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Abstract

In this paper, two-parameter singularly perturbed parabolic equations
are examined by two level method using non-polynomial spline. We have
used non-polynomial quadratic spline in space and finite difference dis-
cretization in time. Stability analysis is carried out. The approximate
solution is shown to converge point-wise to the true solution. Numerical
solution of singularly perturbed parabolic equations consisting of linear
as well as non-linear has been solved. Three numerical examples are pre-
sented to show the efficiency and effectiveness of the developed method.
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1 Introduction

We consider the two-parameter singularly perturbed one dimensional parabolic
partial differential equation(PDE) of the form:

zκ − ϵdzλλ + ϵcr(λ)zλ + s(λ)z = g(λ, κ), (λ, κ) ∈ QT , (1.1)

subject to

z = 0, (λ, κ) ∈ ∂S × I, (1.2)

1Corresponding author: Department of Mathematics
Sri Venkateswara College
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and

z(λ, 0) = z0(λ), λ ∈ S, (1.3)

where, QT = S × I, S ≡ r : l < r < m, ∂S ≡ {l} ∪ {m}, I ≡ (0, T ) and
l(> 0),m(> 0) ∈ R, z = z(λ, κ), r(λ) and s(λ) are continously differentiable
functions and g(λ, κ) is continuous function defined on QT . Also 0 < ϵc ≪ 1
and 0 < ϵd ≪ 1. The above problems occur in various fields of sciences, such
as, elasticity, mechanics, chemical reactor theory and convection-diffusion pro-
cess. There are numerous asymptotic expansion methods available for solu-
tion of problems of the above type. But there were difficulties in applying
these asymptotic expansions in the inner and outer regions. Many researchers
have derived numerical methods for solving singularly perturbed boundary value
problems(SPBVPs). Scheme based on parametric spline functions has been de-
veloped by Khan et al.[5]. Fractional Kersten-Krasil’shchik coupled KdV mKdV
System arising in multi-component plasmas have been numerically solved by
Goswami et al.[3]. A uniform convergent numerical method is given by Clavero
et al.[2] and Kadalbajoo et al.[4] to solve the one-dimensional time-dependent
convection-diffusion problem. Sharma and Kaushik [8] solved a singularly per-
turbed time delayed convection diffusion problem on a domain which is rect-
angular. Zahra et al.[10], Aziz and Khan [1] have also used spline methods
for solution of SPBVPs. An efficient numerical approach for fractional multi-
dimensional diffusion equations with exponential memory is given by Singh et
al.[9]. In recent past, Mohanty et al. [7] have solved singularly perturbed
parabolic equations using methods based on spline in tension. In this paper,
we develop a new algorithm for solving SPBVPs associated with homogeneous
Dirichlet boundary conditions.
This paper is divided into 5 sections as follows: In Section 2, the non-polynomial
spline scheme is derived. In Section 3, we discuss application of the method for
SPBVPs with scheme of O(k+h2). Truncation error is also discussed in Section
3. In Section 4, stability analysis is carried out. In Section 5 three problems are
solved which confirm theoretical behaviour along with the rate of convergence.

2 Non-polynomial Spline

We divide the [l,m] interval uniformaly as

l = λ0 < λ1 < λ2 < · · · < λn−1 < λn = m,

where

λi = l + ih, 0 ≤ i ≤ n and h =
(m− l)

n
.

Let

Ri(λ) = ai cos τ(λ− λi−1/2) + bi sin τ(λ− λi−1/2) + ci, (2.1)
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be a non-polynomial spline defined on closed interval [l,m] reduces to polynomial
spline which is quadratic as τ −→ 0 and τ > 0.
To calculate ai, bi and ci, we define

Ri(λi) = zi, R
′
i(λi−1/2) = Pi−1/2,

R′′
i (λi) = Di, 0 ≤ i ≤ n− 1. (2.2)

Using above interpolatory conditions we get

ai = − 1

τ2
Di sec

(
ϑ

2

)
− 1

τ
Pi−1/2 tan(

ϑ

2
),

bi =
1

τ
Pi−1/2,

ci = zi+1 −
1

τ2
Di,

where, ϑ = τh.

