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Abstract

Recently, the idea of ¢-fixed point and the elementary results on -
fixed points were first investigated by Jleli et al. [Jleli M, Samet B, Vetro C
(2014) Fixed point theory in partial metric spaces via @-fixed point’s con-
cept in metric spaces. Journal of Inequalities and Applications, 2014(1):1-
9.]. Based on this work, Karapinar et al. [Karapinar E, O’Regan D, Samet
B (2015) On the existence of fixed points that belong to the zero set of
a certain function. Fixed Point Theory and Applications, 2015(1):1-14.]
established the new @-fixed point results, which can be reduced to the
famous fixed point result of Boyd and Wong in 1969. However, the main
result of Karapinar et al. does not cover the (p-fixed point results of Jleli
et al. This paper aims to fulfill this gap by proving ¢-fixed point results
covering several p-fixed point results and fixed point results. Key words:
p-fixed point; p-Picard mapping; Control function
Mathematics Subject Classification(2010): 46T99; 47H10; 54H25

1 Introduction and preliminaries

In 2014, Jleli et al. [1] had initiated the concept of (F,y)-contraction with the
help of some control function, which is one of the interesting generalizations of
the classical Banach contraction principle and first introduced the concepts of
p-fixed point and ¢-Picard mapping. Moreover, they also proved some ¢-fixed
point theorems for contractive mappings expanded some fixed point results in
metric spaces. Consistent with Jleli et al. [1], we will be needed the following
notations, definitions, and results in this research.
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Let X be a nonempty set, ¢ : X — [0, 00) be a given functionand T : X — X
be a mapping. By Fr and Z, the set of all fixed points of T" and the set of
all zeros of the function ¢, respectively, i.e., Fr := {z € X : Tx = z} and
Z, ={ze X :p(x)=0}

Definition 1.1 ([1]). Let X be a nonempty set and ¢ : X — [0,00) be a
given function. An element z € X is said to be a p-fixed point of the mapping
T : X — X if and only if z is a fixed point of T" and ¢(z) =0 (i.e., z € FrNZ,).

Definition 1.2 ([1]). Let (X,d) be a metric space and ¢ : X — [0,00) be a
given function. A mapping 7' : X — X is said to be a ¢-Picard mapping if and
only if, for each x,z € X, the following conditions are satisfied:

(i) FrnZ, ={z} for some z € X;
(ii) T"x — z as n — oo for each z € X.

To describe the control function, which is an important class of this work,
let F be the family of all functions F : [0, 00)3 — [0, 00) satisfying the following
conditions:

(F1) max{a,b} < F(a,b,c) for all a,b,c € [0,0);
(F2) F(0,0,0) = 0
(F3) F is continuous.
As examples, the following functions Fy, Fy, F3 : [0,00)3 — [0, 00) belong to F:
(i) Fi(a,b,c) =a+b+cfor all a,b,c € [0, 00);
(ii) Fs(a,b,c) = max{a,b} + c for all a,b, c € [0, 00);
(iii) F3(a,b,c) =a+a?+b+c for all a,b,c € [0,00).

Definition 1.3 ([1]). Let (X, d) be a metric space, ¢ : X — [0,00) be a given
function, and F € F. A mapping T : X — X is said to be an (F ¢)-contraction
mapping if there exists k € [0,1) such that

F(d(Tz, Ty),¢(Tx), o(Ty)) < kF(d(z,y), o(x),0(y)) V(z,y) € X*. (1.1)

Theorem 1.4 ([1]). Let (X,d) be a complete metric space, ¢ : X — [0,00) be a
lower semi-continuous function, F € F and T : X — X be an (F, )-contraction
mapping. Then Fr C Z, and T is a p-Picard mapping.

Remark 1.5. Note that if we set F(a,b,¢c) = a+ b+ ¢ for all a,b,¢c € [0,00)
and p(x) =0 for all x € X in (1.1), then the contractive condition (1.1) reduces
to the Banach contractive condition.
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In recent years, Jleli et al.’s fixed point theorem has been generalized and
extended in several directions. One such generalization was introduced by Kara-
pinar et al. [2] by replacing the constant k of the contractive condition (1.1)
with the control function, which was first introduced by Boyd and Wong [3].
They also proved the existence and uniqueness results of a p-fixed point for new
nonlinear mappings. Nevertheless, this result expands all conditions of results
of [1], except that the condition (F'2) is replaced by

(F2*) F(a,0,0) =a for all a > 0.

Here, we recall the definition of the following class as given by Boyd and
Wong [3]. Denote ¥ the set of functions ¢ : [0,00) — [0,00) satisfying the
following conditions:

(1) 1) is upper semi-continuous from the right;

(¥2) (t) < t for each t > 0.

