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Abstract

Here we are dealing with several smooth functions from a compact
convex set of Rk, k � 2 to a Banach algebra. For these we prove general
multivariate Ostrowski type inequalities with estimates in norms k�kp ; for
all 1 � p � 1. We provide also interesting applications.
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1 Introduction

In 1938, A Ostrowski [5] proved the following famous inequality:

Theorem 1 (1938, Ostrowski [6]) Let f : [a; b]! R be continuous on [a; b] and
di¤erentiable on (a; b) whose derivative f 0 : (a; b)! R is bounded on (a; b), i.e.,
kf 0ksup1 := sup

t2(a;b)
jf 0 (t)j < +1. Then

����� 1

b� a

Z b

a

f (t) dt� f (x)
����� �

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0ksup1 ; (1)

for any x 2 [a; b]. The constant 14 is the best possible.

Since then there has been a lot of activity around these inequalities with
important applications to Numerical Analysis and Probability.
This article is also greatly motivated by the following result:
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Theorem 2 (see [1]) Let f 2 C1
�

kQ
i=1

[ai; bi]

�
, where ai < bi; ai; bi 2 R,

i = 1; :::; k, ans let �!x0 := (x01; :::; x0k) 2
kQ
i=1

[ai; bi] be �xed. Then

���������
1

kQ
i=1

(bi � ai)

Z b1

a1

:::

Z bi

ai

:::

Z bk

ak

f (z1; :::; zk) dz1:::dzk � f (�!x0)

��������� � (2)

kX
i=1

 
(x0i � ai)2 + (bi � x0i)2

2 (bi � ai)

! @f@zi

1
:

Inequality (2) is sharp, here the optimal function is

f� (z1; :::; zk) :=
kX
i=1

jzi � x0ij�i , �i > 1:

Clearly inequality (2) generalizes inequality (1) to multidimension.

We are inspired also by [2].
In this article we establish multivariate Ostrowski type inequalities for sev-

eral smooth functions from a compact convex subset of Rk, k � 2, to a Banach
algebra. These involve the norms k�kp, 1 � p � 1:

2 About Banach Algebras

All here come from [6].
We need

De�nition 3 ([6], p. 245) A complex algebra is a vector space A over the
complex �eld C in which a multiplication is de�ned that satis�es

x (yz) = (xy) z; (3)

(x+ y) z = xz + yz, x (y + z) = xy + xz; (4)

and
� (xy) = (�x) y = x (�y) ; (5)

for all x; y and z in A and for all scalars �.
Additionally if A is a Banach space with respect to a norm that satis�es the

multiplicative inequality

kxyk � kxk kyk (x 2 A, y 2 A) (6)
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and if A contains a unit element e such that

xe = ex = x (x 2 A) (7)

and
kek = 1; (8)

then A is called a Banach algebra.
A is commutative i¤ xy = yx for all x; y 2 A:

We make

Remark 4 Commutativity of A will be explicited stated when needed.
There exists at most one e 2 A that satis�es (7).
Inequality (6) makes multiplication to be continuous, more precisely left and

right continuous, see [6], p. 246.
Multiplication in A is not necessarily the numerical multiplication, it is some-

thing more general and it is de�ned abstractly, that is for x; y 2 A we have
xy 2 A, e.g. composition or convolution, etc.
For nice examples about Banach algebras see [6], p. 247-248, § 10.3.

We also make

Remark 5 Next we mention about integration of A-valued functions, see [6],
p. 259, § 10.22:
If A is a Banach algebra and f is a continuous A-valued function on some

compact Hausdor¤ space Q on which a complex Borel measure � is de�ned, thenR
fd� exists and has all the properties that were discussed in Chapter 3 of [6],

simply because A is a Banach space. However, an additional property can be
added to these, namely: If x 2 A, then

x

Z
Q

f d� =

Z
Q

xf (p) d� (p) (9)

and �Z
Q

f d�

�
x =

Z
Q

f (p)x d� (p) : (10)

The vector integrals we will involve in our article follow (9) and (10).