Using continuity conditions, R
(m)
i−1(λi−1/2) = R

(m)
i (λi−1/2),m = 0, 1 we get the

expression as follows:

zi−1 − 2zi + zi+1 = h2(δDi−1 + ηDi + ζDi+1), 0 ≤ i ≤ n− 1 (2.3)

where,

δ =
sec(ϑ2 )− 1

ϑ2
,

η =
4 sec(ϑ2 )(1− cos2(ϑ2 )) + 2(1− sec(ϑ2 ))

ϑ2
,

ζ = δ.

When τ → 0, it means ϑ → 0, then (δ, η, ζ) → (1/8, 6/8, 1/8), and the scheme
given by (2.3) reduces into polynomial quadratic spline relation as:

zi−1 − 2zi + zi+1 =
1

8
h2(Di−1 + 6Di +Di+1), 0 ≤ i ≤ n− 1. (2.4)

3 Application of the scheme

We consider a SPBVP of the form

zκ − ϵdzλλ + ϵcr(λ)zλ + s(λ)z = g(λ, κ), (λ, κ) ∈ QT , (3.1)

where, QT = S × I, S ≡ r : l < r < m, ∂S ≡ {l} ∪ {m}, I ≡ (0, T ) and
l(> 0),m(> 0) ∈ R. The above equation with

z = 0, (λ, κ) ∈ ∂S × I,

and

z(λ, 0) = z0(λ), λ ∈ S.

3
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Here, we use the following derivative approximations of higher order as:

z′i =
zi+1 − zi−1

2h
,

z′i−1 =
−3zi−1 + 4zi − zi+1

2h
,

z′i+1 =
zi−1 − 4zi + 3zi+1

2h
,

zjti =
zj+1
i − zji

k
,

zjti−1 =
zj+1
i−1 − zji−1

k
,

zjti+1 =
zj+1
i+1 − zji+1

k
.

We consider the following ordinary differential equation

ϵd
d2z

dλ2
= ϵcr(λ)

dz

dλ
+ s(λ)z − g(λ)

≡ G(λ, z, z′). (3.2)

After implementing scheme (2.3) on BVP (3.2), we obtain:

zi−1 − 2zi + zi+1 = h2(δGi−1 + ηGi + ζGi+1), 1 ≤ i ≤ n− 1 (3.3)

where,

Gi−1 = G(λi−1, zi−1, z
′
i−1),

Gi = G(λi, zi, z
′
i),

Gi+1 = G(λi+1, zi+1, z
′
i+1),

Using derivative approximations, we obtain

Ãzi−1 + B̃zi + C̃zi+1 = −h2(δgi−1 + ηgi + ζgi+1), 1 ≤ i ≤ n− 1 (3.4)

where,

Ã = ϵd +
3

2
hδϵcri−1 − δh2si−1 +

h

2
ηϵcri −

h

2
ζϵcri+1,

B̃ = −2ϵd − 2hδϵcri−1 − ηh2si + 2hζϵcri+1,

C̃ = ϵd +
1

2
hδϵcri−1 − ζh2si+1 −

h

2
ηϵcri −

3h

2
ζϵcri+1.

For solving parabolic equation (3.1) we obtain the two level spline scheme by
replacing zi by

1
2 (z

j+1
i + zji ), zi+1 by 1

2 (z
j+1
i+1 + zji+1), zi−1 by 1

2 (z
j+1
i−1 + zji−1)

, gi by (
zj+1
i −zji
k +gji ), gi+1 by (

zj+1
i+1−z

j
i+1

k +gji+1) and gi−1 by (
zj+1
i−1−z

j
i−1

k +gji−1)
in (3.4) and hence we obtain as follows:

A1z
j+1
i−1 +A2z

j+1
i +A3z

j+1
i+1 = A4z

j
i−1 +A5z

j
i +A6z

j
i+1 − h2(δgji−1 + ηgji + ζgji+1),

1 ≤ i ≤ n− 1 (3.5)
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where,

A1 =
−h2δ
k

+
1

2
(ϵd +

3

2
hδϵcri−1 − δh2si−1 +

h

2
ηϵcri −

h

2
ζϵcri+1),

A2 =
−h2η
k

+
1

2
(−2ϵd − 2hδϵcri−1 − ηh2si + 2hζϵcri+1),

A3 =
−h2ζ
k

+
1

2
(ϵd +

1

2
hδϵcri−1 − ζh2si+1 −

h

2
ηϵcri −

3h

2
ζϵcri+1),

A4 =
−h2δ
k

+
1

2
(−ϵd −

3

2
hδϵcri−1 + δh2si−1 −

h

2
ηϵcri +

h

2
ζϵcri+1),

A5 =
−h2η
k

+
1

2
(2ϵd + 2hδϵcri−1 + ηh2si − 2hζϵcri+1),

A6 =
−h2ζ
k

+
1

2
(−ϵd −

1

2
hδϵcri−1 + ζh2si+1 +

h

2
ηϵcri +

3h

2
ζϵcri+1).

Error

Here, we expand the scheme(3.5) in terms of z(λi, κj) using Taylor's series and
get the expression for truncation error as follows:

ti =

[
h2[1− (δ + η + ζ)]D2

λ −
1

2
k[δh2si−1 + ηh2si + ζh2si+1]Dt + h3[δ − ζ]D3

λ

+h4[
1

12
− δ + ζ

2
]D4

λ −
1

4
k2[δh2si−1 + ηh2si + ζh2si+1]D

2
t + h5[

δ − ζ

3!
]D5

λ

+h6[
1

360
− δ + ζ

24
]D6

λ + ...

]
zji , 1 ≤ i ≤ n− 1. (3.6)

For δ + η + ζ = 1 and δ = ζ, the method of O(k + h2) is obtained.

4 Stability Analysis

Here, we obtain the expression which gives information regarding stability of
the scheme (3.5). We take Zji as actual solution which satisfies the equation

A1Z
j+1
i−1 +A2Z

j+1
i +A3Z

j+1
i+1 = A4Z

j
i−1 +A5Z

j
i +A6Z

j
i+1 − h2(δgji−1 + ηgji

+ζgji+1), 1 ≤ i ≤ n− 1. (4.1)

We assume that an error eji = Zji − zji exist at each point (λi, κj), then by
subtracting (3.5) from (4.1) we get the expression as

A1e
j+1
i−1 +A2e

j+1
i +A3e

j+1
i+1 = A4e

j
i−1 +A5e

j
i +A6e

j
i+1,

1 ≤ i ≤ n− 1. (4.2)

To derive stability analysis for the scheme (3.5), we assume that the solution of
the homogeneous part of (4.2) is of the form eji = ϖjeiρ, where ϖ ∈ C, i =

√
−1

5
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and ρ ∈ R . Finally, we get the amplification factor as

ϖ =
A4e

−iρ +A5 +A6e
iρ

A1e−iρ +A2 +A3eiρ
, (4.3)

then,

ϖ =
− h2

kϵd
(δ + ρ)− h2

ϵd
(δqi−1 − ηqi + ζqi+1) + 2B1 sin

2(ρ2 ) + iB2 sin(
ρ
2 )

− h2

kϵd
(δ + ρ) + h2

ϵd
(δqi−1 − ηqi + ζqi+1)− 2B1 sin

2(ρ2 ) + iB2 sin(
ρ
2 )
,

where

B1 = 1 +
h2

kϵd
(δ + ζ) + h

ϵc
ϵd
(δpi−1 − 2ζpi+1) + h2

1

ϵd
(δqi−1 + ζqi+1),

B2 =
h2

kϵd
(δ − ρ) +

1

2ϵd
[hϵc(δpi−1 + ηpi − ζpi+1) + h2(ζqi+1 − δqi−1)].

The condition for the scheme to be stable is |ϖ|≤ 1. As we know that 0 ≤
sin2(ρ2 ) ≤ 1 and ϵd ∝ h, then from above relation it is easily verified that |ϖ|≤ 1
for every ρ. Hence the developed method is unconditionally stable.

5 Numerical Illustrations

We consider three second order SPBVPs. The maximum absolute errors(MAE)
are tabulated in Tables 1-4 depending upon the choice of parameters. The
convergence rate is denoted by αn and is computed by following expression:

αn = ln2(Ern,k/Er2n,k),

and there is a different way to find rate of convergence denoted by α̃n and is
computed by using

α̃n = ln2(Ern,k/Er2n,k/2).

