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Abstract

In this paper, the generalization of Simpson’s identity has been derived. This generalized
identity has been used to obtain new Hermite-Hadamard inequalities for differentiable convex
and quasi-convex functions. Also, the validation of the derived inequalities has been established
using suitable examples.
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1 Introduction

The theory of inequality has many applications in mathematics, physical sciences and engineering
fields. It includes the study of various inequalities such as Holder’s inequality, Jensen’ inequality,
Azuma’s inequality, Boole’s inequality, Hermite-Hadamard inequality and many more well known
inequalities. Hermite-Hadamard inequality is one of the most famous inequality in mathematics.
It was derived independently by Charles Hermite and Jacques Hadamard. It is involved with the
convexity of function. In 1998, Dragomir and Agarwal[6] derived the inequality associated with
the right hand side of Hermite-Hadamard inequality for differentiable convex function. Later on
this estimate was improved by Pearce and Pecaric[21]. Kirmaci[17] discovered the inequality linked
with the left hand side of Hermite-Hadamard inequality. By using the work of Dragomir et al.
and Kirmaci many researcher have derived the inequalities associated with left side and right side
of Hermite-Hadamard inequality. The Hermite-Hadamard integral inequality for convex functions
is used in Kirmaci’s work to present a number of inequalities for differentiable convex functions.
Kirmaci’s work employs the Hermite-Hadamard integral inequality holding for convex functions to
describe a few inequalities for differentiable convex functions. Additionally, certain applications to
unique real number means were offered, and some midway formula error estimates were discovered.
Later, the inequality related to right hand side of Hermite-Hadamard inequality for quasi-convex
function was discovered by D. A Ton.[15]

Before discussing the the main findings of the paper, some prilimianary concepts that are useful
for the better understanding of the research. We begin with the Hermite-Hadamard inequality.

o157 ) < ot [ ategas < ST, o
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Next, we define convex and quasi convex function.

Definition 1. A function o:Z — R is said to be convezx if

o(y17e+ (1 — 3)z1) < s0(y1) + (1 — 5)o(z1),

forally1,z1 € T and 0 < 3¢ < 1.
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Definition 2. A function o :Z — R is said to be quasi-convex if
oy + (1 = 2)z1) < maz{o(y1), o(21)},
forallyy,z1 €T and 0 < 3¢ < 1.

In [20](page 3 , Lemma 1), Alomari et al. has derived the following identity.

Lemma 1. Let L{yi, z1] denote the class of all Lebesque integrable functions on [y1,z1]. Let o :
[y1,21] = R be a differentiable function on (y1,21) with y1 < z1. If o’ € L{y1, z1], then

<zl ;yl) [gm)—;g(zo Yy <y;>} / o(s)ds

[ Do) 0mm) o2 (52 o

(2)

2 Main Results

In this section, we generalize the identity obtained by Alomari et al.[20]. Also, with the help of
this generalized identity, several Hermite-Hadamard-type inequalities have been derived. Also, the
validity of derived inequalities has been derived.

Theorem 1. Let o : [y1, z1] — R be a differentiable function on (y1,z1) withyy < z1. If o' € Ly, z1],
then the following equality holds:

2z —Syl)g(x) L= y;)@(yl) L - :g)g(zl) B /zl oo)ds

~@-u) [ 1 <% - ;)@%m (1= sy )+ (z: o | 1 (% - §> o (e + (1))
3)

Proof. By applying integration by parts two times,

= [ 1 (5= 3 ) e+ 1= )
(- 1)tz 1

3 T — Y1

B 1
0 (w_yl
1

__20(z) oy) i
- 3(z— ) Jr3(z—yl) (gg_yl)/o oz + (1 Jy1)dse. (4)

; / o(oex + (1 — se)ys)doe

Making use of change of the variable s = sx + (1 — 5)y; and multiplying by (z — y;)? both sides,
we have

2 1 v
(@~ 0l = 3o~ o) + (o~ () ~ | ols)ds. 6
Y1
Similarly,
, 2 1 a1
(@ —21)°L2 = (21 — 2)e(2) + g (21 —2)o(z1) = | o(s)ds. (6)
By adding (5) and (6) we have required identity. O

Remark 1. By setting x = 2521 in Theoreml, the identity (3) becomes the identity (2)

Next, the certain estimates associated with RHS of (3) are given.
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Theorem 2. Let ¢ : [y1,21] — R be a differentiable function on (y1,21) with y1 < z1. If |0'] is
convex on [y1, z1], then the following inequality holds:

‘2(21 —yo(z) | (x—yi)o(yr) |, (21 —2)o(z1) /Z1 o(s)ds

+ +
3 3 3 "

< (oo (P SO (g (Sl 20N -

Proof. Using Theorem 1 and the convexity of |¢'|, we have

’2@ —yo(n) | (= —yely) , (1 -2)alz1) / " o(s)ds

3 + 3 3

Cht

<@ =0 [ = glld e+ (L= s)ldoe + (21 —a)? [ e S/ Gemn + (1= o)
<=0 [ b= 3l @]+ (1= 2l ()] x
1
= [ o= S )l + (1= e @)l
2./ ! 1 ' ! 1
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+<z1—x>2[g'<z1>|/01 %|%—§d%+|g’<x>/01<1—z>|z—§d%]

_ 2( 2910/ (z)] | 8l (y1)] 280/ (21)] | 29|0(z)]
_(x_yl)( 6 T8 )Hzl_m)( SRR )

This completes the proof.

