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Abstract

Solitary wave propagation and interaction in plasma using numerical
tools like Galerkin Finite Element scheme are discussed in this paper.
A one-dimensional nonlinear Schrodinger-Korteweg De-Vries (Sch-KdV)
equation is taken as model equation for Non-linear waves propagation in
the said media. The derived system, with the help of cubic B-spline source
functions are engaged as element and weight functions, after finite element
formulation is solved with Runge Kutta Fourth Order method (RK4).
Previously the finite element methods with some numerical simulations
do not exhibit the complex nature of wave interaction, especially solitary
wave interaction. A combination of Galerkin Finite Element scheme with
RK4 is a very prominent instrument to study the nature of Non-linear
evolution equations in ionic medias, which is the novelty of the paper.
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1 Introduction

Several physical phenomena are described either by nonlinear coupled partial
differential equations or by nonlinear evolution equation. This Non-linear wave
propagation phenomenon appears in one or other ways can be well explained
by travelling and solitary wave solution of the said equations. Most of these
equations do not have an analytical solution, or it is extremely difficult and
expensive to compute their analytical solutions. Hence numerical study of these
nonlinear partial differential equations is important in practice. The Non-linear
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waves propagation in plasma can also be explained by these solutions. In the
past study, many methods for finding the Solitary and periodic solutions [1]-[8]
and numerical method [8]-[12],[21]-[24] are used for Non-linear evolution equa-
tions (NLEEs).
In this paper, we study a Galerkin finite element Scheme for the 1D nonlinear
Schrödinger -Korteweg-De -Vries (Sch-KdV) equation by using linear finite el-
ements in space and extrapolation to remove the nonlinear term. We discuss
the properties of this method and compare its accuracy with previous studies.
The interaction of two solitons is also studied. Moreover, the propagation of
the Maxwellian initial condition is simulated.
The outline of this paper is as follows, In the next section the model equation is
discretized to form a numerical scheme. In section 3 a numerical scheme is de-
veloped and results are explained graphically. Finally, we give a brief conclusion
in Section 4

2 Model Equation and Discretization

Non-linear waves propagation and interactions in plasma for this purpose we
consider the 1D nonlinear Schrödinger -Korteweg-De -Vries (Sch-KdV) equation
[13]-[15] as model equation as -

iθt = θxx + θυ (2.1)

υt = −6θυx − υxxx + (|θ|2)x (2.2)

Here θ(x, t)is complex function and υ(x,t)is real-valued function. This system
appeared as model equation for describing various types of wave propagation
such as Langmuir wave, dust-acoustic wave and electromagnetic waves in plasma
physics. with initial conditions

θ(x, 0) = f(x) = 9
√

2 eiαx k2sech2(kx) (2.3)

v(x, 0) = g(x) =
α+ 16k2

3
− 6k2tanh2(kx) (2.4)

and boundary conditions

θ(t, a) = 0, v(t, b) = 0, x ∈ [a, b] and t ∈ [0, T ] (2.5)

Here θ = θ(x, t) and υ = υ(x,t) are going to be considered as sufficiently differ-
entiable functions.
We multiplied weight function to the equations (2.1)-(2.2) and integrated over
the x domain for finite element method [16]-[20], so we get∫ b

a

(iωθt − ωθxx − ωθυ)dx = 0 (2.6)

∫ b

a

(ωυt + 6ωθυx + ωυxxx − ω(|θ|2)x)dx = 0 (2.7)

The domain [a, b] of x is separated into N finite subdivision as
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a = x0 < x1 < x2 < ... < xN−1 < xN = b

Here nodal point is {xm}Nm=0 i.e. m = 0,1,2,...,N and length of subdivision will
be h = xm+1 - xm . We construct the approximate solutions for the system
with cubic B-spline base functions

θN (x, t) =
N+1∑
j=−1

ψj(x)uj(t) (2.8)

υN (x, t) =
N+1∑
j=−1

ψj(x)vj(t) (2.9)

where uj(t) and vj(t) are function of time t and ψj(x) are function of x, called
element size functions. A local coordinate ξ = x−xm for 0≤ ξ ≤ h introduced
for cubic B-spline base functions with typical element [xm, xm+1] , which has
the form;

ψm−1 =
(h− ξ)3

h3

ψm =
(h3 + 3h2(h− ξ) + 3h(h− ξ)2 − 3(h− ξ)3)

h3

ψm+1 =
(h3 + 3h2ξ + 3hξ2 − 3ξ3)

h3

ψm+2 =
ξ3

h3
(2.10)

The approximate solutions of Eqs.((2.8)-(2.9)) with element size function eq.(2.10)
may be define as with typical element [xm, xm+1];

