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Abstract

In an ecosystem, the balance of prey-predator system is greatly

influenced by the availability of prey and the fear imposed on

it’s population. In this paper, it is proposed that a prey-predator model

in which prey is assumed to be able to detect the presence of predator and

to counteract it by forming patches and incorporating the cost of fear into

prey reproduction. Equilibrium points are calculated and analysis

of the local and global asymptotic behaviors of the system are

done. Hopf-bifurcation is seen in case of adequate availability

of prey. The system stabilizes in presence of high levels of fear.

Availability of prey act as a crucial role to change the dynamics of the sys-

tem. Numerical simulations showcases the relationship between

prey patches and other related parameters like level of fear,

conversion rate of predator and availability of prey. These sim-

ulations reveal the impact of fear on the prey-predator system

and also justify the theoretical findings. In the end, the bifurcation

scenarios are derived when two different parameters switch together at a

same time. Numerical simulations are justified the theoretical findings.

Keywords: Fear; Patches; Hunting Stability; Bifurcation.

1 Introduction

The survey of prey-predator dynamics is one of the blooming topics of ecosystem
in last few decades. Predation process perform an indispensable part to main-
tain ecological balance. In real field application, the predator do not capture all
the prey population due to refuge property of prey [1, 2]. In biomathematics, the
research of prey refuge is one of the hot spot area. As a result, many researchers
focus in this aspect [3, 4, 5]. Some experimental finding confirm that fear effect
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on predator may alter the behavior of prey [6, 7, 8]. Some theoretical studies
have revealed that growth rate of prey need to improve through implementation
of fear effects [9, 10, 11]. Recently, the authors in [12] studied the hunting co-
operation and the fear factor among prey in a Leslie-Gower model. This study
revealed that fear factor is more effective than hunting cooperation to stabi-
lize the system. Also, the scientists in [13] proposed a Beddington-DeAngelis
functional response of predator-prey model and investigated the impact of anti-
predator activity on whole system. They noted that the system may exhibits
multiple Hopf-bifurcation. The researchers in [14] investigated that chaotic
system turned into stable system in presence of cost of fear in three species
model. But very few numbers of researchers explored the combine effects of
hunting cooperation and anti-predator activity in predator-prey system. In re-
cent past, the authors in [15] studied the combine effects of hunting cooperation
and fear factor in prey-predator system and observed that strong demographic
Allee phenomenon. Recently, the authors in [16] studies the influence of
harvesting and allee effects in disease induced prey-predator system
and reveals that allee effect and harvesting can be a handy technique
for controlling the spread of disease. Fractional order mathemati-
cal models are a new research field in non-linear dynamics [17, 18].
The authors in [19] apply the homotopy analysis transform technique
in prey-predator model to evaluate approximate solution which con-
verges to the exact solution of time-fractional nonlinear subject to
initial conditions.

Anti-grazing strategy is a vital part in prey-predator system to
protect prey from predator. In marine system, size of phytoplankton are
very small compare to the predatory enemies but they can survive from con-
sumes by using anti-grazing strategies like morphology [20] formation of colonies
[21] which resist the grazing pressure by higher trophic organisms. Toxin ejected
by phytoplankton is one of another anti-grazing strategies to protect from zoo-
plankton [22]. The author in [23] studied the formulation of patches for defense
mechanism and discussed the ability of releasing toxin chemicals. Thus, paired
mechanism over with patching and poison release outcomes will act a crucial
role for the coexistence species. Some experimental researches noted that the
patch size depend on organism density and also proportional with it [24]. In
real field, phytoplankton are allowed to form spherical patches or colonies and
release toxin chemicals [25].

Motivated by the above theoretical and experimental literatures,
the dynamics of such system in which hunting by predator and fear of prey is
studied. The aim of the present study is to investigate the impact of hunting,
fear effect and toxin effect due to formulation of patches. As per my knowledge,
the combine effect of three above factors has not to explore yet. The main
target in present manuscript is to investigate the subsequent biolog-
ical topics:
• How does availability of prey density influence on the dynamics of prey-
predator system.
• Can fear factor among prey influence to stabilize the prey-predator system.
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• How does patches influence the prey-predator dynamics.

