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Abstract

In this paper, we study the Mexican hat wavelet formulated from the
Gaussian function. The Mexican hat wavelet transform (MHWT) is de-
fined using this basic wavelet. A standard method is introduced to obtain
the gap formula for the MHWT. Further, an example for the gap formula
is also presented.
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1 Introduction

By utilizing the theory of distributional as well as classical Fourier and Hilbert
transforms, the theory of wavelet transform in Lp-spaces (1 ≤ p ≤ ∞) is formu-
lated. The wavelet transform has been rising as a major mathematical tool for
the past two decades and its contribution to signal analysis is significant. The
major reason for this is the representation of functions in a time-frequency plane
is possible with wavelet transform. Hence, the wavelet transform can be treated
as an operator which localizes time and frequency. Moreover, one can regulate
wavelets within a fixed time period to acquire varied frequency components that
are useful in enhancing the study of signals having localized impulses and os-
cillations. Based on the idea of wavelets as a family of functions, the mother
wavelet ψb,a(t) is defined by dilating and translating the function ψ ∈ L2(R)
and is given by

ψb,a(u) = (
√
a)−1ψ

(

u− b

a

)

, b, u ∈ R, a ∈ R+ = (0,∞), (1.1)
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where a is the dilation, which calculates the level of compression, and b is called
shifting parameter, which works out the wavelet’s time location. If |a|< 1, then
(1.1) is the compressed version of the mother wavelet and represents higher
frequencies.
For a square integrable function f , the wavelet transform with respect to ψb,a
is defined by [5],

W (b, a) =

∫

∞

−∞

f(u)ψb,a(u)du for a ∈ T+ and u, b ∈ R. (1.2)

The inversion formula for (1.2) is given as follows:

f(x) =
2

Cψ

∫

∞

0

[
∫

∞

−∞

1√
a
W (b, a)ψ

(

x− b

a

)

db

]

da

a2
, x ∈ R (1.3)

where

1

2
Cψ =

∫

∞

0

|ψ̂(u)|2
|u| du =

∫

∞

0

|ψ̂(−u)|2
|u| du <∞ [1, p. 64].

Recently among very many authors, the researches carried out by R. S. Pathak
et al. [4-10] have investigated the theory of wavelet transform to distributions
and ultradistribution spaces. Singh et al. have extended the theory for distri-
butional wavelet and mexican hat wavelet transform [11-14]. Further, inversion
formulae for the same are established in the sense of distributions and ultradis-
tributions.

Mexican hat wavelet that is formulated by taking the second derivative of
Gaussian function is defined by

ψ(u) = exp

(−u2
2

)

(1− u2) = − d2

du2
exp

(−u2
2

)

. (1.4)

Therefore,

ψb,a(u) = −a3/2D2
uexp

(

− (b− u)2

2a2

)

,

(

Du =
d

du

)

. (1.5)

Thus from (1.2), we have

W (b, a) = −a3/2
∫

∞

−∞

f(t) D2
t exp

(

− (b− t)2

2a2

)

dt, a > 0. (1.6)

Then, under certain conditions on f , we have

W (b, a) = −a3/2
∫

∞

−∞

f (2)(t) exp

(

− (b− t)2

2a2

)

dt, a > 0. (1.7)

From the above two equations we can consider the MHWT as the Weierstrass

transform of
(

d
du

)2
f(u). This relation can further be utilized to explore various
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properties of W (b, a). Also, as Weierstrass transform is defined for complex
values of b, therefore, the definition of the MHWT can be extended for b being
complex, whenever required.