[
Example 1. Let the function f be defined as f(z) = 2°. Then the function f is convez on [1,2]. We
have
2(z1 —y)o(z) | (z—wyi)olyr) | (21 —x)o(z1) /Zl 22° 2 508
- ds| = |22 4 2 L 28 8
’ 3 R R e el i S TR TH L
and

(o= 2 (P ), (B0, ZIE])

162 81 81 162
16 29[z[° 512 29)zf°
=(z-1*(= 2 — 1)} (== : 9
=17 (g + ) + -2 + ) )
3
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Figure 1:

Here Curve 1 and Curve 2 represents the expression (8) and (9) respectively. Figure 1 depicts
that the Curve 1 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (8) is less than the expression (9). This validates the inequality (7).

Theorem 3. Let o : [y1,21] = R be a differentiable function on (y1,z1) with y1 < z1. If |o'|? is
convex on [y1, z1], then the following inequality holds:

‘2(Z1 —ye@) -yl | (1= 2)elzn) /Z1 ole)ds

3 + 3 3

Y1

Q=
Q=

<2p+1+1
—\(

3p+3)3p> " {(x = y)*(l¢' ()" + 1 (2)]7)

o + (21 = 2)* (o' (@) + [ (21)]7) (10)

Proof. Using Theorem 1, Holder’s inequality and the convexity of |o'|?, we have

’2(;;1 —égl)g(x) n (x — y;)@(yl) n (21 — ?Q(Zl) 3 /21 o(5)ds

Y1

1 1 1 2
<G y)? [ e glle G (L= o+ (1 =) [ e l1g e + (1= o)) do
0 0

<ot ([ e 2a) ([ 1t s -
+<zlx>2(/01 %2p>;(/01|g’<ml+<1%>x>|Qd%)
<t (g 2 ([ @i a-immar)

3
b=t (Z LY ([ i+ -l )’

1 1

Q=

p+1 % 1 1
(o) 5| P Ul + @M+ - 0@l + G,

This completes the proof. O
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Example 2. Let the function f be defined as f(z) = z*. Then the function f is convez on [0,1]. We

have
2(z1 —y)e(@) | (m—w)olyr) (21 —7)o(z1) / 228 2 @
—~ ds| = |-+~ — % 11
’ 3 - 3 * 3 s =5t oy (D)
and
ortl 4 1 %1 9 1 1
< (2 ' - _— _ / q / a4\ 4 — 2(1, q / q\4q
< (i) o[- + 1@ + =20l + )
1752535
= 5 (2P + (ja]? + D)32® = 2((|2 + (j2]? + D))z + (2f° + (j2]* + 1)F). (12)
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Here Curve 1 and Curve 2 represents the expression (11) and (12) respectively. Figure 2 depicts
that the Curve 1 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (11) is less than the expression (12). This validates the inequality (10).

Theorem 4. Let o : [y1,2z1] = R be a differentiable function on (y1,z1) with y1 < z1. If |07 is
convex on [y1, z1], then the following inequality holds:

‘2(21 —yo(z) | (@—wy)o(yr) | (z1—z)o(z1) /zl

+ +

3 3 3 o(s)ds

1

< ()] [io- wr (Bl Yl W]
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Proof. Using Theorem 1, Power-mean inequality and the convexity of |¢'|?, we have

‘2(21 —y1)o()

3
S(w—yl)2/01
< (z—wp)? /01
/01

+ +

(x — y;)@(yl) (21 — ?9(2‘1) - /,1 o(s)ds
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d%)p X (/
3 0
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2
% — 3‘|g’(%zl + (1 — 5)x)|d>e.

1 q
o= gl Ger (1=

2
5 — 3’@’(%21 +(1— %)x)|qd%)

1
q

- §’<%|@’<Zl>lq +(1- %>|g’<x>qczx) i

= () ([ A gl [ gl
=73 % (f e gl Gorran [a- )= 3l @)

) <5); oM 29'9'“”)‘1’ + - (s 29|g’<21>|q>3]_

18 81 162 81 162
This completes the proof. O
Example 3. Let the function f be defined as f(x) = 2®. Then the function f is convex on [0,1]. We
have
2(z1 —y)o(x) | (z—wyi)o(yr) | (21 —x)o(z1) /Zl 42° 2z
— ds| = |— — — 14
| wer) | o), (o [ oy = |5 - 5 (14)
and
1 1
57 2 (8l (y)? | 29| ()| * 2l @7 29]0"(z1)[" ) ©
(18) {(x w) ( 8L 162 a8 162
5133 ) 5 3
- (z +1)%(29]z|3 + 16)1 (15)

27
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Curve 1 Curve 2

Figure 3:

Here Curve 1 and Curve 2 represents the expression (14) and (15) respectively. Figure 3 depicts
that the Curve 1 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (14) is less than the expression (15). This validates the inequality (13).