It is considered that, birth rate of prey population is reduced due to fear
of hunting by predator. In the next section, proposed model is developed with
incorporate prey patches. Section 2 represents the construction of mathemat-
ical model based on some assumptions. Basic properties such as boundedness
is discussed in Section 3. Analytical results based on the model and global
stability are discussed in Section 4. Section 5 represents the local bifurcation
such as Hopf and transcritical-bifurcation analysis. Numerical simulations and
discussion are illustrated in Section 6 & 7. Finally, the paper summarize with
a brief conclusion.

2 Basic assumptions and model formulation

Let us consider the assumption to construct the following mathematical model:
Let x(t) and y(t) be the density of prey and predator population at time t > 0
respectively. Here r and r1 be the intrinsic growth rate and the intra-species
competition rate of prey. c and e represent the predation rate and conver-
sion rate of predator. Here (1−k1) terms represents the amount of availability
of prey for predation by the predator where, k1 ∈ (0, 1]. It is assumed that pre-
dation term is the Holling-II functional form. According to literature review, a
fraction part k1 of prey aggregate to form N patches. Therefore, each patches
represent as 1

N k1x. It is assume that the three dimensional patch is roughly

spherical in ocean. Therefore, the radius of patch is proportional to [ 1N k1x]
1/3.

As a result the surface of patch is proportional to [ 1N k1x]
2/3 = ρx2/3, where

ρ = [ 1N k1]
2/3. The effect of fear has a direct impact on prey reproduc-

tion [26, 27, 28]. In presence of predator, intrinsic growth of prey becomes
a function of the predator density like F (y;K) = r

1+Ky in which K is defined
as level of fear of the prey according to anti-predator response. This above
function follows some conditions:
(i) F (y; 0) = r: in the absence of fear effect, the prey reproduction rate remain
unaltered.
(ii) F (0;K) = r: in the absence of predator, the prey reproduction rate
remain unaltered.
(iii) lim

K→∞

F (y;K) = 0: extremely fearful prey fails to reproduce.

(iv) lim
y→∞

F (y;K) = 0: at a extremely higher predator density, prey fails

to reproduce.

(v) ∂F (y;K)
∂K < 0: the prey reproduction rate low with high amount of fear effect.

(vi) ∂F (y;K)
∂y < 0: the prey reproduction rate low with high amount of predator

density.
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dx

dt
=

rx

1 +Ky
− r1x

2 − c(1− k1)xy

1 + a(1− k1)x
≡ G1(x, y)

dy

dt
=

e(1− k1)xy

1 + a(1− k1)x
− dy − eρx2/3y ≡ G2(x, y).

(1)

The system (1) will be analyzed with the following initial conditions,

x(0) ≥ 0, y(0) ≥ 0. (2)

3 Mathematical preliminaries

Theorem 1. All non negative solutions (x(t), y(t) of the system (1) initiate in
R2

+ − {0, 0} are uniformly bounded.

Proof. Let us choose a function Θ = x+ y.

Therefore,

dΘ
dt = dx

dt +
dy
dt = rx

1+Ky − r1x
2 − c(1−k1)xy

1+a(1−k1)x
+ e(1−k1)xy

1+a(1−k1)x
− dy − eρx2/3y.

Let us consider a positive constant ζ such that ζ ≤ d. Therefore,

dΘ
dt + ζΘ ≤ r0x− r1x

2 + ζx − (1−k1)(c−e)
1+a(1−k1)x

− y(d− ζ)− eρx2/3y

≤ (r0 + ζ)x − r1x
2 ≤ (r0+ζ)2

4r1
.

By choosing Γ = (r0+ζ)2

4r1
, we obtain

0 ≤ Θ(x(t), y(t)) ≤ Γ
ζ (1 − e−ζt) + Θ(x(0), y(0))e−ζt,

which indicates that 0 ≤ Θ(x(t), y(t)) ≤ Γ
ζ as t → ∞. Therefore, all non nega-

tives solutions of the system (1) are originated from R2
+−{0, 0} will be restricted

in the region ∇ = {(x, y) ∈ R2
+ : x(t) + y(t) ≤ Γ

ζ + ε}.
In ecology, it means that the system act in a specified manner. Boundedness of
the system implies that none of the two interacting species grow unexpectedly or
exponentially for a long period of time. Clearly, as a result of limited resource,
numbers of each species is surely bounded.

