) represents a continuous function (not necessarily differentiable)
function

1. If g(y) is a constant M then its fractional derivative of order µ is given by

JDµ
yM =

{
M

Γ(1−µ)yµ if µ ≤ 0,

0 if µ > 0.

2. If g(y) is not a constant then its fractional derivative of order µ is given
by

JDµ
y (g(y)− g(0)) =

1

Γ(−µ)

∫ y

0

g(ζ)dζ

(y − ζ)µ+1
, µ < 0, (2.8)

JDµ
y (g(y)− g(0)) = JDµ

y g(y) =J Dy(gµ−1(y)), µ > 0, (2.9)

(gµ(y)) =
(
gµ−n(y)

)(n)
, n ≤ µ ≤ n+ 1, n ≥ 1. (2.10)

2.4 Laplace Transform of Fractional Order

Let g(x) denotes the function which vanishes for negative values of the variable
x. Its Laplace transform (LT) of order α is defined by the expression (see, e.g.
[13, 14, 19]), when it is finite,

Lα(g(x)) =

∫ ∞
0

Eα(−sαxα)g(x)(dx)α, 0 < α < 1, (2.11)

3
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where s ∈ C.
Sufficient condition for this integral to be finite is that (see, e.g.[13])∫ ∞

0

|g(x)|(dx)α < M <∞. (2.12)

If g(u) is a continuous function, the integral with respect to (du)α is defined as
(see, e.g. [14]) the fractional differential equation’s solution y(u)

dy = g(t)(du)α, x ≥ 0, y(0) = 0, (2.13)

where

y =

∫ u

0

g(v)(dv)α = α

∫ u

0

g(v)

(u− v)1−α dv, 0 < α < 1. (2.14)

Jumarie [11] gave the the proof of the above result as follows:

x(α)(u) = g(u), 0 < α ≤ 1. (2.15)

Its solution is obtained by fractional derivative as

x(u) = D−αg(u) =
1

Γα

∫ u

0

(u− t)α−1g(t)dt. (2.16)

Again
dαx = g(u)(du)α, (2.17)

or
Γ(α + 1)dx = g(u)(du)α. (2.18)

On integrating

x(u) =
1

Γ(α + 1)

∫ u

0

g(t)(dt)α. (2.19)

From equations (2.16) and (2.19), equation (2.14) can be obtained.

3 Bicomplex Laplace transform of Fractional or-
der

In this section we introduce the bicomplex fractional Laplace transform with
convergence conditions using the bicomplex ML function.

Definition 3.1 (Class C). Let C be the class of bicomplex-valued functions
defined with the following properties, for any f ∈ C

1. f(x) vanishes for negative values of the variable x.

2. f is piecewise continuous in the interval (0, a] for any a ∈ (0,+∞).

4
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3.
∫∞

0
|f(x)|j(dx)α < M <∞.

Now we introduce the bicomplex Laplace transform of fractional order α as
follows:
Let Laplace transform of order α of f(t) ∈ C for t ≥ 0 can be written as

Lα(f(t))s1 = Fα(s1) =

∫ ∞
0

Eα(−sα1 tα)f(t)(dt)α, 0 < α < 1, (3.1)

where s1 ∈ C and take another LT of order α of f(t) ∈ C for s2 ∈ C

Lα(f(t))s2 = Fα(s2) =

∫ ∞
0

Eα(−sα2 tα)f(t)(dt)α, 0 < α < 1. (3.2)

Now we take linear combination of Fα(s1) and Fα(s2) with e1 and e2 such as

Lα(f(t))s1e1 + Lα(f(t))s2e2

= Fα(s1)e1 + Fα(s2)e2

=

∫ ∞
0

Eα(−sα1 tα)f(t)(dt)αe1 +

∫ ∞
0

Eα(−sα2 tα)f(t)(dt)αe2

=

∫ ∞
0

(Eα(−sα1 tα)e1 + Eα(−sα2 tα)e2) f(t)(dt)α

=

∫ ∞
0

Eα(−ξαtα)f(t)(dt)α

= Fα(ξ)

= Lα(f(t))ξ,

(3.3)

where ξ = s1e1 + s2e2 ∈ T.
Since Fα(s1) and Fα(s2) are complex valued functions which are convergent and
analytic for respectively, so by application of decomposition theorem of Ringleb
[21], (see, e.g. [20]) bicomplex valued function Fα(ξ) = Fα(s1)e1 + Fα(s2)e2

will be convergent and analytic.

