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Abstract

Here we are dealing with several smooth functions from a compact
convex set of R¥, k > 2 to a Banach algebra. For these we prove general
multivariate Ostrowski type inequalities with estimates in norms ||-||,, for
all 1 < p < oo. We provide also interesting applications.
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1 Introduction
In 1938, A Ostrowski [5] proved the following famous inequality:

Theorem 1 (1938, Ostrowski [6]) Let f : [a,b] — R be continuous on [a,b] and
differentiable on (a,b) whose derivative [’ : (a,b) — R is bounded on (a,b), i.e.,
| F52P == sup |f'(t)| < +oc. Then

te(a,b)

<

_a+b 2
Ty ()] b-a) /12,

b T
o | roa @) < G w,

for any x € [a,b]. The constant % is the best possible.

Since then there has been a lot of activity around these inequalities with
important applications to Numerical Analysis and Probability.
This article is also greatly motivated by the following result:
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Theorem 2 (see [1]) Let f € C! (H [ai,bi]>, where a; < b;; a;,b; € R,

i=1

i=1,...,k, ans let Ty = (zo1, ..., Tox) €

K2

1 b1 b; b
7/ / / f (21, 2) dzy.dzy — f (70)| <
_ . al a; ag

[a;, b;] be fized. Then

k
=1

i=1
k
Z (zo; — ai)? + (b; — x0:)° \ || OF
P 2 (bL — ai) (9Zi 0o '
Inequality (2) is sharp, here the optimal function is
k
[ (21,0 21) = Z |z — woi|™, ;> 1
i=1

Clearly inequality (2) generalizes inequality (1) to multidimension.

We are inspired also by [2].

In this article we establish multivariate Ostrowski type inequalities for sev-
eral smooth functions from a compact convex subset of R¥, k > 2, to a Banach

algebra. These involve the norms |[|-[|,,, 1 < p < oco.

2 About Banach Algebras

All here come from [6].
We need

Definition 3 (/6/, p. 245) A complex algebra is a vector space A over the

complex field C in which a multiplication is defined that satisfies
x (yz) = (zy) z,

(x4+1)z =2z +yz, ly+2) =ay+az,

and
a(zy) = (az)y =z (ay),

for all x,y and z in A and for all scalars .

Additionally if A is a Banach space with respect to a norm that satisfies the

multiplicative inequality

eyl < llzllllyll (z€ A, yeA)

96
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and if A contains a unit element e such that
ze=ex=zx (x€A) (7)

and
ell =1, (8)

then A is called a Banach algebra.
A is commutative iff xy = yx for all x,y € A.

We make

Remark 4 Commutativity of A will be explicited stated when needed.

There exists at most one e € A that satisfies (7).

Inequality (6) makes multiplication to be continuous, more precisely left and
right continuous, see [6], p. 246.

Multiplication in A is not necessarily the numerical multiplication, it is some-
thing more general and it is defined abstractly, that is for z,y € A we have
xy € A, e.g. composition or convolution, etc.

For nice examples about Banach algebras see [6], p. 247-248, § 10.5.

We also make

Remark 5 Next we mention about integration of A-valued functions, see [6],
p. 259, § 10.22:

If A is a Banach algebra and f is a continuous A-valued function on some
compact Hausdorff space Q on which a complex Borel measure p is defined, then
[ fdp exists and has all the properties that were discussed in Chapter 3 of [6],
simply because A is a Banach space. However, an additional property can be
added to these, namely: If x € A, then

m/@f duz/wa(p) e () (9)

(/(Qfd/z)w:/(gf(p)wdu(p)- (10)

The vector integrals we will involve in our article follow (9) and (10).

and

3 Vector Analysis Background

(see [8], pp. 83-94)
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Let f (t) be a function defined on [a, b] C R taking values in a real or complex
normed linear space (X, ||-||), Then f (¢) is said to be differentiable at a point
to € [a,b] if the limit

f(to+h) = [ ()
h

exists in X, the convergence is in ||-||. This is called the derivative of f (¢) at
t = to.

We call f (t) differentiable on [a, ], iff there exists f’ (t) € X for all ¢t € [a, b].