From the ecological point of view, let us first consider the following
region R2

+ = {(x, y) : x ≥ 0, y ≥ 0}. Here, the function G1(x, y) = xf(x, y)
and G2 = yg(x, y) of the system (1) are continuously differentiable and
locally Lipschitz in R2

+ = {(x, y) : x ≥ 0, y ≥ 0}. Therefore, Theorem
A.4, page 423 in H. R. Thieme’s book [29] implies that the solutions of
the initial value problem with non-negative initial conditions exist on
the interval [0, S) and unique, where S is a sufficiently large number.
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4 Equilibria: Existence and stability

All possible equilibria are catalogued below:
(i) The predator free equilibrium E1 = ( r

r1
, 0).

(ii) The positive coexistence equilibrium E∗ = (x∗, y∗),
while x∗ is ensured by solving {a(1 − k1)}3e3ρ3x∗5 + 3{a(1 − k1)}2e3ρ3x∗4 +
[3e3ρ3a(1− k1)− {(1− k1)(e− da)}3]x∗3 + [e3ρ3 + 3{(1− k1)(e− da)}2d]x∗2 −
3{(1− k1)(e − da)}d2x∗ + d3 = 0.
Also, y∗ is ensured by solving cK(1 − k1)y

2 + [c(1 − k1) + r1x
∗(1 + a(1 −

k1)x
∗)K]y∗ − (1 + a(1 − k1)x

∗)(r − r1x
∗) = 0.

Thus the condition for the existence of the interior equilibrium pointE∗(x∗, y∗)
is given by, x∗ > 0, y∗ > 0.

Explicitly, general form of the Jacobian matrix at E = (x, y) is defined as

J =

[

r
(1+Ky) − 2r1x− c(1−k1)y

(1+a(1−k1)x)2
− rKx

(1+Ky)2 − c(1−k1)x
1+a(1−k1)x

e(1−k1)y
(1+a(1−k1)x)2

− 2
3eρy

1
x1/3

e(1−k1)x
1+a(1−k1)x

− d− eρx2/3

]

. (3)

There exists a feasible predator free steady state E1 of the system (1) which

is unstable if d
e + ρ r

r1

2/3 <
(1−k1)r

a(1−k1)r+r1
.

The Jacobian matrix at E∗ can be written as

J∗ =

[

r
(1+Ky∗) − 2r1x

∗ − c(1−k1)y
∗

(1+a(1−k1)x∗)2 − rKx∗

(1+Ky∗)2 − c(1−k1)x
∗

1+a(1−k1)x∗

e(1−k1)y
∗

(1+a(1−k1)x∗)2 − 2
3eρ

y∗

x∗1/3 0

]

.

Thus the eigenvalues in this case are obtained as roots of the quadratic
λ2 − tr(J∗) + det(J∗) = 0,

tr(J∗) = r
(1+Ky∗) − 2r1x

∗ − c(1−k1)y
∗

(1+a(1−k1)x∗)2 ,

det(J∗) = [ rK
(1+Ky∗)2 + c(1−k1)

1+a(1−k1)x∗
][ e(1−k1)
(1+a(1−k1)x∗)2 − 2

3eρ
1

x∗1/3 ]x
∗y∗.

Now tr(J∗) < 0 if r
(1+Ky∗) < 2r1x

∗ + c(1−k1)y
∗

(1+a(1−k1)x∗)2 as well as det(J∗) > 0 if

ρ < 27
8

(1−k1)
3x∗

(1+a(1−k1)x∗)6 .

Therefore, according Routh–Hurwitz criterion we can admit that E∗ is locally
asymptotically stable providing the above two conditions are fulfilled.

Theorem 2. If the non negative equilibrium E∗ exists, then (x∗, y∗) is

globally asymptotically stable in the x− y plane if r1 >
c(1−k1)

2a
1+a(1−k1)x∗

.

Proof. Let us consider a Lyapunov function about E∗

V = x− x∗ − x∗ln x
x∗

+ c
e(1 + a(1− k1)x

∗)(y − y∗ − y∗ln y
y∗
).