Definition 3.2 (Bicomplex Laplace Transform of Fractional Order). Let g(t) ∈
C be a bicomplex valued function. Then bicomplex Laplace transform of frac-
tional order α of g(t) for t ≥ 0 can be defined as

Lα(g(t))ξ = Gα(ξ) =

∫ ∞
0

Eα(−ξαtα)g(t)(dt)α = lim
M→∞

∫ M
0

Eα(−ξαtα)g(t)(dt)α,

(3.4)
where 0 < α < 1, ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C.

3.1 Some Basic Properties of Bicomplex Fractional Laplace
Transform

Theorem 3.3 (Linearity Property). Let Fα(ξ) and Gα(ξ) be the bicomplex
fractional Laplace transform of order α of class C functions f(t) and g(t) re-
spectively, then

5
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Lα (f(t) + g(t)) = Fα(ξ) +Gα(ξ). (3.5)

Proof. Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then

Lα (f(t) + g(t)) =

∫ ∞
0

Eα(−ξαtα) (f(t) + g(t)) (dt)α

=

∫ ∞
0

Eα(−sα1 tα) (f1(t) + g1(t)) (dt)αe1

+

∫ ∞
0

Eα(−sα2 tα) (f2(t) + g2(t)) (dt)αe2

=

∫ ∞
0

Eα(−sα1 tα)f1(t)(dt)αe1 +

∫ ∞
0

Eα(−sα1 tα)g1(t)(dt)αe1

+

∫ ∞
0

Eα(−sα2 tα)f2(t)(dt)αe2 +

∫ ∞
0

Eα(−sα2 tα)g2(t)(dt)αe2

=

∫ ∞
0

Eα(−ξαtα)f(t)(dt)α +

∫ ∞
0

Eα(−ξαtα)g(t)(dt)α

= Lα (f(t)) + Lα (g(t))

= Fα(ξ) +Gα(ξ).

(3.6)

Theorem 3.4. Let Fα(ξ) be the bicomplex fractional Laplace transform of order
α of function f(t) ∈ C and ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C, 0 < α < 1 and k
is a constant then

Lα (kf(t)) = kFα(ξ). (3.7)

Proof. Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1, then

Lα (kf(t)) =

∫ ∞
0

Eα(−ξαtα) (kf(t)) (dt)α

=

∫ ∞
0

Eα(−sα1 tα) (kf1(t)) (dt)αe1 +

∫ ∞
0

Eα(−sα2 tα) (kf2(t)) (dt)αe2

= k

∫ ∞
0

Eα(−sα1 tα)f1(t)(dt)αe1 + k

∫ ∞
0

Eα(−sα2 tα)f2(t)(dt)αe2

= k

∫ ∞
0

Eα(−ξαtα)f(t)(dt)α

= kLα (f(t))

= kFα(ξ).

(3.8)

6
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Theorem 3.5 (Bicomplex Fractional Laplace Transform of Derivatives). Let
Fα(ξ) be the bicomplex fractional LT of order α of function f(t) ∈ C and ξ =
s1e1 + s2e2 ∈ T, 0 < α < 1 then

Lα

(
JDαf(t)

)
= ξαFα(ξ)− f(0), (3.9)

where JDα is defined in the definition (2.3).

Proof. Let ξ = s1e1 + s2e2 ∈ T and 0 < α < 1 then

Lα

(
JDαf(t)

)
=

∫ ∞
0

Eα(−ξαtα) (Dαf(t)) (dt)α

= [f(t)Eα(−ξαtα)]
∞
0 −

∫ ∞
0

f(t) (−ξαEα(−ξαtα)) (dt)α

= −f(0) + ξα
∫ ∞

0

f(t)Eα(−ξαtα)(dt)α

= ξαLα (f(t))− f(0)

= ξαFα(ξ)− f(0).

(3.10)

Corollary 3.6. Let Fα(ξ) be the bicomplex fractional LT of order α of function
f(t) ∈ C and ξ = s1e1 + s2e2 ∈ T, 0 < α < 1 then

Lα

(
JD2αf(t)

)
= ξ2αFα(ξ)− ξαf(0)− fα(0), (3.11)

where JD2α is defined in the definition (2.3).