Combining this definition with Jleli et al.’s theorem, Karapinar et al. [2]
proved the following theorem:

Theorem 1.6 ([2]). Let (X,d) be a complete metric space. Suppose that the
mapping T : X — X satisfies the following condition:

F(d(Txz,Ty), o(Tx), o(Ty)) < »(F(d(z,y),0(x), o(y) Y(z,y) € X (1.2)

where ¢ : X — [0,00) is lower semi-continuous, ¥ € ¥, and F : [0,00)% —
[0,00) is a function satisfying the following conditions:

(F1) max{a,b} < F(a,b,c) for all a,b,c € [0,00);
(F2*) F(a,0,0) =a for all a > 0;

(F3) F is continuous.

Then Fr C Z, and T is a @-Picard mapping.

In the case of ¢ defined by (t) = kt for some k € [0,1), Theorem 1.6
seem almost similar to a generalization of Theorem 1.4 except that Theorem
1.6 use the control function F' satisfying conditions (F'1), (F'2*), (F'3) rather
than Theorem 1.4 use the control function F satisfying conditions (F'1), (F2),
(F'3). Tt is easy to see that the condition (F2*) is stronger than the condition
(F2) since there are many functions satisfying the condition (£'2) but it does not
satisfy the condition (£2*). For example, functions Fy, Fy, F3 : [0,00)% — [0, 00)
defined by Fy(a,b,c) = a+a®+b+c, Fy(a,b,c) = In(a+1)+(a+b)e+max{a, b},
and F3(a,b,c) = max{2a,b} + ¢ for all a,b,c > 0. From the above observation,
we can conclude that the main theorem of [2] is not a proper extension of
Theorem 1.4.

The main goal of this work is to fulfill the mentioned gap by using the new
technique for improving Theorem 1.6 via the original control function, which
was introduced by Jleli et al. in [1]. For simplicity, the following diagram shows
the relation of Karapinar et al.’s results and our results, which describes the
objectives of this research.
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Our main theorem

Karapinar ct al.’s theorem

Karapinar et al.’s theorem

Jleli et al.’s theorem

Figure 1: The conceptual research framework

2 Main results

In section, we will prove the generalized p-fixed point results by using the new
technique, which is the improved version of the ¢-fixed point theorem of Kara-
pinar et al. [2], but it replaces the condition (F'2*) by the condition (F2).

Theorem 2.1. Let (X,d) be a complete metric space and T be a self mapping
on X such that

F(d(Tz,Ty), o(Tx), o(Ty)) < ¥(F(d(z,y),0(x), 0(y)) Y(z,y) € X, (2.1)

where ¢ : X — [0,00) is lower semi-continuous, F € F and ¢ € ¥. Then
Fr C Z, and T 1is a @-Picard mapping.

Proof. The first step is to prove that Fr C Z,. Let x € Fp. Letting y = x in
(2.1), we have
F(0,¢(z),0(x)) < Y(F(0, p(x), p(z)))- (2.2)

Assume that ¢(z) > 0. It follows from (F'1) that F'(0, o(z),¢(z)) > 0. By (2.2)
and (¢1), we get

F(0, (), (x)) < (F(0, p(z),0(x))) < F(0,0(x), p(x)),
which is a contradiction. Therefore, p(z) = 0, which implies that
Fr C Z,. (2.3)

Next, we will show that T' is a ¢-Picard mapping. Let xy be an arbitrary
point in X. Define the sequence {z,} C X by z, = Tz, for all n € N. If
Tp+x = Typ+_1 for some n* € N, then z,- is a fixed point of T. Hence, for the
rest of the proof, we assume that x,, = z,,_1 for all n € N, that is,

d(xp,Tn—1) >0 (2.4)
for each n € N. Now, we will claim that

lim d(p41,2n) = lim o(x,) = 0. (2.5)

n—oo n—0o0
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From (F1) and (2.4), we obtain

F(d(xnv'xn—l)a SD(iEn), Sp(xn—l)) >0

for all n € N. This allows to use the condition (¢2) and so by using the
contractive condition (2.1), we obtain
F(d(Zn41,2n), @(@nt1), o(zn)) < Y(F(d(Tn, Tn-1),¢(Tn), p(Tn-1)))
< F(d(@n, Tn-1), o(n), p(¥n-1)) (2.6)
for all n € N. This shows that {F(d(zn+1,Tn), ©(Tnt1),9(xs))} is a decreasing

sequence. Furthermore, it is easy to see that it is also bounded below by 0 and
hence it converges to some point r > 0, that is,

lim F(d(xp41,20), o(@n11), (20)) =7 (2.7)

n—oo

From (2.6), (2.7) and the squeeze theorem, we get

lim (F(d(zn, tn-1), o(zn), (Tn-1))) = 1. (2.8)

n— oo
Assume that r > 0. So we have

P i sup V(P 201, (0], 0-1)

n— oo

(¥2)
<r

which provides a contradiction. Therefore, » = 0, that is,

lim F(d(xn+17 xn)v (p(anrl)v So(xn)) = 07

n— oo

and thus, by (F'1), we get

Jim A, an) = lim elen) =0,

that is, Equation (2.5) holds.