Theorem 5. Let o : [y1,21] — R be a differentiable function on (y1,z1) with y1 < z1. If |0'] is
quasi-convex on [y1,z1], then the following inequality holds:

‘2(21 —y1)o(x) N (z —y1)o(y1) n (21 —z)o(z1) /21 o(6)ds

3 3 3

T — )2 21— x
< X0 I i @), 1o )y + 2O a1 (), 1o @)1 (16)

Proof. Using Theorem 1 and the quasi-convexity of |¢’|, we have

20z —yo(x) | (z—yi)e(yr) | (s —x)o(zn) (7
‘ 1 3 * 3 = 3 _/y

<(~T—y1)2/01

= [ e gfmastic @l e (-7 [

5(x —y1)? (21 — )2

= 2 el @) 1o )l + 2 mard ol (o), o (@)}

This completes the proof. O
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1
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2
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Example 4. Let the function f be defined as f(x) = x°. Then the function f is conver on [—3,5].
We have

2(z1 —y1)o(x) _ |16x5 3368z | 7448

: LG _y;)g(yl) L —?9(2’1) B /: o(5)ds : s+t (7
and
%maﬂs{lg'(w)l, " (y)I} + wmm{m’(zl), |¢'(@)[}

5(x + 3)?max{405,5x*}  5(5 — 2)%max {3125, 5z*}
- 18 i 18 ' (18)
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Here Curve 1 and Curve 2 represents the expression (17) and (18) respectively. Figure 4 depicts
that the Curve 1 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (17) is less than the expression (18). This validates the inequality (16).

Theorem 6. Let o : [y1,21] = R be a differentiable function on (y1,z1) with y1 < z1. If |o'|? is
quasi-convex on [y1, z1], then the following inequality holds:

'2(,21 —é/l)g(w) L (- y;)@(yﬂ L (- z)g(m) B /: o(e)ds

p+1 : 1
<Gy ) (meslle @I
pt+1 » 1
oo (i) (maellg G0 le @) (19)

Proof. Using Theorem 1, Holder’s inequality and the quasi-convexity of |o’|?, we have

‘2(21 73yl)g(x) N (x — y;))@(yl) i (21 — ?9(21) B /:1 o(5)ds

S(x—’yl)Z/Ol
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1 1
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This completes the proof. O
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Example 5. Let the function f be defined as f(x) = 7. Then the function f is convexr on [—2,1].
We have

CERSPGINCE IR P R I TR
and
241\ 16 ()T 3
(= ( s ) mas (i @I 2 l")
p+1 % 1
-0 (G ) (maeld Gl 2 @)
= %(z +2)2(maz{200704, 492'2})? + %(1 — 2)%(maz{49, 492'2})=. (22)

Figure 5:

Here Curve 1 and Curve 2 represents the expression (21) and (22) respectively. Figure 5 depicts
that the Curve 5 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (21) is less than the expression (22). This validates the inequality (19).

Theorem 7. Let ¢ : [y1,21] = R be a differentiable function on (y1,21) with y1 < z1. If |o'|? is
quasi-convex on [y1, 21|, then the following inequality holds:

3 3 * 3

2 1
< 2z —y)

< 22 (el @1 )+ P (maslg oo @) e

‘2(z1 —y1)o(z) n (x—y1)oyr) | (21 —x)o(21) o /Z1 o(s)ds

Y1
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Proof. Using Theorem 1, Power-mean inequality and the quasi-convexity of |o'|?, we have

3 3 3
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This completes the proof. O

Example 6. Let the function f be defined as f(x) = x. Then the function f is convex on [—8,—2].
We have

’2(21 —ye(@) | (@—wye(yr) (s —x)o(z) /Zl o(s)ds

+ +

_ 3 _ _
2 3 3 = |4z® — 168z — 340)| (25)

Cat

and

1 1

Ty % <maz{|9'(z1)qv |9l(x)q}> q

5(x —y1)?

8 (maw{w(m)w,|g’<y1>|q})

= % ((:c +8)2maz{384(23)(31),3% |23} ¥ + (2 + 2)?max{12, 311" }) . (26)
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Here Curve 1 and Curve 2 represents the expression (25) and (26) respectively. Figure 6 depicts
that the Curve 1 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (25) is less than the expression (26). This validates the inequality (23).
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