Proof. Let ξ = s1e1 + s2e2 ∈ T, 0 < α < 1 and Dαf(t) = F (t) then

Lα

(
JD2αf(t)

)
= Lα

(
JDαF (t)

)
= ξαLα (F (t))− F (0)

= ξαLα

(
JDαf(t))

)
− fα(0)

= ξα (ξαLα (f(t))− f(0)))− fα(0)

= ξ2αLα (f(t))− ξαf(0)− fα(0)

= ξ2αFα(ξ)− ξαf(0)− fα(0).

(3.12)

Proceeding in similar manner, we obtain the result contained in the following
corollary:

Corollary 3.7. Let Fα(ξ) be the bicomplex fractional LT of order α of function
f(t) ∈ C and ξ = s1e1 + s2e2 ∈ T, 0 < α < 1 then

Lα

(
JDnαf(t)

)
= ξnαFα(ξ)−

(
ξnα−αf(0) + ξnα−2αfα(0) + ξnα−3αf2α(0) + · · ·+ fnα−α(0)

)
,

(3.13)

where JDnα is defined in the definition (2.3).

7
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Theorem 3.8 (Change of Scale Property). Let Fα(ξ) be the bicomplex fractional
Laplace transform of order α of function f(t) ∈ C and ξ = s1e1 + s2e2 ∈
T, s1, s2 ∈ C, a > 0 and 0 < α < 1 then

Lα(f(at)) = (1/a)αFα

(
ξ

a

)
. (3.14)

Proof. Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then from equations
(3.4) and (2.14) we have

Lα(f(at)) =

∫ ∞
0

Eα(−ξαtα)f(at)(dt)α

= lim
M→∞

∫ M
0

Eα(−ξαtα)f(at)(dt)α

= lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−ξαtα)f(at)(dt)

= lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−sα1 tα)f1(at)(dt)e1

+ lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−sα2 tα)f2(at)(dt)e2,

(3.15)

putting at = x =⇒ dt = dx
a , a > 0,

Lα(f(at)) = lim
M→∞

α

∫ aM

0

(
M− x

a

)α−1

Eα

(
−sα1

xα

aα

)
f1(x)

dx

a
e1

+ lim
M→∞

α

∫ aM

0

(
M− x

a

)α−1

Eα

(
−sα2

xα

aα

)
f2(x)

dx

a
e2

= lim
M→∞

α

∫ aM

0

(aM− x)α−1

aα−1
Eα

(
−sα1

xα

aα

)
f1(x)

dx

a
e1

+ lim
M→∞

α

∫ aM

0

(aM− x)α−1

aα−1
Eα

(
−sα2

xα

aα

)
f2(x)

dx

a
e1

= (1/a)αFα

(
ξ1
a

)
e1 + (1/a)αFα

(
ξ2
a

)
e2

= (1/a)αFα

(
ξ

a

)
.

(3.16)

Theorem 3.9 (Shifting Property). Let Fα(ξ) be the bicomplex fractional Laplace
transform of order α of f(t) ∈ C and ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C, c > 0
and 0 < α < 1 then

Lα(f(t− c)) = Eα(ξαcα)Fα(ξ). (3.17)
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Proof. Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then from equations
(3.4) and (2.14) we have

Lα(f(t− c)) =

∫ ∞
0

Eα(−ξαtα)f(t− c)(dt)α

= lim
M→∞

∫ M
0

Eα(−ξαtα)f(t− c)(dt)α

= lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−ξαtα)f(t− c)(dt)

= lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−sα1 tα)f1(t− c)(dt)e1

+ lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−sα2 tα)f2(t− c)(dt)e2.

(3.18)

Putting t− c = x =⇒ dt = dx

= lim
M→∞

α

∫ M−c
0

(M− x− c)α−1Eα(−sα1 (x+ c)α)f1(x)(dx)e1

+ lim
M→∞

α

∫ M−c
0

(M− x− c)α−1Eα(−sα2 (x+ c)α)f2(x)(dx)e2

= Eα(−sα1 cα) lim
M→∞

α

∫ M−c
0

(M− x− c)α−1Eα(−sα1 xα)f1(x)(dx)e1

+ Eα(−sα2 cα) lim
M→∞

α

∫ M−c
0

(M− x− c)α−1Eα(−sα2 xα)f2(x)(dx)e2

= Eα(ξαcα)Lα(f(t))

= Eα(ξαcα)Fα(ξ).