Differentiating V with respect to t of the system (1), we get
dV
dt = (x−x∗)( r

1+Ky−r1x− c(1−k1)y
1+a(1−k1)x

)+ c
e(1+a(1−k1)x

∗)(y−y∗)( e(1−k1)xy
1+a(1−k1)x

−
dy − eρx2/3y)

=(x−x∗)
(

rK(y−y∗)
(1+Ky)(1+Ky∗) − r1(x− x∗) + c(1−k1)(y−y∗)

1+a(1−k1)x
+ c(1−k1)

2a(x−x∗)
[1+a(1−k1)x][1+a(1−k1)x∗]

)

+

c
e(1 + a(1 − k1)x

∗)(y − y∗)
[

e(1−k1)(x−x∗)
(1+a(1−k1)x)(1+a(1−k1)x∗) − eρ(x

2

3 − x∗
2

3 )
]

.
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After some calculation and simplification we get

≤ −
[

r1 − c(1−k1)
2a

1+a(1−k1)x∗

]

(x− x∗)2 − rK
(1+Ky)(x − x∗)(y − y∗).

Clearly, V̇ is negative definite if r1 >
c(1−k1)

2a
1+a(1−k1)x∗

. Therefore by LaSalle’s

theorem [30] E∗ is globally asymptotically stable in x− y plane.

5 Local bifurcation

5.1 Hopf-Bifurcation

Theorem 3. The necessary and sufficient conditions for Hopf bifurcation of
the system (1) around E∗ at k1 = kc1 are [tr(J∗)]k1=kc

1
= 0, [det(J∗)]k1=kc

1
> 0

and d
dk1

[tr(J∗)]k1=kc
1
6= 0.

Proof. The condition [tr(J∗)]k1=kc
1
= 0 gives r

(1+Ky∗) −2r1x
∗− c(1−k1)y

∗

(1+a(1−k1)x∗)2 =

0, in which [tr(J∗)]k1=kc
1
= 0.

Now [det(J∗)]k1=kc
1
> 0 which is equivalent to the characteristic equation λ2 +

[det(J∗)]k1=kc
1
= 0 whose roots are purely imaginary,

For k1 = kc1, the characteristic can be written as

χ2 + ω = 0, (4)

where ω = [det(J∗)]k1=kc
1
> 0. Therefore, the above equation has two roots of

the form χ1 = +i
√
ω and χ2 = −i

√
ω. Let at any neighbouring point k1 of kc1,

we can express the above roots in general form like χ1,2 = θ1(k1) + ±iθ2(k1),

where θ1(k1) =
tr(J∗)

2 and θ2(k1) =
√

det(J∗)− tr(J∗)
4 . Now it is to be verified

the transversality condition d
dk1

(Re(χj(k1)))k1=kc
1
6= 0 for j = 1, 2.

Substituting χ1 = θ1(k1) + iθ2(k1) in (4) and calculate the derivative, we have

2θ1(k1)θ
′

1(k1)− 2θ2(k1)θ
′

2(k1) + ω′ = 0,

2θ2(k1)θ
′

1(k1) + 2θ1(k1)θ
′

2(k1) = 0. (5)

Solving (5), we get
d

dk1

(Re(χj(k1)))k1=kc
1
= −2θ1ω

′

2(θ2

1
+θ2

2
)
6= 0, i.e., d

dk1

[tr(J∗)]k1=kc
1
6= 0, which satisfy

the transversality condition. This implies that the system undergoes a Hopf-
bifurcation at k1 = kc1.

5.2 Transcritical-bifurcation

Theorem 4. System (1) undergoes a transcritical bifurcation when the system
parameters satisfy the restriction k1 = kTC

1 . Here, k1 is seen as the bifurcation
parameter.
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Proof. For k1 = kTC
1 , the Jacobian matrix J1 of the system (1) around E1

has one zero eigenvalue. Let U1 and V1 be the eigenvectors of the matrix J1
and (J1)

T corresponding to zero eigenvalue respectively. Therefore, we ob-

tain U1 =
(

−( r
r1

+ c(1−k1)
r1+a(1−k1)r

) 1
)T

and V1 = (0 1)T . We have Fk1
(x, y) =

(

0 −y
)T

, Fk1

(

E1; k1 = kTC
1

)

=
(

0 0
)T

and (V1)
T
Fk1

(

E1; k1 = kTC
1

)

=
0.
Also, DFk1

(

E1; k1 = kTC
1

)

U1 = (0 − 1)T .