θN (ξ, t) =
m+2∑
j=m−1

uej(t)ψ
e
j (ξ) (2.11)

υN (ξ, t) =
m+2∑
j=m−1

vej (t)ψ
e
j (ξ) (2.12)

The point-wise values of θN and υN in terms u and v will be

θN (xm, t) = um−1 + 4um + um+1 (2.13)

υN (xm, t) = vm−1 + 4vm + vm+1 (2.14)

So Eqs. ((2.6)-(2.7)) with [xm, xm+1] will be∫ xm+1

xm

(iωθt − ωθxx − ωθυ)dx (2.15)

∫ xm+1

xm

(ωυt + 6ωθυx + ωxxυx − 2ωθθx)dx+ [ωυxx − ωxυx] (2.16)
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here weight function ωi with size functions ψj are takenfor the Galerkin finite
element method, Substituting Eqs. ((2.11)-(2.12)) into Eqs. ((2.15)-(2.16)),we
get

m+2∑
j=m−1

{
∫ h

0

[(iψiψj)u̇j − (ψiψ
′′

j )uj −
m+2∑

k=m−1

((ψiψjψk)uj)uk]dx} = 0 (2.17)

m+2∑
j=m−1

{
∫ h

0

[(ψiψj)v̇j+(ψ”
jψ
′
k)vj+

m+2∑
k=m−1

((6(ψiψjψ
′
k)uj)vk−2((ψiψj

ψ′k)uj)uk)]dx+ [((ψiψ
”
j )− (ψ′iψ

′
j))vj ]

h
0} = 0

(2.18)

where i, j, k = m-1, m, m+1, m+2, ue = (um−1, um, um+1, um+2) and ve =
(vm−1, vm,vm+1, um+2) are element parameters where

Aij =

∫ h

0

(iψiψj)dξ, Bij =

∫ h

0

(ψiψ
′′

j )dξ, Cjk =

∫ h

0

(ψ”
jψ
′
k)dξ

Dij =

∫ h

0

(ψiψj)dξ, Fijk =

∫ h

0

6(ψiψjψ
′
k)dξ, Gijk =

∫ h

0

(ψiψjψk)dξ

Hijk =

∫ h

0

2(ψiψjψ
′
k)dξ, Iij = [(ψiψ

”
j )]h0 , Jij = [(ψ′iψ

′

j)]
h
0

The element matrices in ((2.17)-(2.18)) are computed as follows:

Aij =
ih

140


20 129 60 1
129 1188 933 60
60 933 1188 129
1 60 129 20

 Bij =
3

10h


4 −7 2 1
33 −44 −11 22
22 −11 −44 33
1 2 −7 4



Cij =
3

2h2


−3 −5 7 1
5 3 −9 1
−1 9 −3 −5
−1 −7 5 3

 Dij =
h

140


20 129 60 1
129 1188 933 60
60 933 1188 129
1 60 129 20



Iij =
6

h2


−1 2 −1 0
−4 9 −6 1
−1 6 −9 4
0 1 −2 1

 Jij =
9

h2


−1 0 1 0
0 1 0 −1
1 0 −1 0
0 −1 0 1



Gij(u) =
h

840


G11(u) G12(u) G13(u) G14(u)
G21(u) G22(u) G23(u) G24(u)
G31(u) G32(u) G33(u) G34(u)
G41(u) G42(u) G43(u) G44(u)
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Fij(v) =
6h

840


F11(v) F12(v) F13(v) F14(v)
F21(v) F22(v) F23(v) F24(v)
F31(v) F32(v) F33(v) F34(v)
F41(v) F42(v) F43(v) F44(v)

 ;

Hij(u) =
2h

840


H11(u) H12(u) H13(u) H14(u)
H21(u) H22(u) H23(u) H24(u)
H31(u) H32(u) H33(u) H34(u)
H41(u) H42(u) H43(u) H44(u)


where
G11(u)=(84,463,172,1)(u), G12(u)=(463,2889,1275,17)(u),
G13(u)=(172,1275,696,17)(u), G14(u)=(1,17,17,1)(u)
G21(u)=(463,2889,1275,17)(u), G22(u)=(2889,23664,15519,696)(u)
G23(u)=(1275,15519,15519,1275)(u), G24(u)=(17,696,1275,172)(u),
G31(u)=(172,1275,696,17)(u), G32(u)=(1275,15519,15519,1275)(u),
G33(u)=(696,15519,23664,2889)(u), G34(u)=(17,1275,2889,463)(u),
G41(u)=(1,17,17,1)(u), G42(u)=(17,696,1275,172)(u),
G43(u)=(17,1275,2889,463)(u), G44(u)=(1,172,463,84)(u)