Similarly and inductively are defined higher order derivatives of f, denoted
7 f® L f%) )k €N, just as for numerical functions.

For all the properties of derivatives see [8], pp. 83-86.

Let now (X, ||-||) be a Banach space, and f : [a,b] — X.

We define the vector valued Riemann integral f: f(t)dt € X as the limit of
the vector valued Riemann sums in X, convergence is in ||-||. The definition is

' (to) = Jim (1)

as for the numerical valued functions.

If f:f (t)dt € X we call f integrable on [a,b]. If f € C ([a,b],X), then f is
integrable, [8], p. 87.

For all the properties of vector valued Riemann integrals see [8], pp. 86-91.

We define the space C™ ([a,b], X), n € N, of n-times continuousky differ-
entiable functions from [a, ] into X; here continuity is with respect to ||-|| and
defined in the usual way as for numerical functions-.

Let (X, |]|) be a Banach space and f € C" ([a,b],X), then we have the
vector valued Taylor’s formula, see [8], pp. 93-94, and also [7], (IV, 9; 47).

It holds

fTw—f@%ﬁ"@ﬂy—z%éf”@Ny—zf— O @)y —a)"

(n—1)!

g [ T @ Ve o,

NGRS
In particular (12) is true when X = R™ C™, m € N, etc.

A function f (t) with values in a normed linear space X is said to be piecewise
continuous (see [8], p. 85) on the interval a < ¢t < b if there exists a partition
a =ty <ty <ty <..<t,=>bsuchthat f(¢)is continuous on every open
interval ¢t < t < t;41 and has finite limits f (o +0), f (¢4 —0), f(t1 +0),
ft2—=0), f(t2+0),...,f(tn, —0).

Here f (tp —0) = limf (¢), f (tx +0) = lHmf (¢).

1ty tlty

The values of f (t) at the points t; can be arbitrary or even undefined.

A function f (¢) with values in normed linear space X is said to be piecewise
smooth on [a, b], if it is continuous on [a, b] and has a derivative f’ (¢) at all but

a finite number of points of [a,b], and if f’(¢) is piecewise continuous on [a, ]
(see [8], p. 85).
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Let u (t) and v (¢) be two piecewise smooth functions on [a, b], one a numerical
function and the other a vector function with values in Banach space X. Then
we have the following integration by parts formula

b b
/u(t)dv(t)zu(t)v(mg—/ v () du (t), (13)

see [8], p. 93.
We mention also the mean value theorem for Banach space valued functions.

Theorem 6 (see [{], p. 3) Let f € C([a,b],X), where X is a Banach space.
Assume f' exists on [a,b] and || f' (t)|| < K, a <t <b, then

1f () = fla)| <K (b—a). (14)

Here the multiple Riemann integral of a function from a real box or a real
compact and convex subset to a Banach space is defined similarly to numerical
one however convergence is with respect to ||-||. Similarly are defined the vector
valued partial derivatives as in the numerical case.

We mention the equality of vector valued mixed partiasl derivatives.

Proposition 7 (see Proposition 4.11 of [3], p. 90) Let Q = (a,b) x (¢,d) C R?
and f € C(Q,X), where (X, ||-]|) is a Banach space. Assume that %f(s,t),
2 f(s,t) and %;Sf (s,t) exist and are continuous for (s,t) € Q, then %f (s,t)
exists for (s,t) € Q and

2 2

5501 1) = 555

f(s,t), for (s,t) €Q. (15)

4 Main Results

We present general Ostrowski type inequalities results regarding several Banach
algebra valued functions.

Theorem 8 Let p,g > 1 : %—i—% = 1; (A |l) e Banach algebra and f; €
C"(Q,A),i=1,..,m;r €N, necZy and fized T) € Q C R*, k > 2,
where @ is a compact and convexr subset. Here all vector partial derivatives

o g k .
fia = 2L where a = (ay,...ap), ax € ZY, X =1,k o] = 3 oy = 7,
A=1

820‘ )
G =1,.n, fulfill fio () =0,i=1,..,r
Denote
Dasr (£) = max |fialllg (16)

a:lal=n+

t=1,...,7r, and

k
IZ = Zolly, ==Y 122 — zoal - (17)
A=1

99 Anastassiou 95-106



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.1, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