3 Vector Analysis Background

(see [8], pp. 83-94)
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Let f (t) be a function de�ned on [a; b] � R taking values in a real or complex
normed linear space (X; k�k), Then f (t) is said to be di¤erentiable at a point
t0 2 [a; b] if the limit

f 0 (t0) = lim
h!0

f (t0 + h)� f (t0)
h

(11)

exists in X, the convergence is in k�k. This is called the derivative of f (t) at
t = t0.
We call f (t) di¤erentiable on [a; b], i¤ there exists f 0 (t) 2 X for all t 2 [a; b].
Similarly and inductively are de�ned higher order derivatives of f , denoted

f 00; f (3); :::; f (k); k 2 N, just as for numerical functions.
For all the properties of derivatives see [8], pp. 83-86.
Let now (X; k�k) be a Banach space, and f : [a; b]! X:

We de�ne the vector valued Riemann integral
R b
a
f (t) dt 2 X as the limit of

the vector valued Riemann sums in X, convergence is in k�k. The de�nition is
as for the numerical valued functions.
If
R b
a
f (t) dt 2 X we call f integrable on [a; b]. If f 2 C ([a; b] ; X), then f is

integrable, [8], p. 87.
For all the properties of vector valued Riemann integrals see [8], pp. 86-91.
We de�ne the space Cn ([a; b] ; X), n 2 N, of n-times continuousky di¤er-

entiable functions from [a; b] into X; here continuity is with respect to k�k and
de�ned in the usual way as for numerical functions�:
Let (X; k�k) be a Banach space and f 2 Cn ([a; b] ; X), then we have the

vector valued Taylor�s formula, see [8], pp. 93-94, and also [7], (IV, 9; 47).
It holds

f (y)�f (x)�f 0 (x) (y � x)�1
2
f 00 (x) (y � x)2�:::� 1

(n� 1)!f
(n�1) (x) (y � x)n�1

(12)

=
1

(n� 1)!

Z y

x

(y � t)n�1 f (n) (t) dt; 8 x; y 2 [a; b] :

In particular (12) is true when X = Rm;Cm; m 2 N, etc.
A function f (t) with values in a normed linear spaceX is said to be piecewise

continuous (see [8], p. 85) on the interval a � t � b if there exists a partition
a = t0 < t1 < t2 < ::: < tn = b such that f (t) is continuous on every open
interval tk < t < tk+1 and has �nite limits f (t0 + 0) ; f (t1 � 0) ; f (t1 + 0) ;
f (t2 � 0) ; f (t2 + 0) ; :::; f (tn � 0) :
Here f (tk � 0) = lim

t"tk
f (t) ; f (tk + 0) = lim

t#tk
f (t) :

The values of f (t) at the points tk can be arbitrary or even unde�ned.
A function f (t) with values in normed linear space X is said to be piecewise

smooth on [a; b], if it is continuous on [a; b] and has a derivative f 0 (t) at all but
a �nite number of points of [a; b] ; and if f 0 (t) is piecewise continuous on [a; b]
(see [8], p. 85).
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Let u (t) and v (t) be two piecewise smooth functions on [a; b], one a numerical
function and the other a vector function with values in Banach space X. Then
we have the following integration by parts formulaZ b

a

u (t) dv (t) = u (t) v (t) jba �
Z b

a

v (t) du (t) ; (13)

see [8], p. 93.
We mention also the mean value theorem for Banach space valued functions.

Theorem 6 (see [4], p. 3) Let f 2 C ([a; b] ; X), where X is a Banach space.
Assume f 0 exists on [a; b] and kf 0 (t)k � K, a < t < b, then

kf (b)� f (a)k � K (b� a) : (14)

Here the multiple Riemann integral of a function from a real box or a real
compact and convex subset to a Banach space is de�ned similarly to numerical
one however convergence is with respect to k�k. Similarly are de�ned the vector
valued partial derivatives as in the numerical case.
We mention the equality of vector valued mixed partiasl derivatives.