(3.19)

Theorem 3.10 (Bicomplex Fractional Laplace Transform of Integrals). Let
Fα(ξ) be the bicomplex fractional Laplace transform of order α of f(t) ∈ C and
ξ = s1e1 + s2e2 ∈ T, 0 < α < 1 then

Lα

(∫ t

0

f(v)(dv)α
)

=
1

ξαΓ(1 + α)
Lα(f(t)). (3.20)

Proof. Since

JDα
t

∫ t

0

f(v)(dv)α = α! f(t), (3.21)

by using equation (3.9)

Lα

(
JDα

t

∫ t

0

f(v)(dv)α
)

= ξαLα

(∫ t

0

f(v)(dv)α
)
,

Lα (α! f(t)) = ξαLα

(∫ t

0

f(v)(dv)α
)
.

(3.22)

9
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Hence,

Lα

(∫ t

0

f(v)(dv)α
)

= Γ(α + 1)ξ−αLα (f(t)) . (3.23)

Theorem 3.11. Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then

(i) Lα(tαf(t)) = −JDα
ξ Lα(f(t)),

(ii) Lα(Eα(−cαtα)f(t))ξ = Fα(ξ + c),

(iii) Lα(−tαf(t)) =J Dα
ξ Lα(f(t)).

Proof. (i) Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then from
equation (3.4) we have

Lα(tαf(t))

=

∫ ∞
0

Eα(−ξαtα)tαf(t)(dt)α

=

∫ ∞
0

Eα(−sα1 tα)tαf1(t)(dt)αe1 +

∫ ∞
0

Eα(−sα2 tα)tαf2(t)(dt)αe2

= − JDα
s1

∫ ∞
0

Eα(−sα1 tα)f1(t)(dt)αe1 − JDα
s2

∫ ∞
0

Eα(−sα2 tα)f2(t)(dt)αe2

= − JDα
ξ Lα(f(t)).

(3.24)

(ii) Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then from equation
(3.4) we have

Lα(Eα(−cαtα)f(t))ξ =

∫ ∞
0

Eα(−ξαtα)Eα(−cαtα)f(t)(dt)α

=

∫ ∞
0

Eα(−(ξ + c)αtα)f(t)(dt)α

= Fα(ξ + c).

(3.25)

(iii) Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then from equation
(3.4) we have

Lα(−tαf(t))

=

∫ ∞
0

Eα(−ξα(−t)α)tαf(t)(dt)α

=

∫ ∞
0

Eα(−sα1 tα)tαf1(t)(dt)αe1 +

∫ ∞
0

Eα(−sα2 tα)tαf2(t)(dt)αe2

= − JDα
s1

∫ ∞
0

Eα(−sα1 tα)f1(t)(dt)αe1 − JDα
s2

∫ ∞
0

Eα(−sα2 tα)f2(t)(dt)αe2

= − JDξ
αLα(f(t)).

(3.26)
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3.2 Convolution Theorem

Convolution is a mathematical operation on two functions f, g. which is useful
in signal theory, image processing. Convolution of order µ of the functions
f(t), g(t) defined by Jumarie [14] given by

(f ∗ g) (t) =

∫ t

0

f(t− v)g(v)(dv)µ. (3.27)

Theorem 3.12. Let f, g ∈ C and Let Fα(ξ) and Gα(ξ) be the bicomplex frac-
tional Laplace transform of order α of functions f(t) and g(t) respectively, then

Lα (f ∗ g) (t) = Fα(ξ)Gα(ξ) = Lα (f(t))Lα (g(t)) . (3.28)

Proof.

Lα (f(t) ∗ g(t)) =

∫ ∞
0

(dt)αEα(−ξαtα)

∫ t

0

f(t− v)g(v)(dv)α

=

∫ ∞
0

(dt)αEα(−(s1e1 + s2e2)αtα)

∫ t

0

f(t− v)g(v)(dv)α

=

(∫ ∞
0

(dt)αEα(−sα1 tα)

∫ t

0

f(t− v)g(v)(dv)α
)
e1

+

(∫ ∞
0

(dt)αEα(−sα2 tα)

∫ t

0

f(t− v)g(v)(dv)α
)
e2

=

(∫ ∞
0

(dt)αEα(−sα1 (t− v)α)Eα(−sα1 vα)

∫ t

0

f(t− v)g(v)(dv)α
)
e1

+

(∫ ∞
0

(dt)αEα(−sα2 (t− v)α)Eα(−sα2 vα)

∫ t

0

f(t− v)g(v)(dv)α
)
e2.