Example 1:

Consider the following problem from Zahra et al.[10].

zκ − ϵd zλλ + zλ = g(λ, κ), T = 1,

in [0,1] associated with z(0, κ) = 0, z(1, κ) = 0 and z0(λ) = exp(−1/ϵd) + (1 −
exp(−1/ϵd))λ− exp(−(1− λ)/ϵd), where
g(λ, κ) = exp(−κ)(−c1 + c2(1− λ) + exp(−(1− λ)/ϵd)).

The analytical solution is z(λ, κ) = exp(−κ)(c1 + c2λ − exp(−(1 − λ)/ϵd)),
where c1 = exp(−1/ϵd), c2 = 1 − exp(−1/ϵd). The numerical results for N =
24, 25, 26, 27 and ϵd = 1/28, 1/210, 1/212, 1/224, 1/226 using parameters (δ, η, ζ) =
1
8 (1, 6, 1) compared with Zahra et al.[10] are tabulated in Table 1. And for
N = 24, 25, 26, 27, 28, 29 and ϵd = 1, 1/4, 1/16, 1/64 using parameters (δ, η, ζ) =
1
8 (1, 6, 1) compared with Clavero et al.[2] are tabulated in Table 2.
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Example 2:

Consider the following PDE from Zahra et al.[10]

zκ − ϵd zλλ + ϵc zλ = g(λ, κ), T = 1,

in [0,1] associated with z(0, κ) = 0, z(1, κ) = 0 and z0(λ) = [ϕ1 cos(πλ) +
ϕ2 sin(πλ) + ψ1 exp(θ1λ) + ψ2 exp(−θ2(1− λ))], where
g(λ, κ) = exp(−κ)[{−ϕ1 cos(πλ) − ϕ2 sin(πλ) − ψ1 exp(θ1λ) − ψ2 exp(−θ2(1 −
λ))} + ϵd{ϕ1π2 cos(πλ) + ϕ2π

2 sin(πλ) − ψ1

θ21
exp(θ1λ) − ψ2

θ22
exp(−θ2(1 − λ))} +

ϵc{−ϕ1π cos(πλ) + ϕ2π sin(πλ) +
ψ1

θ1
exp(θ1λ) +

ψ2

θ2
exp(−θ2(1− λ))}]. The an-

alytical solution is z(λ, κ) = exp(−κ)[ϕ1 cos(πλ) + ϕ2 sin(πλ) + ψ1 exp(θ1λ) +
ψ2 exp(−θ2(1− λ))] where,

ϕ1 =
ϵdπ

2 + 1

ϵ2cπ
2 + (ϵdπ2 + 1)2

,

ϕ2 =
ϵcπ

ϵ2cπ
2 + (ϵdπ2 + 1)2

,

ψ1 = −ϕ1
1 + exp(−θ2)

1− exp(θ1 − θ2)
,

ψ2 = ϕ1
1 + exp(θ1)

1− exp(θ1 − θ2)
,

θ1 =
ϵc −

√
ϵ2c + 4ϵd
2ϵd

,

θ2 =
ϵc +

√
ϵ2c + 4ϵd
2ϵd

.

The numerical results for N = 24, 25, 26, 27, 28, ϵd = 1, 1/4, 1/16 and ϵc =
10−3, 10−4, 10−5 using parameters (δ, η, ζ) = 1

8 (1, 6, 1) are tabulated in Table 3.

Example 3:

Consider the following PDE from Mohanty et al.[6]

ϵd zλλ − zκ +
1

λ
zλ = g(λ, κ), 0 ≤ λ ≤ 1, κ > 0

The analytical solution is z(λ, κ) = exp(−κ) sinhλ. The right-hand-side func-
tions, initial and boundary conditions may be obtained using the actual solution
given above as a test procedure. The numerical results for N = 24, 25, 26, 27, 28

and ϵd = 1/2, 1/8, 1/16, 1/32, 1/64, 1/128 using parameters (δ, η, ζ) = 1
12 (1, 10, 1)

compared with Mohanty et al.[6] are tabulated in Table 4.
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Table 1: MAE of example 1 for (δ, η, ζ) = 1
8(1, 6, 1)