Proposition 7 (see Proposition 4.11 of [3], p. 90) Let Q = (a; b)� (c; d) � R2
and f 2 C (Q;X), where (X; k�k) is a Banach space. Assume that @

@tf (s; t),
@
@sf (s; t) and

@2

@t@sf (s; t) exist and are continuous for (s; t) 2 Q, then
@2

@s@tf (s; t)

exists for (s; t) 2 Q and

@2

@s@t
f (s; t) =

@2

@t@s
f (s; t) , for (s; t) 2 Q: (15)

4 Main Results

We present general Ostrowski type inequalities results regarding several Banach
algebra valued functions.

Theorem 8 Let p; q > 1 : 1
p +

1
q = 1; (A; k�k) a Banach algebra and fi 2

Cn+1 (Q;A), i = 1; :::; r; r 2 N, n 2 Z+, and �xed �!x0 2 Q � Rk, k � 2,
where Q is a compact and convex subset. Here all vector partial derivatives

fi� :=
@�fi
@z� , where � = (�1; :::; �k), �� 2 Z+, � = 1; :::; k, j�j =

kP
�=1

�� = j,

j = 1; :::; n, ful�ll fi� (
�!x0) = 0, i = 1; :::; r:

Denote
Dn+1 (fi) := max

�:j�j=n+1
kkfi�kk1;Q ; (16)

i = 1; :::; r; and

k�!z ��!x0kl1 :=
kX
�=1

jz� � x0�j : (17)
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Then
rX
i=1

Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z ) d�!z � rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA d�!z
1CCA fi (�!x0)

 �
(18)

max
i2f1;:::;rg

Dn+1 (fi)

(n+ 1)!

rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

kf� (�!z )k

1CCA k�!z ��!x0kn+1l1
d�!z

1CCA �

max
i2f1;:::;rg

Dn+1 (fi)

(n+ 1)!
min

8>><>>:
�Z

Q

k�!z ��!x0kn+1l1
d�!z
�2664 rX

i=1

0BB@ rY
�=1
�6=i

kkf�kk1;Q

1CCA
3775 ;

k� � �!x0kn+1l1


1;Q

2664 rX
i=1


0BB@ rY
�=1
�6=i

kf�k

1CCA

L1(Q;A)

3775 ;
k� � �!x0kn+1l1


Lp(Q;A)

2664 rX
i=1

2664

0BB@ rY
�=1
�6=i

kf�k

1CCA

Lq(Q;A)

3775
3775
9>>=>>; : (19)

Proof. Take gi�!z (t) := fi (
�!x0 + t (�!z ��!x0)), 0 � t � 1; i = 1; :::; r. Notice

that gi�!z (0) = fi (
�!x0) and gi�!z (1) = fi (�!z ). The jth derivative of gi�!z (t), based

on Proposition 7, is given by

g
(j)

i�!z (t) =

24 kX
�=1

(z� � x0�)
@

@z�

!j
fi

35 (x01 + t (z1 � x01) ; :::; x0k + t (zk � x0k))
(20)

and

g
(j)

i�!z (0) =

24 kX
�=1

(z� � x0�)
@

@z�

!j
fi

35 (�!x0) ; (21)

for j = 1; :::; n+ 1; i = 1; :::; r:
Let fi� be a partial derivative of fi 2 Cn+1 (Q;A). Because by assumption

of the theorem we have fi� (
�!x0) = 0 for all � : j�j = j, j = 1; :::; n, we �nd that

g
(j)

i�!z (0) = 0, j = 1; :::; n; i = 1; :::; r:

Hence by vector Taylor�s theorem (12) we see that

fi (
�!z )� fi (�!x0) =

nX
j=1

g
(j)

i�!z (0)

j!
+Rin (

�!z ; 0) = Rin (�!z ; 0) ; (22)
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where

Rin (
�!z ; 0) :=

Z 1

0

�Z t1

0

:::

�Z tn�1

0

�
g
(n)

i�!z (tn)� g
(n)

i�!z (0)
�
dtn

�
:::

�
dt1; (23)

i = 1; :::; r:

Therefore,

kRin (�!z ; 0)k �
Z 1

0

�Z t1

0

:::

�Z tn�1

0

g(n+1)i�!z (� (tn))


1
tndtn

�
:::

�
dt1; (24)

by the vector mean value Theorem 6 applied on g(n)
i�!z over (0; tn). Moreover, we

get

kRin (�!z ; 0)k �
g(n+1)i�!z


1;[0;1]