Now for a ∈ (0,∞) and b ∈ C, we define

k(b, a) =
1√
2πa

exp

(−b2
2a

)

. (1.8)

Clearly,

D2
uk(b− u, a2) =

1√
2πa

D2
u

(

exp

(−(b− u)2

2a2

))

. (1.9)

Hence the Mexican hat wavelet transform of a function f(t) is given by [7]

W (b, a) = a3/2
∫

∞

−∞

f (2)(u)exp

(−(b− u)2

2a2

)

du. (1.10)

2 Gap formula for Mexican hat wavelet trans-

form

The gap formula which is also known as the jump operator provides a uni-
fied approach to obtain a relation between the determining function at a given
point in terms of the transform. Here, it acts as an operator which gives
f (2)(b+)−f (2)(b−) in terms ofW (b, a) whereW (b, a) and f (2)(b) are related by
(1.10). Such representations have been obtained for various integral transform
like Laplace transform, Stieltjes transform, Weierstrass transform, and many
more [2, 15, 16]. In the next theorem, we present Gap formula for the Mexican
hat wavelet transform.

Theorem 2.1. Let f (2)(y) ∈ L1(m,n) for any finite interval such that the
integral (1.10) relating W (b, a) to f (2)(y) converges for m < b < n. Also, there
exists numbers f (2)(b± 0) satisfying

∫ h

0

[f (2)(b± u)− f (2)(b ± 0)]du = o(h), h→ 0.

Then for d satisfying m < d < n we have for −∞ < b <∞,

lim
a2→1−

−i(1−a2)3/2a
∫ d+i∞

d−i∞

(s−b) exp
(

(s− b)2

2a2

)

W (s, 1)ds = f (2)(b+0)−f (2)(b−0).

Proof. Let α(u) =
∫ u

0 f
(2)(v)dv, ∀d ∈ (m,n). Also, let α(u) be locally bounded

variation, such that

|α(u)| =















M exp

(

(u− η)2

2

)

, u > x,

M exp

(

(u− ξ)2

2

)

, u < x.

(2.1)
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Then the MHWT of f(v) is defined by

W (b, 1) =

∫

∞

−∞

k(b− u, 1)f (2)(v)dv. (2.2)

Now, using integration by parts on (2.2), we get

W (b, 1) =

∫

∞

−∞

k1(b − u, 1)α(u)du, (2.3)

where

k1(b− u, 1) =
∂

∂b
k(b− u, 1).

Consider

I = −i(1− a2)13/2
∫ d+i∞

d−i∞

(s− b) exp

(

(s− b)2

2a2

)

W (s, 1)ds

= −i(1− a2)3/2
∫ d+i∞

d−i∞

(s− b) exp

(

(s− b)2

2a2

)
∫

∞

−∞

k1(s− u, 1)α(u)du

= −i(1− a2)3/2
√
2πa

∫

∞

−∞

α(u)du

∫ d+i∞

d−i∞

(s− b)√
2πa

exp

(

(s− b)2

2a2

)

k1(s− u, 1)ds.

Let us consider

J =
−i√
2πa

∫ d+i∞

d−i∞

(s− b) exp

(

(s− b)2

2a2

)

k1(s− u, 1)ds

=
1√
2πa

∫

∞

−∞

(d+ iy − b) exp

(

(d+ iy − b)2

2a2

)

k1(d+ iy − u, 1)dy, (s = d+ iy)

=
1√
2πa

∫

∞

−∞

i(y − i(d− b)) exp

(−(y − i(d− b))2

2a2

)

k1(iy + d− u, 1)dy

=

∫

∞

−∞

k(d+ iy − b, a2)k2(d+ iy − u, 1)dy,

where

k2(s− u, 1) =
∂2k(s− u, 1)

∂s2
= (s− u)k1(s− u, 1).

By [7, Theorem 2.1], we have

J =

∫

∞

−∞

k(d+ iy − b, a2)k2(d+ iy − u, 1)dy (2.4)

= k2(d+ iy − u− d− iy + b, 1− a2)

= k2(b − u, 1− a2).