F11(v)=(-280,-150,420,10)(v) F12(v)=(-1605,-1305,2781,129)(v)
F13(v)=(-630,-792,1314,108)(v) F14(v)=(-5,-21,21,5)(v)
F21(v)=(-1605,-1305,2781,129)(v) F22(v)=(-10830,-17640,25002,3468)(v)
F23(v)=(-5349,-17541,17541,5349)(v) F24(v)=(-108,-1314,792,630)(v)
F31(v)=(-630,-792,1314,108)(v) F32(v)=(-5349,-17541,17541,5349)(v)
F33(v)=(-3468,-25002,17640,10830)(v) F34(v)=(-129,-2781,1305,1605)(v)
F41(v)=(-5,-21,21,5)(v) F42(v)=(-108,-1314,792,630)(v)
F43(v)=(-129,-2781,1305,1605)(v) F44(v)=(-10,-420,150,280)(v)

H11(u)=(-280,-150,420,10)(u) H12(u)=(-1605,-1305,2781,129)(u)
H13(u)=(-630,-792,1314,108)(u) H14(u)=(-5,-21,21,5)(u)
H21(u)=(-1605,-1305,2781,129)(u) H22(u)=(-10830,-17640,25002,3468)(u)
H23(u)=(-5349,-17541,17541,5349)(u) H24(u)=(-108,-1314,792,630)(u)
H31(u)=(-630,-792,1314,108)(u) H32(u)=(-5349,-17541,17541,5349)(u)
H33(u)=(-3468,-25002,17640,10830)(u) H34(u)=(-129,-2781,1305,1605)(u)
H41(u)=(-5,-21,21,5)(u) H42(u)=(-108,-1314,792,630)(u)
H43(u)=(129,2781,1305,1605)(u) H44(u)=(-10,-420,150,280)(u)

Here Aij , Bij , Cjk, Dij , Fijk, Gijk, Hijk, Iij and Jij are element matrices.
so, the new obtained system in matrix form

u̇ = A−1[{B −G(u)}u] (2.19)

v̇ = D−1[H(u)u+ (J − I)v − Cv − F (u)v] (2.20)
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Here u = (u−1, u0, u1, ..., uN , uN+1) and v = (v−1, v0, v1, ..., vN , vN+1) are time
dependent constraints, The generalized rows of the combined matrices are:

A = ι̇h
140 (1,120,1191,2416,1191,120,1)

B = 3
10h (1,24,15,-80,15,24,1)

C = 3
2h2 (-1,-8,19,0,-19,8,1)

D = h
140 (1,120,1191,2416,1191,120,1)

I = 6
h2 (0,0,0,0,0,0,0)

J = 9
h2 (0,0,0,0,0,0,0)

G(u) = h
840{(1,17,17,1,0,0,0)u,(17,868,2550,868,17,0,0)u,(17,2550,18871,18871,2550,17,0)u,

(1,868,18871,47496,18871,868,1)u,(0,17,2550,18871,18871,2550,17)u,(0,0,17,868,2550,868,
17)u,(0,0,0,1,17,17,1)u}

F(v) = 6h
840 {(-5,-21,21,5,0,0,0)v,(-108,-1944,0,1944,108,0,0)v,(-129,-8130,-17841,17841,8130,

129,0)v, (-10,-3888,-35682,0,35682,3888,10)v,(0,-129,-8130,-17841,17841,8130,129)v,(0,0,-
108,-1944,0,1944,108)v,
(0,0,0,-5,-21,21,5)v}

H(u) = 2h
840 {(-5,-21,21,5,0,0,0)u,(-108,-1944,0,1944,108,0,0)u,(-129,-8130,-17841,17841,8130,

129,0)u, (-10,-3888,-35682,0,35682,3888,10)u,(0,-129,-8130,-17841,17841,8130,129)u,(0,0,-
108,-1944,0,1944,108)u, (0,0,0,-5,-21,21,5)u }

The system equations (2.19) and (2.20) has (N + 3) × (N + 1) ordered un-
known equations. if we use time dependent boundary condition in Eqs.(2.13)
and (2.14) with m = 0 , then so parameters can be written as other parameters;

u−1, v−1 → u0, u1 and v0,v1 ; when we take m = 0

Similarly

uN+1 , vN+1 → uN−1,uN and vN−1,vN we take m = N

Then, the system of Eqs. (2.19) and( 2.20) will be two matrix systems of
(N + 1) × (N + 1) orders.These equations of systems will be solved by RK4

(Runge-Kutta fourth order method) to known initial condition u0j and v0j with
nodal points xm for m=0(1)N as follows:

u(xm, 0) = θN (xm, 0)

v(xm, 0) = υN (xm, 0)

If we write the system explicitly as

θN (x0, 0) = u−1 + 4u0 + u1 = u(x0, 0),

θN (x1, 0) = u0 + 4u1 + u2 = u(x1, 0),

θN (x2, 0) = u1 + 4u2 + u3 = u(x2, 0),

6
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.