Then
S e | r@a-Y | [ 116 || 6@ <
i=1 p=1 i=1 Q p=1
pFi pFi ( )
18
ieglaXT}Der (fz) r r "
1 @I 17 -~ @l a7 | <
(n+1)! ; /Q l)l;[l ° !
pFi
max Dj4q fL r
ie{L'“v"’} n+1
— d ,
e (L1 -7 a7) |3 | Tl
L pséz
n+1 "
(e anpu ,
Q =1
pt L1(Q,A)
_ ﬂ+1H - - . 19
=201, o > || { Izl (19)
P Lq(Q.A)

Proof. Take g;» (t) := fi (zo +t(Z —20)), 0 <t < 1;i=1,..,7. Notice
that g, (0) = fi (zo) and g, (1) = f; (Z'). The jth derivative of g;» ( ), based
on Proposition 7, is given by

k
0
(j) ( E (2x — zox) 8z>\> fi| (@or +t(z1 —2o1), .. Tor +t (26 — Tok))
=1

(20)
and

k J
49 (0) (Z o= 703) ) 5| @), (21)
A=1
forj=1,..,n+1;:=1,..,r
Let fio be a partial derivative of f; € C"*1(Q, A). Because by assumption
of the theorem we have fi, (zg) =0 for all a : |a| = j, j = 1,...,n, we find that
gz(]; (0)=0, j=1,...,n; i=1,..,7

Hence by vector Taylor’s theorem (12) we see that

n_ (9
Fi(Z) = fi (3) = Z 91-7'(0)

j + Rin (?7 0) = Rin (77 0) ) (22)
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where
1 t1 tn—1
Rir (,0) ::/ (/ (/ (42 (1) — 2 (@) ) )dtl, (23)
0 0 0
1=1,..,r
Therefore,

g (e (tn))H HOO tndtn) ) dty, (24)

1 t1 tn—1
|Rin (Z.,0)] g/ (/ (/
0 0 0
(n)

by the vector mean value Theorem 6 applied on g, over (0,t,). Moreover, we

get
(n+1) t1 th—1
| )
,[0,1]

”*”HH

|Rin (Z,0)| H

0,[0,1]
(n+1)!

(25)

However, there exists a t;o € [0, 1]

That is

o = ol ]
10.1] gzz (zO) .

k n+1
0
n+1 B A - PR
H H J[0,1] H g ZX T Zox (92)\) fi (.%'0 + tio ( z 201))

n+1
0
a@\H) fil (@ +tio (Z = 207)) -

) o) e

k
(Z |ZA - $0>\|
A=1

Le.,

9=l -
o 1] Az: |2y — oA

1=1,..,r
Hence by (26) we get

k n+1
(S -mllll) s
|Rin (Z,0)]| < +== Ty <
+1
”“ L) (Zn—xm) l? (1))|| mLt, @D
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Therefore it holds
max Dyy1 (fi)

N i€{l,..., r} n+1
[Rin (2, 0)]| < 1) 1% —2oll) (28)
fori=1,..,r
By (22) we get that
|IEAER pr (&) | fi @) = | [T £ (Z) | Rin (Z,0),
= =1
pAi p?ﬁt f)?fi
(29)
foralli=1,...,r
Hence
[r&|rnE - 115G | 5@
i=1 \ p=1 i=1 | p=1
pFi pFi
= 11/ @) | Rin(Z,0). (30)
i=1 | p=1
pF#i
Therefore we find
(f17"'7f7“)( ) =

Z/ pr fi )dsz/ o (Z) | d7Z | fi(z0) =

9751 pFi

Z/ pr (Z) | Run (Z,0)d7. (31)