Now, we shall prove that {z, } is a Cauchy sequence. Assume on the contrary
that {x,} is not a Cauchy sequence. Then there exists € > 0 for which we can
find subsequences {1} and {z,, )} of {z,} with n(k) > m(k) > k and

d (xm(k)a xn(k)) >€ (29)

for all & € N. Corresponding to m(k), we may choose n(k) such that it is the
smallest integer satisfying (2.9). Then we have

A (Tm(k)s Tn(r)—1) < €.
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By the triangular inequality, we have
d (i (k) Tn(r)

A (Tmk)> Tnr)—1) + d (Tn)—1, Tn(k))
€+ d (Tn)—1, Tn(r)) -

€

AN CIA

Letting k — oo in the above inequality and using (2.5), we have
lim d =€ 2.10
kz—;ngo (xm(k)vxn(k)) € ( )
By a similar way, we can show that
kl’ﬁgod (l'm(k)—i-lv xn(k)+1) = €. (211)

Using (F'3), (2.5), (2.10) and (2.11), it follows that

Lim F(d (), @n)) ¢ (Tmew)) - # (Zn)) = F(€,0,0) (2.12)
and
leTZ'OF (d (xm(k)Jrlv xn(k)Jrl) P (xm(k)Jrl) P (xn(k:)+1)) = F(€7 0, 0) (213)

Now, we choose & = (1) and y = x,,() in (2.1), we infer

F(d(Zm)+1, T +1) » @ @mi)+1) @ (@n+1)) < U (F (A(@m)s Tnk))s 2 @m)), @(Tnm))) -

Taking the limit superior as k — oo on both sides of the above inequality and
using (2.13), we deduce

F(E, 0, O) < lim sup 1/1 (F (d(xm(k)y xn(k))a (p(xm(k))7 (p(xn(k)))) . (214)

k—o0

Using the condition (¢1) and (2.12), we obtain

lim sup (F (d(xm(k)y xn(k))u Sp(xm(k))7 (P(xn(k)))) < ¢(F(€a 0, 0)) < F(Ea 0, O)

k—
(2.15)
From (2.14) and (2.15) together with (¢2), we obtain

F(e,0,0) < ¢(F(€,0,0)) < F(e,0,0),

which is a contradiction. Therefore, {z,} is a Cauchy sequence. By the com-
pleteness of X, there exists a point z € X such that

lim d(z,, z) = 0. (2.16)

n—oo

Using (2.5), (2.16) and the lower semi-continuity of ¢, we get

0 < p(z) <liminfo(z,) =0,

n—oo
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which implies that
o(z) =0. (2.17)
Next, we will prove that z is a fixed point of T. From (F'2), (F'3), (2.5) and
(2.16), we get
lim F(d(zn, 2), ¢(2n),0) = F(0,0,0) = 0.

n—oo

Note that from (2), it follows that lirorii/)(t) = 0. Then
t—

n—oo

lim $(F (A, 2), p(en),0)) = lim (2) = 0. (2.18)
Hence, from (F'1), (2.1), (2.17) and (2.18), we conclude that
d(xpt1,T2) < Y(F(d(zn, 2), 0(z,),0)) = 0 as n — oco.

Therefore, by the uniqueness of the limit, we obtain z = Tz, i.e., z is a fixed
point of T

Finally, we will show that T has a unique fixed point. Suppose that v and
v are fixed points of T such that u # v. Then d(u,v) > 0. Therefore,

F(d(u,v),0,0) = F(d(Tu,Tv),0,0)

2.1)
< P(F(d(u,v),0,0))

2
“2 Pld(u,v),0,0),

which is a contradiction. Thus, the fixed point of 7" is unique. This completes
the proof. O

The following example shows that Theorem 2.1 is more applicable than many
other results in the literature.

Example 2.2. Let X = [0,00) and d : X x X — R be defined by d(z,y) =
|z — y| for all z,y € X. Then (X,d) is a complete metric space. Assume that
T:X — X and ¢ : [0,00) — [0,00) are defined by

2
. 0 <y,
Tr = and (t) =
x> 3, §Sin<ﬁ)+%» t=1

, 0<t<l1,

NG

—

1
8z’
Clearly, by the graph in Figure 2, we have ¢ € .