Method N\
ϵd

1/28 1/210 1/212 1/224 1/226

Presented
method

24 1.2136 ×
10−02

1.3494 ×
10−02

1.3835 ×
10−02

1.3949 ×
10−02

1.3949 ×
10−02

αn 1.1344 0.9591 0.9231 0.91170 0.91170
Zahra et al.[10] 3.5638 ×

10−02
5.1972 ×
10−02

6.7088 ×
10−02

7.3818 ×
10−02

7.1839 ×
10−02

Presented
method

25 5.5284 ×
10−03

6.9407 ×
10−03

7.2961 ×
10−03

7.4147 ×
10−03

7.4147 ×
10−03

αn 1.4946 1.0549 0.9785 0.9554 0.9554
Zahra et al.[10] 1.300 ×

10−02
1.4234 ×
10−02

2.3185 ×
10−02

3.4126 ×
10−02

3.4128 ×
10−02

Presented
method

26 1.9619 ×
10−03

3.3406 ×
10−03

3.7029 ×
10−03

3.8238 ×
10−03

3.8238 ×
10−03

αn 2.1590 1.1997 1.0249 0.9776 0.9776
Zahra et al.[10] 9.3378 ×

10−03
8.3305 ×
10−03

8.2129 ×
10−03

1.5756 ×
10−02

1.5761 ×
10−02

Presented
method

27 4.4173 ×
10−04

1.4543 ×
10−03

1.8198 ×
10−03

1.9419 ×
10−03

1.9419 ×
10−03

Zahra et al.[10] 8.4218 ×
10−03

7.9579 ×
10−03

7.6243 ×
10−03

9.1052 ×
10−03

9.1078 ×
10−03

8
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Table 2: MAE of example 1 for (δ, η, ζ) = 1
8(1, 6, 1)

Method N \ ϵd 1 1/4 1/16 1/64
Presented
Method

24 7.8074 ×
10−04

1.2280 ×
10−03

1.0487 ×
10−02

1.0921 ×
10−01

Clavero et al.[2] 1.3076 ×
10−03

1.7398 ×
10−03

4.0133 ×
10−02

5.9664 ×
10−02

α̃n 1.7534 1.9008 2.5426 1.3506
Presented
Method

25 2.3156 ×
10−04

3.2887 ×
10−04

1.8000 ×
10−03

4.2823 ×
10−02

Clavero et al.[2] 7.9078 ×
10−04

9.6845 ×
10−03

2.5552 ×
10−03

3.7372 ×
10−02

α̃n 1.8952 1.8851 2.4931 2.0663
Presented
Method

26 6.2255 ×
10−05

8.9033 ×
10−05

3.1971 ×
10−04

1.0225 ×
10−02

Clavero et al.[2] 3.6986 ×
10−04

5.1056 ×
10−03

1.5865 ×
10−02

2.1792 ×
10−02

α̃n 1.9602 1.9124 2.4935 2.6020
Presented
Method

27 1.5998 ×
10−05

2.3652 ×
10−05

5.6774 ×
10−05

1.6841 ×
10−03

Clavero et al.[2] 1.8894 ×
10−04

2.6223 ×
10−03

9.5603 ×
10−03

1.2381 ×
10−03

α̃n 1.9638 1.9347 2.4473 2.5951
Presented
Method

28 4.1011 ×
10−06

6.1867 ×
10−06

1.0409 ×
10−05

2.7872 ×
10−04

Clavero et al.[2] 9.5517 ×
10−05

1.3289 ×
10−03

5.5999 ×
10−03

6.9704 ×
10−03

α̃n 1.9676 1.9514 2.3371 2.6674
Presented
Method

29 1.0486 ×
10−06

1.5996 ×
10−06

2.0601 ×
10−06

4.3874 ×
10−05

Clavero et al.[2] 4.8028 ×
10−05

6.6891 ×
10−04

3.2019 ×
10−03

3.9052 ×
10−03

9
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Table 3: MAE of example 2 for (δ, η, ζ) = 1
8(1, 6, 1)