Consequently, we have that

HE (f17 ey f?”) (fE(])H =

Z/ pr r@az =Y | [ 1163 |42 | n@)| -

#Z pFi
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5 /Q 15 | R (0007 < (32)
=1 =
i
Z/Q 17,3 | R (Z.00a7| <
i=1 =1
l i
- - — — — 6)
> : 11/ @) | B (Z,0)|dZ | <
i=1 =
i
s s (28)
L@ | iz 0147 | < (3)
i=1 =1
i
e%ax }Dn+1 (fz) r r 1
il Ifo I 17 =0l d
(n+1)! ; /Q p1;[1 r
pFi
So far we have proved
HE(f17"'7f7') (x0)|| S
zG?ilaX }DnJrl (fz) T T 1
w2 | L T 0| 17 - w15 a7 | =
i=1 =1
b
Furthermore it holds
?llax DrH—l ft T T
i€{1,...,r} n 1
0 < St — ([ 17 =37 ) | T | |
i=1 p=1
pFi
(35)
and
'G?llax }D7L+1 (fz) L T r
7 yeensT n+
@ < gm0 [ TLs ,
=1 p:l'
P L1(Q.4)
(36)
9
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and finally

max Dpy1 (fi) | »

i€{l,....,r} H 71+1H
< _
O < |2 | [15, [

e Lq(Q,A)

(37)
proving (18), (19). =
We give

Corollary 9 (to Theorem 8) All as in Theorem 8, with f1 = ... = f = f,

r € N. Then
H/Qf"(7)d7_</ ez )dz)f%)

”+1 r—1 n+1
et ([ iz @) < (38)

ey mm{(/ 17 -l 47) ()

T .
=z ez RN (7 S
(39)

<

LI(Q)A)

We also give

Corollary 10 (to Theorem 8) All as in Theorem 8, with (A, |-]|) being a com-
mutative Banach algebra. Then

r/Q (fllfp (7)) 07—

/ 15 | a7 | rn@)| <

i=1 p=1
pFi
Right hand side of (18) < Right hand side of (19). (40)

‘We make

k
Remark 11 Of great interest are applications of Theorem 8 when Q = [] [ax, b,
A=1

where [ax,by] CR, A=1,..., k.
We observe that by the multinomial theorem we get:

k

n+1
E E : n+1)!
/’C ( |Z)\ - mOA) dZ]_de = Q
AI;Il[ambx]

19,1 |
A=1 pr+patpp=nt1 PLP2 PR

10
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/k |21 — $01|p1 |22 — $02|p2 |Zk — $0k|pk dzldzk = (41)
[T [ax;ba]

A=1
n+1 b
Z H </ |Z)\ —Z'UA‘pk dZ)\> =

p1t+pat...pp=n+1 Pr: p2
k p b
n+1)! Lo o
Z ( & ) H (/ (x())\ - 2:)\)pA dzy +/ (Z)\ - xo)\)pA dZ)\> =
ax Tox

k | A=1
> pr=n+l )\1:[1‘0)\'

A=1
k
Z (n+1)! H (zox — ax)p*H + (bx — on)pkH (42)
- py+1 '
Z pr=n+1 H L=

We have found that

— n+1
17 — o),

k
[T [ax;ba]
A=1

k
Z (n—|—1)! H <(b)\ —l‘oA)pA+1+(l‘o)\—a>\)pA+l>
. .
r — 1 H p)\' A=1 P - !
)\Elpx—n-‘r Nl

Based on (18), (19) and (43) we conclude:

k
Theorem 12 Let (A,]-||) a Banach algebra and f; € C"*1 (H [ax, b)] ,A),
A=1

k
i=1,..,r;r €N, n € Zy, and fized z5 € [] [ar,bx] C R*, k > 2. Here

A=1
all vector partial derivatives fio := %O;éi, where a = (aq,...,ax), ax € ZT,
k
A=1,..,k |lal= > ax=4,j=1,...n, fulfill fi, (Zg)=0,i=1,....r
A=1
Denote
Dn fz = max fioc 44
0= e Wl g (44)
1=1,..,1.
Then
> / 117, | fz)az-
H[axqu] p=1
pFi
>/ 15 | a7 | rn@)| < (45)
i=1 [ax,ba] | p=1
- pF#i
11
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(ze?}ax D f@) TL s

i=1 | p=1

k
oo, [T [ax,bx]
: A=1
pFi

k
1
Z 2 k H ( (bx — zox)™ " + (2o — a/\)pﬁl)

k | A=1
=, et /\1;11 o ,\1;[1 (pr+1)
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