.

θN (xN , 0) = uN−1 + 4uN + uN+1 = u(xN , 0),

and
υN (x0, 0) = v−1 + 4v0 + v1 = v(x0, 0),

υN (x1, 0) = v0 + 4v1 + v2 = v(x1, 0),

υN (x2, 0) = v1 + 4v2 + v3 = v(x2, 0),

.

.

υN (xN , 0) = vN−11 + 4vN + vN+1 = v(xN , 0),

if we write u−1 , uN+1 → u0 , uN , and v−1 , vN+1→ v0 and vN respectively.
then we get a new system (N + 1)× (N + 1) order in matrix form as :

4 2
1 4 1

1 4 1
.

.
.
1 4 1

2 4





u0
u1
u2
.
.
.

uN−1
uN


=



u(x0, 0)
u(x1, 0)
u(x2, 0)

.

.

.
u(xN−1, 0)
u(xN , 0)


(2.21)

and 

4 2
1 4 1

1 4 1
.

.
.
1 4 1

2 4





v0
v1
v2
.
.
.

vN−1
vN


=


v(x0, 0)
v(x1, 0)
v(x2, 0)

v(xN−1, 0)
v(xN , 0)

 (2.22)

By Matleb solving the algebraic Equations (2.21) and (2.22) with initial param-
eters u0j and v0j are gained for j=0(1)N.

3 Numerical Scheme

Non-Linear waves propagations and interaction are investigated to the system
of equations (2.1)-(2.2) numerically for numerous values of x and t. L2 , L∞ and
L′2 , L′∞ are error norms and used to investigate consistency with numerical
solutions(Soliton) for θ(x, t) and υ(x, t) respectively for initial conditions for the
Sch-KdV equation.

θ(x, 0) = f(x) = 9
√

2 eiαx k2sech2(kx), (3.1)

7
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v(x, 0) = g(x) =
α+ 16k2

3
− 6k2tanh2(kx) (3.2)

L2 = ‖θ − θN‖2 =

√√√√√h
N+1∑
j=−1

∣∣∣θj − (θN )j

∣∣∣2 (3.3)

L∞ = ‖θ − θN‖∞ = Max
0≤j≥N

∣∣∣θj − (θN )j

∣∣∣ (3.4)

And

L′2 = ‖υ − υN‖2 =

√√√√√h
N+1∑
j=−1

∣∣∣υj − (υN )j

∣∣∣2 (3.5)

L′∞ = ‖υ − υN‖∞ = Max
0≤j≥N

∣∣∣υj − (υN )j

∣∣∣ (3.6)

In figure 1 and 2 nonlinear wave propagation and its travelling wave solution is
presented. The coupled equations (2.1) and (2.2) are plotted for some fix values
of k, α,h and t (−5 < t < 5). the space step is taken as 0.001. It is shown in the
figure that the solution of said equation exhibit a soliton for the small values
of x (0 ≤ x ≤ 0.1). If we extend the range of x (−15 ≤ x ≤ 15) the solution
converted from soliton to a wave natured system. A solitary wave interaction
is presented in the figure 3 for the same values of k, α, h and step lengths with
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large values of x and t (−20 ≤ (x, t) ≤ 20). It clearly exhibit that solitons are
developed when the values of x and t coincides. For different values of x and t
the system represent the travelling wave solution.

4 Conclusions

In the present paper, we have investigated numerically a physical model for
wave propagation in a nonlinear, dispersive medium i.e a relativistic plasma.
A Galerkin finite element Scheme is exhibited to locate Solitary wave(Solitons)
propagation and interactions in plasma for Schrödinger - KortewegDe Vries (Sch-
KdV) equations. The new obtained systems (finite element formulation) solved
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by RK4 (Runge-Kutta fourth order method). The different values of x, t and
error norms L2 , L∞ are used for numerical solutions of Sch-KdV equations.The
numerical results obtained by this method are in good agreement with the ex-
act solutions available in the literature. The errors obtained by the proposed
method are less when compared with those of available in the literature. The
solitary wave solution in fig.-1, 2 and its interaction in fig.-3 of this system are
presented which are new. here, we learn that this method will emulates devel-
opment of many exact travelling wave solutions with new solitons.This scheme
is a significant instrument for Non-linear evolution equations (NLEEs).
The advantages of the present scheme for oscillatory problems are discussed in
detail. It can be expected that the main ideas will also be useful for other phys-
ical problems being highly oscillatory in nature, e.g., the nonlinearized model.
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