Z 1

0

Z t1

0

:::

�Z tn�1

0

tndtn

�
:::dt1

=

g(n+1)i�!z


1;[0;1]

(n+ 1)!
: (25)

However, there exists a ti0 2 [0; 1] such that
g(n+1)i�!z


1;[0;1]

=
g(n+1)i�!z (ti0)

 :
That is

g(n+1)i�!z


1;[0;1]

=


24 kX

�=1

(z� � x0�)
@

@z�

!n+1
fi

35 (�!x0 + ti0 (�!z ��!z0i))


�

24 kX
�=1

jz� � x0�j
 @

@z�


!n+1

fi

35 (�!x0 + ti0 (�!z ��!z0i)) :
I.e., g(n+1)i�!z


1;[0;1]

�

24 kX
�=1

jz� � x0�j
 @

@z�


1

!n+1
fi

35 ; (26)

i = 1; :::; r:

Hence by (26) we get

kRin (�!z ; 0)k �

"�
kP
�=1

jz� � x0�j
 @

@z�


1

�n+1
fi

#
(n+ 1)!

�

Dn+1 (fi)

(n+ 1)!

 
kX
�=1

jz� � x0�j
!n+1

=
Dn+1 (fi)

(n+ 1)!
k�!z ��!x0kn+1l1

; (27)

i = 1; :::; r:
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Therefore it holds

kRin (�!z ; 0)k �
max

i2f1;:::;rg
Dn+1 (fi)

(n+ 1)!
k�!z ��!x0kn+1l1

; (28)

for i = 1; :::; r:
By (22) we get that0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z )�
0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!x0) =
0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0) ;
(29)

for all i = 1; :::; r:
Hence

rX
i=1

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z )� rX
i=1

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!x0)

=

rX
i=1

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0) : (30)

Therefore we �nd
E (f1; :::; fr) (x0) :=

rX
i=1

Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z ) d�!z � rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA d�!z
1CCA fi (�!x0) =

rX
i=1

Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0) d�!z : (31)

Consequently, we have that

kE (f1; :::; fr) (x0)k =
rX
i=1

Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z ) d�!z � rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA d�!z
1CCA fi (�!x0)

 =
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rX
i=1

Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0) d�!z
 � (32)

rX
i=1


Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0) d�!z
 �

rX
i=1

0BB@Z
Q


0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0)
 d
�!z

1CCA (6)
�

rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

kf� (�!z )k

1CCA kRin (�!z ; 0)k d�!z
1CCA (28)
� (33)

max
i2f1;:::;rg

Dn+1 (fi)

(n+ 1)!

rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

kf� (�!z )k

1CCA k�!z ��!x0kn+1l1
d�!z

1CCA :
So far we have proved

kE (f1; :::; fr) (x0)k �

max
i2f1;:::;rg

Dn+1 (fi)

(n+ 1)!

rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

kf� (�!z )k

1CCA k�!z ��!x0kn+1l1
d�!z

1CCA =: (�) : (34)

Furthermore it holds

(�) �
max

i2f1;:::;rg
Dn+1 (fi)

(n+ 1)!

�Z
Q

k�!z ��!x0kn+1l1
d�!z
�2664 rX

i=1

0BB@ rY
�=1
�6=i

kkf�kk1;Q

1CCA
3775 ;
(35)

and

(�) �
max

i2f1;:::;rg
Dn+1 (fi)

(n+ 1)!

k� � �!x0kn+1l1


1;Q

2664 rX
i=1


0BB@ rY
�=1
�6=i

kf�k

1CCA

L1(Q;A)

3775 ;
(36)
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and �nally

(�) �
max

i2f1;:::;rg
Dn+1 (fi)

(n+ 1)!

2664 rX
i=1

2664

0BB@ rY
�=1
�6=i

kf�k

1CCA

Lq(Q;A)

3775
3775k� � �!x0kn+1l1


Lp(Q;A)

;

(37)
proving (18), (19).
We give

Corollary 9 (to Theorem 8) All as in Theorem 8, with f1 = ::: = fr = f ,
r 2 N. Then Z

Q

fr (�!z ) d�!z �
�Z

Q

fr�1 (�!z ) d�!z
�
f (�!x0)

 �
Dn+1 (f)

(n+ 1)!