Therefore, we obtain (V1)
T [

DFk1

(

E1; k1 = kTC
1

)

(U1)
]

= −1.

Further, (V1)
T
D2F

(

E1; k1 = kTC
1

)

(U1, U1)

= −2e
[

r2
1
(1−k1)

(r1+a(1−k1)r)2
− 2eρ

3 ( r1r )
1/3

] [

r1
r + e(1−k1)

r1+a(1−k1)r

]

< 0.

By applying Sotomayor’s theorem [31] we can conclude that the system experi-
ences a transcritical bifurcation at E1 when k1 crosses kTC

1 .

6 Numerical simulations

In order to visualize the analytical finding, we perform the numerical simulation
over the set of parametric values [32, 33, 34]

r = 1.2, r1 = 0.05,K = 0.1, k1 = 0.7,

c = 0.45, e = 0.25, a = 0.3, d = 0.1, ρ = 0.15. (6)

It is noted that the system (1) shows stable dynamics around at E∗(3.06, 5.74)
(cf. Fig. 1(a)).

6.1 Effect of k1

It is observed that when availability of prey species is high for predation, i.e.,
the low value of k1, the dynamical system switches to unstable behavior (viz.
k1 = 0.66). But high level of fear can stabilize the system (1) (viz. K = 0.2).
It is illustrated in Fig. 1(b). Thus, the fear effect can prevent the oc-
currence of limit cycle oscillation and increase the stability of the
system. Fig. 2(a-b) depicts various steady state behavior of prey and preda-
tor for the parameter k1. Here, it is noted that a Hopf point are situated
(H) at k1 = 0.673026 with eigenvalue ±0.284862i and one Limit point (LP)
and a Branch point (BP) coincide at k1 = 0.864180 with eigenvalue (0.− 1.2).
Branch point (BP) indicates that at that particular point, predator
goes to extension and the transcritical bifurcation occurs. The Limit
point (LP) is a collision and disappearance of two equilibria in the
dynamical system. The system switches from stable to unstable or
unstable to stable behavior after crossing the Hopf point(H). It is ob-
served that the first Lyapunov coefficient being −2.654148e−03 at Hopf point
(H) which confirm that a family of stable limit cycle generate from H (viz. Fig.
3(a)). It is clearly indicates that increasing the amount of prey refuge
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Figure 1: (a) The equilibrium point E∗ is stable for the set of parametric
values. (b) The figure depicts oscillatory behavior around at E∗ of system (1)
for k1 = 0.66 and K = 0.1(blue line), stable behaviour at E∗ for k1 = 0.66 and
K = 0.2(black line).
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Figure 2: (a-b) The trajectory represents the different dynamical behaviors of
prey and predator respectively for k1.
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Figure 3: (a) The trajectory represents a family of stable limit cycles generate
from Hopf (H) point for k1 in x− y− k1 plane. (b) Bifurcation diagram for k1.
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Figure 4: (a-b) The trajectory represents the different dynamical behaviors of
prey and predator respectively for e.
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Figure 7: (a) The trajectory represents a family of stable limit cycles generate
from Hopf (H) point for e in x− y − ρ plane.. (b) Bifurcation diagram for ρ.

can increase both densities of prey and predator. On the other hand,
when k1 reaches a high risk threshold of the prey refuge the preda-
tor goes to extinct and the equilibrium E1 is globally asymptotically
stable.

6.2 Effect of e

Fig. 4(a-b) indicates that predator’s conversion rate (e) play a crucial role to
switch the prey and predator natures. Here, we have one Hopf point (e =
0.360577), Branch point (e = 0.097047) and a Limit point (e = 0.096319).
Further, the system experiences a family of stable limit cycle generate from
Hopf point (viz. Fig. 5(a)).

6.3 Effect of ρ

It is observed that the prey patches play a big impact in the system (1). From
Fig. 6(a-b) & Fig. 7(a) it follow several stability behaviour and family of
stable limit cycle for the free parameter ρ respectively. At ρ = 1.416971, the
system experiences a super critical bifurcation with first Lyapunov coefficient
−2.031921e−03 and predator becomes extinct at ρ = 0.225770 i.e., at BP point.
Also, a Limit point (LP) is obtained at ρ = 0.254407.