(3.29)

Put p = t− v, q = v, to obtain

Lα (f(t) ∗ g(t)) =

(∫ ∞
0

∫ ∞
0

(dp)αEα(−sα1 pα)Eα(−sα1 qα)f(p)g(q)(dq)α
)
e1

+

(∫ ∞
0

∫ ∞
0

(dp)αEα(−sα2 pα)Eα(−sα2 qα)f(p)g(q)(dq)α
)
e2

=

(∫ ∞
0

∫ ∞
0

Eα(−sα1 pα)Eα(−sα1 qα)f(p)g(q)(dp)α(dq)α
)
e1

+

(∫ ∞
0

∫ ∞
0

Eα(−sα2 pα)Eα(−sα2 qα)f(p)g(q)(dp)α(dq)α
)
e2

(3.30)
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Hence,

Lα (f(t) ∗ g(t)) = (Fα(s1)Gα(s1)) e1 + (Fα(s2)Gα(s2)) e2

= Fα(ξ)Gα(ξ)

= Lα(f(t))Lα(g(t)).

(3.31)

4 Bicomplex Fractional Inverse Laplace Trans-
form

Definition 4.1. Generalized Dirac’s function δα(x) of fractional order α, 0 <
α < 1 is given by (see, e.g. [14])∫

R
f(x)δα(x)(dx)α = αf(0). (4.1)

The relation between Dirac’s function and ML function is given by (see, e.g.
[14]) the following result

α

(Mα)α

∫ +i1∞

−i1∞
Eα(i1(−ωx)α)(dω)α = δα(x), (4.2)

where Mα is the period of the complex-valued ML function defined by the re-
lation Eα(i1(Mα)α) = 1.

Theorem 4.2. Let Fα(ξ) be the bicomplex fractional Laplace transform of order
α of function f(t) ∈ C and ξ = s1e1 + s2e2 ∈ T and 0 < α < 1 then

f(t) =
1

(Mα)α

∫
H

Eα(ξαxα)Fα(ξ)(dξ)α, (4.3)

where H is closed contour in T.

Proof. Let Fα(ξ) be the bicomplex fractional Laplace transform of bicomplex-
valued function f(t). Then Fα(ξ) = Fα(s1)e1 + Fα(s2)e2. The inverse formula
for complex fractional Laplace transform (see, e.g. [14] ) are

f1(t) =
1

(Mα)α

∫ +i1∞

−i1∞
Eα(sα1 x

α)Fα(s1)(ds1)α

=
1

(Mα)α

∫
γ1

Eα(sα1 x
α)Fα(s1)(ds1)α,

(4.4)

and

f2(t) =
1

(Mα)α

∫ +i1∞

−i1∞
Eα(sα2 x

α)Fα(s2)(ds2)α

=
1

(Mα)α

∫
γ2

Eα(sα2 x
α)Fα(s2)(ds2)α,

(4.5)
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where Mα is the period of the complex-valued ML function defined by the re-
lation Eα(i1(Mα)α) = 1 and γ1 and γ2 be closed contours taken along the the
vertical lines as follows γ1 = −i1∞ to i1∞,γ2 = −i1∞ to i1∞.

Now, using complex inversions (4.4) and (4.5), we get

f(t) = f1(t)e1 + f2(t)e2

=
1

(Mα)α

(∫
γ1

Eα(sα1 x
α)Fα(s1)(ds1)α e1 +

∫
γ2

Eα(sα2 x
α)Fα(s2)(ds2)α e2

)
=

1

(Mα)α

∫
(γ1,γ2)

Eα((s1e1 + s2e2)αxα)Fα(s1e1 + s2e2) ((ds1)αe1 + (ds2)αe2)

=
1

(Mα)α

∫
H

Eα(ξαxα)Fα(ξ)(dξ)α,

(4.6)

where H = (γ1, γ2) and

ξ = s1e1 + s2e2 ⇒ dξ = ds1e1 + ds2e2 ⇒ (dξ)α = (ds1)αe1 + (ds2)αe2. (4.7)

5 Application of Bicomplex Fractional Laplace
Transform

Agarwal et al.[3] discussed fractional differential equations in bicomplex space.
Bicomplex fractional Laplace transform has great advantage in finding the so-
lution of fractional order differential equations. We have solved the following
homogeneous fractional order differential equations using bicomplex fractional
Laplace transform.