�Z
Q

kf (�!z )kr�1 k�!z ��!x0kn+1l1
d�!z
�
� (38)

Dn+1 (f)

(n+ 1)!
min

��Z
Q

k�!z ��!x0kn+1l1
d�!z
��
kkfkk1;Q

�r�1
;

k� � �!x0kn+1l1


1;Q

kfkr�1
L1(Q;A)

;
k� � �!x0kn+1l1


Lp(Q;A)

kfkr�1
Lq(Q;A)

�
:

(39)

We also give

Corollary 10 (to Theorem 8) All as in Theorem 8, with (A; k�k) being a com-
mutative Banach algebra. Thenr

Z
Q

 
rY
�=1

f� (
�!z )
!
d�!z �

rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA d�!z
1CCA fi (�!x0)

 �
Right hand side of (18) � Right hand side of (19). (40)

We make

Remark 11 Of great interest are applications of Theorem 8 when Q =
kQ
�=1

[a�; b�],

where [a�; b�] � R, � = 1; :::; k:
We observe that by the multinomial theorem we get:

Z
kQ

�=1

[a�;b�]

 
kX
�=1

jz� � x0�j
!n+1

dz1:::dzk =
X

�1+�2+:::�k=n+1

(n+ 1)!

�1!�2!:::�k!

10
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Z
kQ

�=1

[a�;b�]

jz1 � x01j�1 jz2 � x02j�2 ::: jzk � x0kj�k dz1:::dzk = (41)

X
�1+�2+:::�k=n+1

(n+ 1)!

�1!�2!:::�k!

kY
�=1

 Z b�

a�

jz� � x0�j�� dz�

!
=

X
kP

�=1

��=n+1

(n+ 1)!
kQ
�=1

��!

kY
�=1

 Z x0�

a�

(x0� � z�)�� dz� +
Z b�

x0�

(z� � x0�)�� dz�

!
=

X
kP

�=1

��=n+1

(n+ 1)!
kQ
�=1

��!

kY
�=1

 
(x0� � a�)��+1 + (b� � x0�)��+1

�� + 1

!
: (42)

We have found that Z
kQ

�=1

[a�;b�]

k�!z ��!x0kn+1l1
d�!z = (43)

X
kP

�=1

��=n+1

(n+ 1)!
kQ
�=1

��!

kY
�=1

 
(b� � x0�)��+1 + (x0� � a�)��+1

�� + 1

!
:

Based on (18), (19) and (43) we conclude:

Theorem 12 Let (A; k�k) a Banach algebra and fi 2 Cn+1
�

kQ
�=1

[a�; b�] ; A

�
,

i = 1; :::; r; r 2 N, n 2 Z+, and �xed �!x0 2
kQ
�=1

[a�; b�] � Rk, k � 2. Here

all vector partial derivatives fi� :=
@�fi
@z� , where � = (�1; :::; �k), �� 2 Z+,

� = 1; :::; k, j�j =
kP
�=1

�� = j, j = 1; :::; n, ful�ll fi� (
�!x0) = 0, i = 1; :::; r:

Denote
Dn+1 (fi) := max

�:j�j=n+1
kkfi�kk

1;
kQ

�=1

[a�;b�]
; (44)

i = 1; :::; r:

Then 
rX
i=1

Z
kQ

�=1

[a�;b�]

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z ) d�!z �
rX
i=1

0BB@Z kQ
�=1

[a�;b�]

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA d�!z
1CCA fi (�!x0)

 � (45)
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�
max

i2f1;:::;rg
Dn+1 (fi)

�2664 rX
i=1

0BB@ rY
�=1
�6=i

kkf�kk
1;

kQ
�=1

[a�;b�]

1CCA
3775

26664 X
kP

�=1

��=n+1

1
kQ
�=1

��!
kQ
�=1

(�� + 1)

kY
�=1

�
(b� � x0�)��+1 + (x0� � a�)��+1

�37775 :
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