ϵd 1 1/4 1/16
ϵc \
N

10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

24 5.7028×
10−06

5.6372×
10−06

5.6328×
10−06

7.6099×
10−03

7.5937×
10−03

7.5920×
10−03

3.0375×
10−01

3.0260×
10−01

3.0248×
10−01

αn 1.4451 1.4479 1.4482 1.8084 1.8084 1.8084 1.8258 1.8258 1.8258
25 2.0944×

10−06
2.0671×
10−06

2.0643×
10−06

2.1726×
10−03

2.1681×
10−03

2.1676×
10−03

8.5684×
10−02

8.5356×
10−02

8.5324×
10−02

αn 1.8444 1.8459 1.8461 1.8568 1.8568 1.8568 1.9140 1.9140 1.9140
26 5.8324×

10−07
5.7502×
10−07

5.7420×
10−07

5.9986×
10−04

5.9857×
10−04

5.9845×
10−04

2.2736×
10−02

2.2650×
10−02

2.2640×
10−02

αn 1.9487 1.9496 1.9497 1.9306 1.9306 1.9306 1.9572 1.9572 1.9572
27 1.5108×

10−07
1.4886×
10−07

1.4864×
10−07

1.5736×
10−04

1.5702×
10−04

1.5698×
10−04

5.8551×
10−03

5.8328×
10−03

5.8800×
10−03

αn 1.9810 1.9815 1.9816 1.9658 1.9658 1.9658 1.9786 1.9786 1.9786
28 3.8272×

10−08
3.7696×
10−08

3.7639×
10−08

4.0284×
10−05

4.0197×
10−05

4.0188×
10−05

1.4856×
10−03

1.4799×
10−03

1.4799×
10−03

Table 4: MAE of example 3 for (δ, η, ζ) = 1
12(1, 10, 1)

Method N \ ϵd 1/2 1/8 1/16 1/32 1/64 1/128
Presented
method

24 7.2294 ×
10−04

8.0022 ×
10−04

8.2241 ×
10−04

8.3576 ×
10−04

8.4320 ×
10−04

8.4714 ×
10−04

Mohanty
et al.[6]

0.2924 ×
10−03

0.4454 ×
10−03

0.4777 ×
10−03

0.5054 ×
10−03

0.5344 ×
10−03

0.5615 ×
10−03

Presented
method

25 1.2613 ×
10−05

1.3899 ×
10−05

1.4267 ×
10−04

1.4488 ×
10−04

1.4610 ×
10−04

1.4675 ×
10−04

Mohanty
et al.[6]

0.7286 ×
10−04

0.1129 ×
10−03

0.1239 ×
10−03

0.1410 ×
10−03

0.1869 ×
10−03

0.3134 ×
10−03

Presented
method

26 2.2181 ×
10−05

2.4391 ×
10−05

2.5022 ×
10−05

2.5721 ×
10−05

2.5610 ×
10−05

2.5721 ×
10−05

Mohanty
et al.[6]

0.1814 ×
10−04

0.2835 ×
10−04

0.3166 ×
10−04

0.3984 ×
10−04

0.9429 ×
10−04

0.1684 ×
10−03

Presented
method

27 3.9130 ×
10−06

4.2982 ×
10−06

4.4079 ×
10−06

4.5295 ×
10−06

4.5102 ×
10−06

4.5295 ×
10−06

Mohanty
et al.[6]

0.4524 ×
10−05

0.7091 ×
10−05

0.7987 ×
10−05

0.1088 ×
10−04

0.4743 ×
10−04

0.9120 ×
10−04

Presented
method

28 6.9111 ×
10−07

7.5878 ×
10−07

7.7796 ×
10−07

7.9929 ×
10−07

7.7590 ×
10−07

7.9929 ×
10−07

Mohanty
et al.[6]

0.1129 ×
10−05

0.1771 ×
10−05

0.2002 ×
10−05

0.2844 ×
10−05

0.1821 ×
10−05

0.5283 ×
10−04
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Conclusion

We have presented two level scheme using non-polynomial spline for solving
singularly perturbed parabolic equations based on one dimension. In examples
1, 2 and 3, we have computed maximum absolute errors for different values
of N and ϵd for the sake of comparison with references [2,6,10] and results are
tabulated in Tables 1-4. From tables it is shown that our method is much better
in accuracy than the methods given by Clavero et al.[2], Mohanty et al.[6] and
Zahra et al.[10]. It has already been proved that the presented algorithm gives
higher numerical rate of convergence. It has also shown that the scheme is
unconditionally stable.
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