Now, we will show that the fixed point result of Boyd and Wong [3] can not
be applied in this example. For any x € (O7 %) and y = %, we obtain

d(Tz,Ty) =

x? 1‘_1 2 1 =z

2711 2712

x—Dzwumw»

Hence, T does not satisfy the Boyd and Wong’s contractive condition. Also, the
Banach contraction principle is not applicable, since T is not continuous at %
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Figure 2: The graph of ¢ in blue line

Next, we will show that Theorem 2.1 can be applied in this example. Let
©:X —[0,00) and F : [0,00)% — [0,00) be defined by

o) =z, z€X and F(a,b,c)=a+a?>+b+c, a,b,c>0.

It is easy to see that F' € F and ¢ is lower semi-continuous. Now, we claim that
the mapping T satisfies the contractive condition (2.1). Suppose that z,y € X.
We have to consider the following cases:

Case 1. If (z,y) € [O, %)2, then we get

F(d(Tz,Ty), o(Tx), o(Ty)) = d(Tx,Ty) + (d(Tx,Ty))* + ¢(Tx) + ¢(Ty)
= |Tz — Ty|+|Tx — Ty\erT:c + Ty

372—2 2 _ 212 2 2

B ol S el O S

2 4 2 2
:Kx+w®—yH+Kx+w@—yW%gﬁ+yf
2 4 2 2

lz—yl  Je—y® = y

< .y 2.19
=Ty tT g taty (2.19)

<Yl — yl+z — y[*+z +y)
= Y(d(x,y) + (d(z,y))* + ¢(z) + ¢(y))
= Y(F(d(z,y), p(z), 0(y)))-
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Case 2. If (z,y) € [%, 00)2, then we get

F(d(Tz,Ty), p(Tx), o(Ty)) = d(Tx,Ty) + (d(Tz,Ty))* + ¢(Tz) + o(Ty)
= |Tx — Ty|+|Tx — Ty|*+Tx + Ty
11 1 1P 11

8r 8y 8r 8y 8z + 8y

1 . 1 9
< (2<|x—y|+|a: “ ety + 1) 16
(2.20)
Bl — yl+le — y2ra +y)
= Y(d(, ) + [z, 1) + 9(2) + 9(1))
B(F(d(x, ), 9(2), 0(1))-

Case 3. Let (z,y) € [0 1) x [%’
[

)2
generality, we may assume that z €
y|?>+x +y > 1, then

72

00) U [4,00) x [0,4). Without loss of
3) and y € [§,00) and so |z — y|+|z —

F(d(Tz,Ty), o(Tx), o(Ty)) = d(Tx, Ty) + (d(Tz,Ty))* + ¢(Tx) + ©(Ty)
=Tz — Ty|+|Tx — Ty|2+T;v + Ty

_ z? 1
2 8y
. ( > 9
< —sin 5 + —
2 2(Iﬂc—yIJrlﬂc—y\ +z+y)+1) 16
(2.21)

U(lz = yl+|z — yP+z +y)
= ¢(d(z,y) + (d(z,9))* + () + ©(y))
= Y(F(d(z,y), p(z), p(y)))-

The validity of the conditions (2.19), (2.20) and (2.21) can be checked by plotting
3D surface in MATLAB, shown as Figure 3. Without loss of generality and for
the sake of simplicity, we restrict the domain in Figure 3 to [0, 3]. Therefore,
all the required hypotheses of Theorem 2.1 are fulfilled, and so T" has a unique
p-fixed point. In this case, the point 0 is a unique -fixed point of T'.

Remark 2.3. If we take p(z) = 0 for all z € X in Theorem 2.1, then we
get the real proper generalization of the Boyd and Wong fixed point theorem.
However, if we take the same function ¢ in Theorem 1.6 and use (F'2*), we can
see that the obtained result is equivalent to the Boyd and Wong fixed point
theorem. This yields the advantage of our main result with the several results
in the literature as shown in Figure 4.
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LS
[

7

7
/////’////////

Figure 3: The value of the comparison of the L.H.S. and the R.H.S. of (2.19)
and (2.21)

F(a,b.c)=a+b+c

Karapinar et al’s

theorem Our theorem

Figure 4: The difference of consequence between our theorem and Karapinar et
al.’s theorem

3 Conclusions

Inspired by the problem of the relaxing of the hypothesis of the control function
F in Theorem 1.6, we proposed a new technique for solving this problem. By
the help of this suggested technique, our main theorem has the new proof, which
seems to be simpler than the proof in [2]. The obtained result of this paper is a
real proper generalization of the result in [1], and it also covers several famous
fixed point results and ¢-fixed point results in the literature. For the part of
an application, we can use the main result in this work for applying in the
homotopy result, and the fixed point results in partial metric spaces like the
application in [2] since the class F is weaker than the class defined in [2].
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