Hence, we obtain J = k2(b − u, 1 − a2), by combining (2.4) with Corollary 2.2
of [3], where f (2)(b) = k2(b − u, 1 − a2). Further, breaking the integral I into
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4 parts, corresponding to the intervals (−∞, b − δ), (b − δ, b), (b, b + δ) and
(b+ δ,∞), we have

I = (1 − a2)3/2(2π)1/2a

{

∫ b−δ

−∞

+

∫ b

b−δ

+

∫ b+δ

b

+

∫

∞

b+δ

}

α(u)(u)k2(b− u, 1− a2)du

= I1(a) + I2(a) + I3(a) + I4(a).

For I2(a), we can choose a δ > 0 so that |f (2)(u)−f (2)(b−)|< ǫ for b−δ < u < b

and therefore,

|I2(a) + f (2)(b−)| =

∣

∣

∣

∣

∣

∫ b

b−δ

k1(b − u, 1− a2)[f (2)(u)− f (2)(b−)]du

∣

∣

∣

∣

∣

+ o(1)

=

∣

∣

∣

∣

∣

∫ b

b−δ

k2(b − u, 1− a2)β(u)du

∣

∣

∣

∣

∣

+ o(1)

≤ ǫ

∫ b

b−δ

k2(b − u, 1− a2)|s− u|du+ o(1)

≤ ǫM + o(1) as a2 → 1− .

Similarly |I3(a)− f (2)(b+)|≤ ǫM + o(1).

For ǫ being arbitrary, we have I2(a) ≈ −f (2)(b−) and I3(a) ≈ f (2)(b+).

For I1(a) and I4(a) by Lemma 2.1c of [3], for some ξ and η such that m <

ξ < η < n, at a = 1

f (2)(u) = o

[

exp

(

(u− η)2

2

)]

, u→ ∞,

f (2)(u) = o

[

exp

(

(u− ξ)2

2

)]

, u→ ∞.

Therefore,

|I1(a)| = lim
a2→1−

∣

∣

∣

∣

∣

(2π)1/2(1− a2)3/2
∫ b−δ

−∞

k1(b− u, 1− a2)f (2)(u)du

∣

∣

∣

∣

∣

≤ lim
a2→1−

(1− a2)−3/2

∫ b−δ

−∞

exp

(−(b− u)2

2(1− a2)

)

|f (2)(u)|du

≤ lim
a2→1−

M(1− a2)−3/2

∫ b−δ

−∞

exp

(−(b− u)2

2(1− a2)

)

exp

(−(u− ξ)2

2

)

du

= o(1).

Hence, I1(a) = o(1) and similarly I4(a) = o(1) as a2 → 1−, which concludes
the proof of the theorem.
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Example 2.2. As a simple example take the MHWT at a = 1,

W (s, 1) =

∫

∞

−∞

k1(s− u, 1)α(u)du

= exp

(−s2
2

)

, (2.5)

where

α(u) =

∫ u

0

f (2)(v)dv =

{

0 u < 0

1 u > 0.

Since the integral (1.10) converges always, therefore by Theorem 2.1, we have

= lim
a2→1−

−i(1− a2)3/2
∫

∞

−∞

(s− b) exp

(

(s− b)2

2a2

)

W (s, 1)ds

= lim
a2→1−

−i(1− a2)3/2
∫

∞

−∞

(s− b) exp

(

(s− b)2

2a2

)

exp

(−s2
2

)

ds

= lim
a2→1−

i(1− a2)3/2
√
2πa4

(a2 − 1)3/2
exp

( −b2
2(1− a2)

)

=

{

1 b = 0,

0 otherwise.
(2.6)

Conclusions

In this article, we studied the conditions needed to obtain a relation between
the determining function at a point of discontinuity with its MHWT. As the
Gaussian function derives the Mexican hat wavelet, therefore it satisfies the
Gaussian decays in both frequency and space. Further, as the MHWT has
localization in both space and frequency, it has a strong appeal to applications
in space-frequency analysis, mixed boundary value problems, approximation
theory, mathematical modeling, other digital modulation.
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