(D2α + 2Dα + 2)y(t) = 0, (5.1)

where y(0) = 1 and yα(0) = −1.
By taking bicomplex fractional LT on both sides of order α, we get

Lα

(
y2α + 2yα + 2y

)
= 0, (5.2)

s2αLα(y(t))− sαy(0)− yα(0) + 2 (sαLαy(t)− y(0)) + 2Lαy(t) = 0, (5.3)(
s2α + 2sα + 2

)
Lαy(t) = sα + 1, (5.4)

⇒ Lαy(t) =
sα + 1

(sα + 1)
2

+ 1
. (5.5)

Hence,
Lαy(t) = Lα (Eα(−tα) cosα(tα)) . (5.6)

Therefore
y(t) = Eα(−tα) cosα(tα), (5.7)

where cosα(tα) is fractional order cosine function (see, e.g. [13, 19]).
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5.1 Application to Diffusion equation

Consider the following partial fractional differential equation

Dα
t u(x, t) = cDβ

xu(x, t), 0 < α, β < 1, (5.8)

with initial condition u(x, t) = f(x). It is very simple case of diffusion equation
(see, e. g. [13]).
By taking bicomplex fractional LT of the equation (5.8) with respect to t,

sαū(x, s)− f(x) = cDβ
x ū(x, s). (5.9)

Taking fractional Fourier transform of equation (5.9) defined by Jumarie [13]
with respect to x,

sα ˆ̄u(ζ, s)− f̂(ζ) = c(−i1ζβ)ˆ̄u(ζ, s), (5.10)

or
(sα + i1cζ

β)ˆ̄u(ζ, s) = f̂(ζ), (5.11)

ˆ̄u(ζ, s) =
f̂(ζ)

(sα + i1cζβ)
. (5.12)

By taking inverse Bicomplex fractional Laplace transform

û(ζ, t) = f̂(ζ)Eα(−i1cζβtα), (From [19, Property 3.4]). (5.13)

Finally by taking Inverse Fractional Fourier transform defined by Jumarie [13]
of the equation (5.13)

u(x, t) =
1

(Mβ)β

∫ +∞

−∞
Eβ(i1ζ

βxβ) Eα(−i1cζβtα) f̂(ζ) (dζ)α. (5.14)

6 Conclusion

In this paper, the Laplace transform of fractional order or fractional Laplace
transform in bicomplex space, the extension of complex Laplace transform of
fractional order has been derived. Various properties along with the convolution
theorem have also been derived. Bicomplex fractional Laplace transform may
be used in finding the solution of bicomplex fractional Schrödinger equation.

References

[1] Agarwal, R., Goswami, M. P., and Agarwal, R. P. (2014). Convolution the-
orem and applications of bicomplex Laplace transform. Advances in Mathe-
matical Sciences and Applications, 24(1):113–127.

14

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.2, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

383 Urvashi Purohit Sharma 370-385



[2] Agarwal, R., Goswami, M. P., and Agarwal, R. P. (2017a). Mellin transform
in bicomplex space and its applications. Studia Universitatis Babes-Bolyai
Mathematica, 62(2):217–232.

[3] Agarwal, R., Goswami, M. P., and Agarwal, R. P. (2017b). A study of
Mellin transform of fractional operators in bicomplex space and applications.
Journal of Fractional Calculus and Applications, 8(2):211–226.

[4] Agarwal, R. and Sharma, U. P. (2020). Bicomplex Mittag-Leffler function
and applications in integral transform and fractional calculus. Accepted, Pro-
ceedings of the conference, 22nd FAI-ICMCE-2020.

[5] Agarwal, R., Sharma, U. P., and Agarwal, R. P. (2022). Bicomplex Mittag-
Leffler Function and associated properties. Journal of Nonlinear Sciences
and Applications, 15:48–60.

[6] Farman, M., Akgül, A., Nisar, K. S., Ahmad, D., Ahmad, A., Kamangar, S.,
and Saleel, C. A. (2022). Epidemiological analysis of fractional order COVID-
19 model with Mittag-Leffler kernel. AIMS Mathematics, 7(1):756–783.

[7] Gorenflo, R., Kilbas, A. A., Mainardi, F., and Rogosin, S. V. (2014). Mittag-
Leffler functions, Related Topics and Application. Springer Berlin Heidelberg.

[8] Goswami, M. P., Agarwal, R., and Agarwal, R. P. (2019). Double Laplace
transform in bicomplex space with applications. Advances in Mathematical
Sciences and Applications, 28(2):255–271.

[9] Gupta, V. G., Shrama, B., and Kiliçman, A. (2010). A note on fractional
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