6.4 Bifurcation

The bifurcation diagrams (cf. Fig. 3(b), Fig. 5(b) and Fig. 7(b)) illustrate the
complete dynamic pictures of the system (1) for the effect of parameter k1, e
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Figure 8: (a) Two parameters bifurcation diagram for k1 − ρ. (b) Two param-
eters bifurcation diagram for ρ− e.

and ρ respectively. Fig. 5(a-b) display the two parameters bifurcation diagram
for k1 − ρ and ρ− e respectively. In this case, we see a Bogdanov-Takens (BT),
Cusp bifurcation (CP) and Generalized Hopf (GH). Generalized Hopf sep-
arates branches of sub-and supercritical Andronov-Hopf bifurcations
in the two parameter plain. The It is clearly indicates that a saddle-node
bifurcation curve meet at transcritical curve at Cusp point(CP), i.e., SN-TC
point and saddle-node and Hopf bifurcation curve touch at BT point.
Also, the bifurcation curve exhibits a Generalized Hopf point (GH) where the
1st Lyapunov coefficient turn out to be zero. All the numerical finding are
summarized in Table 1.

7 Discussion

In this present article, a prey-predator model is designed by incorporating
patches, prey refuge and fear effect to discover the dynamics of prey-predator
systems. It is assumed that prey population grows logistically and
predators consume prey population under Holling II functional re-
sponse. Firstly, some basic properties are analyzed and verified which are
ecologically well behaved such as boundedness and properties of existence of
equilibria. The local stability behavior of the system is carried out
around each equilibrium. In order to explore the dynamics of pro-
posed system, it is identified that, the system (1) has two equilibrium
point such as axial (E1) and coexistence equilibrium (E∗). We also
perform the global stability of coexistence equilibrium by choosing a
suitable Lyapunov function. Throughout the analysis, availability of prey,
i.e., the parameter k1 play crucial role to exhibit Hopf bifurcation and stability
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Table 1: Natures of equilibrium points.
Parameters Values Eigenvalues Equilibrium points

k1 0.673026 (±0.284862i) Hopf (H)
0.864180 (0,−1.2029) Limit Point (LP)
0.864180 (0,−1.2029) Branch Point (BP)

e 0.360577 (±0.305907i) Hopf (H)
0.096319 (0,−1.00886) Limit Point(LP)
0.097047 (0,−1.2) Branch Point(BP)

ρ 0.074021 (±0.289879i) Hopf (H)
0.225770 (0,−1.2) Branch Point(BP)
0.254407 (0,−0.398958) Limit Point(BP)

(k1, ρ) (0.4146440.397248) (≈ ±0.00) Bogdanov-Takens (BT)
(0.8639100.150199) (0,−1.20027) Cusp bifurcation (CP)

(ρ, e) (0.0835480.129990) (0,−1.2) Cusp bifurcation (CP)
(0.319445, 26.549989) (±1.53468i) Generalized Hopf (GH)

switching behavior. Numerically, we observe that when k1 < kc1 = 0.673026, the
system exhibits oscillatory behavior and each population shows stable coexis-
tence between 0.673026 < k1 < 0.864180. When processed further, coexistence
equilibrium looses stability via transcritical bifurcation i.e., branch point and
the predator population will die out. Similar characteristic nature of prey and
predator have been seen for the effect of conversion rate of predator and toxic-
ity level due to patches. Further, to study the impact of fear effect, prey shows
anti-predator behaviours. Several two parameter bifurcations are drawn
that show different stability nature of dynamics. It is observed that high
value of fear level can stabilize the whole system in presence of high availability
of prey species for predation. So, availability of prey species, conversion
rate of predator, prey patches and fear level acts an crucial roles in in
determining the long-term population dynamics. We hope that this
study will contribute in understanding the impact of fear, effect of
conversion rate of predator and toxicity level due to patches. The
system (1) can also be modified further for two prey and one or two
predator which may be more significant to the biological diversity.

8 Conclusion

In this article, we consider fear effect prey-predator model and a prey refuge with
forming patches. By examining the characteristic equation of the corresponding
linearized system we obtain the threshold conditions for the stability of system.
It is observed that level of fear, availability of prey due to refuge mechanism,
conversion rate of predator and toxicity level due to patches play major role to
stabilize the system. We find that combined effects of more than one parameters
results in complex dynamical behaviour.
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